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Introduction

Large-scale sequential decision making via reinforcement learning has seen suc-
cesses in many high-profile settings, including but not limited to logistics, games,
and complex control tasks. Just a few examples:

I Simao et al., An approximate dynamic programming algorithm for
large-scale fleet management: A case application, Transportation Science,
2008

I Mnih et al., Human-level control through deep reinforcement learning,
Nature, 2015.

I Silver et al., Mastering the game of Go with deep neural networks and tree
search, Nature, 2016.

I Bellemare et al., Autonomous navigation of stratospheric balloons using
reinforcement learning, Nature, 2020.



Introduction

Two common threads can be observed in successful applications of reinforcement
learning (RL) in practice:

1. There is a planning or approximate dynamic programming aspect of the
solution; it is rarely the case that RL is applied in its “pure” form (where
an agent interacts with an environment while learning).

2. The “cost” of collecting experience (i.e., interactions with the
environment) is low. In each of the above, a simulator of environment
interactions is available.



Introduction

In this talk: we’ll unify two recent papers, motivated by (1) and (2), that leverage
information relaxation bounds.1

I Jiang, Al-Kanj, Powell, Optimistic Monte Carlo tree search with sampled
information relaxation dual bounds, Operations Research, 2020.

I El-Shar, Jiang, Lookahead-bounded Q-learning, ICML, 2020.

1Brown, et al. Information relaxations and duality in stochastic dynamic programs, Operations
Research, 2010
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Finite Horizon MDP Model

I Let S be the state space, A be the action space, r be the reward function,
f be the transition function, and T be the horizon length.

I Our objective is to find mappings πt : S → A to solve:

max
π∈Π

E

[
T−1∑
t=0

r(St, πt(St))
∣∣S0 = s0

]
,

where {Wt} is a noise process, St ∈ S, at = πt(St) ∈ A, and state
transitions occur via St+1 = f(St, at,Wt+1).

I Let ht(s,a,w) and ht(s, π,w) be the total reward

– starting at time t,

– and state s,

– while following either a sequence of actions a or a policy π.

I Equivalently and more concisely, maxπ∈Π E
[
h0(s0, π,W1,T )

]
.



Information Relaxation Dual Bound
“Knowing the future.” (Brown et al., 2010)

W0 W1 W2 W3 W4

Decision(F2)Decision(F1) Decision(F3) Decision(F4)Decision(F0)

W0 W1 W2 W3 W4

All Decisions(F1)

. . .

. . .

vs.max⇡2⇧ E
⇥
h0(s0,⇡,W1,T )

⇤
E
⇥
maxa h0(s0,a,W1,T )

⇤

If we can quickly approximate this, then we have some sense of how good an
action might be.



Information Relaxation Dual Bound
(Brown et al., 2010)

Let Q∗t (s, a) = maxπ∈Π E
[∑T−1

τ=t r(Sτ , πτ (Sτ ))
∣∣St = s, at = a

]
and V ∗t (s) =

maxaQ
∗
t (s, a).

Proposition (Duality). Fix a stage t ∈ T and an initial state-action pair (s, a) ∈
S ×A. Then, it holds that

Q∗t (s, a) ≤ E
[
r(s, a)+max

a

[
ht+1(St+1,a,Wt+1,T )−penalty(v,a,Wt+1,T )

]]
,

where St+1 = f(s, a,Wt+1) and the optimization is over the vector of actions
a = (at+1, . . . , aT−1).

If v = V ∗, then both sides are equal. “If the value of future information is
known, then a penalty can be constructed to recover the optimal value of the
primal problem.”

I Idea 1. These bounds can be sampled.

I Idea 2. A penalty function can be defined using an approximation of V ∗

(see Prop 2.3 of Brown et al. 2010 for justification).



Information Relaxation Dual Bound



MCTS: Decision Trees in Real Time
“Looking ahead from the current node.”
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MCTS: Decision Trees in Real Time
“Looking ahead from the current node.”



MCTS: Decision Trees in Real Time
“Looking ahead from the current node.”



Driver Behavior on a Ride-Sharing Platform

Current Location

Demand Hotspots

Trip Requests



Monte-Carlo Tree Search

I MCTS is a technique, popular in gameplay artificial intelligence (AI), for
solving sequential problems (MDPs or two-player games).

I Given an initial state, it iteratively builds the decision tree and attempts
to focus on states and actions that an optimal policy might visit.

I A heuristic called the default policy provides Monte-Carlo estimates of
downstream values to guide the tree expansion process.

I The hope is that the optimal action at the root node recommended by the
partial tree is nearly optimal.

I Works especially well when the action branching factor (number of
actions) is not too big. This limitation motivates our work.



Main Steps of MCTS
(Browne et al., 2002)



An Asymmetric Decision Tree
(Browne et al., 2002)



Tree Policy
(Chang et al., 20052, Kocsis & Szepesvári, 20061, Silver et al. 20163)

I Selection: A selection policy steers the algorithm down the current
version of the decision tree.

– UCT1 (upper confidence trees) is a version of MCTS where the selection
policy views each choice as a multi-armed bandit.

– Based on prior work by called the “adaptive multistage sampling.”2

– Traverses down the tree until either an leaf or expandable (i.e., new child
nodes can be added) node is reached.

I Expansion: An expansion policy decides which child to add to the tree.
Often, a child node is added at random.

– What if there are many actions? Can something more intelligent be done
here?

– AlphaGo3 uses supervised learning on human moves to intelligently narrow
the set of actions to consider.

– Without supervision, it’s more difficult to pre-select actions to consider
without first expanding the entire subtree.



Main Steps of MCTS
(Browne et al., 2002)



Motivations
(Bertsimas et al., 20141)

1. Every expansion of action is “risky” in the sense that an entire subtree
now has to be considered. Can we control the action branching factor
by guessing which actions may be suboptimal (and thus, ignored)? It has
been observed1 that:

– In an O.R. application, MCTS is competitive with rolling horizon techniques
only on smaller instances of the problems.

– MCTS can be quite sensitive to large action spaces, more so than large
state spaces.

2. Can we design a version of MCTS that asymptotically does not expand
the entire tree, yet is still optimal?

3. Often, the design of the default policy requires significant effort. Can we
further exploit this heuristic within the MCTS framework?
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Primal-Dual MCTS

I In standard MCTS, unexpanded action nodes are expanded at random.

– Risky: an entire subtree is now effectively added to the search space.

I Consider the following expansion steps:

– With each unexpanded action, associate with it an estimated dual upper
bound ūn.

– Obtain a single sample path Wn
t+1,T = (Wn

t+1, . . .W
n
T ) of the exogenous

information process and solve the deterministic “inner” problem:

ûn(s, a) =

r(s, a) + max
a

[
ht+1

(
St+1,a,W

n
t+1,T

)
− penalty(V π

d
,a,Wt+1,T )

]
.

– Let ūn be a smoothed estimate of ûn.

– If none of the actions have a ūn higher than the current values of expanded
actions, then don’t expand.

– Otherwise, expand the action with the highest ūn.



Primal-Dual MCTS



Shortest Path Problem with Random Edge Costs
“Uncertain traffic conditions.”
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Shortest Path Problem with Random Edge Costs
“A snapshot of the traffic conditions.”
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Ĉ24 = 1.48
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Shortest Path Problem with Random Edge Costs
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ūn :

Q∗ :

Q̄n :
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Convergence of Primal-Dual MCTS

Theorem. Under some conditions, the root node satisfies:

I V̄ n(x0)→ V ∗(x0) a.s.

I lim supn→∞ argmaxy∈Yn(x0) Q̄
n(y) ⊆ argmaxy0=(x0,a) Q

∗(y0) a.s.

i.e., the estimated value converges to the optimal value and an optimal action is
both expanded and identified.



Some Properties of Primal-Dual MCTS

The “limiting partial decision tree” T ∞

I may have unexpanded subtrees;

I the subtree of the optimal action may itself have unexpanded subtrees.

Previous work in MCTS (and its variants) obtain convergence by letting the
limiting tree become the full tree.

· · ·

πd

x0 = s0

“not expanded”
expanded”
“partially

⊆ Ỹn(x0)Yn(x0) ⊇

· · ·

x0 = s0

“not expanded”

n −→ ∞

expanded”
“partially

Y∞(x0) ⊇ ⊆ Ỹ∞(x0)

“fully
expanded”

optimal action



Driver Behavior on a Ride-Sharing Platform
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Model Details

I Dataset of trips taken in one day throughout New Jersey on a particular
taxi service.

I The driver is assumed to work for 10 hours a day and makes decisions
every 15 minutes, giving us T = 40.

I Each location in the model represents a 0.5× 0.5 square mile area in the
state of New Jersey.

I Every period, the driver may choose to either move to an adjacent
location or select one of the requests offered by the platform.

I Objective is to maximize profit (taking into account mileage costs).

I Considered many instances of the problem with varying action spaces: D5

– D100, where Dx means x total actions at each period.



Deeper Trees using Primal-Dual MCTS

Given the same number of iterations, Primal-Dual MCTS produces deeper trees.
Vanilla MCTS produces wider and shallower trees.
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Figure: Subtree Depth Empirical Distributions



Deeper Trees using Primal-Dual MCTS

Given the same number of iterations, Primal-Dual MCTS produces deeper trees.
Vanilla MCTS produces wider and shallower trees.
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Deeper Trees using Primal-Dual MCTS

Given the same number of iterations, Primal-Dual MCTS produces deeper trees.
Vanilla MCTS produces wider and shallower trees.
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Convergence of the Action Values

Primal-Dual MCTS is able to discover the “consensus decision” (between the
two algorithms) in fewer iterations because it does not expand all actions.

I 2795 iterations versus 65,611 iterations.

I The CPU usage until convergence is 27% of vanilla MCTS.
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Comparisons to Other Policies

Performance improvement is most noticeable on larger problems.
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The RL Setting



Q-Learning
(Watkins, 1989)

I Q-learning is the canonical reinforcement learning algorithm (enjoys
conceptual simplicity, ease of implementation, convergence guarantees).

I It can be thought of as an asynchronous and sampled version of the
value-iteration algorithm for MDPs.

I Has gained renewed attention in recent years after serving as the core
underlying methodology of several successful deep reinforcement learning
algorithms, such as DQN (Mnih et al., 2013), Double DQN (van Hasselt
et al., 2016), and Rainbow DQN (Hessel et al., 2018).

I Q-learning and its variants are known to be challenging to apply to
real-world settings, due to the cost of collecting experience, due to
expensive simulations/real-world interactions.



Q-Learning
(Watkins, 1989)

I Consider a γ-discounted infinite horizon problem with finite state and
action spaces. The state-action value function of a policy π is:

Qπ(s, a) = E

[
∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a, π

]
.

I An optimal policy selects actions according to

π∗(s) = argmax
a∈A

Q∗(s, a),

where Q∗(s, a) = maxπ Q
π(s, a) is the optimal action-value function.

I The Bellman optimality equation gives the following recursion:

Q∗(st, at) = r(st, at) + γE
[
max
at+1

Q∗(st+1, at+1)
]
.



Q-Learning
(Watkins, 1989)

I Question 1: If we knew upper and lower bounds on Q∗, could we improve
this algorithm?

I Question 2: Can we dynamically estimate upper and lower bounds and
get better over time?



Our Setting: Problems with Partially Known Dynamics

I It is often the case that we know the transition function f and reward r.
In other words, given st, at, and wt+1, we can evaluate the next state and
the reward.2

I What is often not known is the random noise wt+1 (range of values,
distribution, etc). But wt+1 is often observable (prices, weather patterns,
demands, etc).

2Typical RL setting: one observes st+1 and rt+1 after taking action at in state st.



Examples of Problems with Partially Known Dynamics

I Although not the standard RL paradigm, typical assumption in the OR
and control theory literature.

I Backed by abundant real-world applications:

– Inventory problems,

– Car-sharing problems,

– Vehicle routing,

– Renewable energy,

– Maintenance problems,

– Option pricing and trading.



Infinite Horizon Information Relaxation Dual Bound
(Brown and Haugh, 2017)

Let ζπt (st, at, wt+1 |ϕ) be a penalty function generated by some function ϕ (e.g.,
ϕ = Q∗) and policy π (e.g., π = πϕ):

ζπt (st, at, wt+1 |ϕ)

= γt+1
(
ϕ(st+1, π(st+1))−E

[
ϕ
(
f(st, at, w), π(f(st, at, w))

)])
.

Then, it holds that:

Q∗(s0, a0) ≤ E

[
max

a

{
∞∑
t=0

γt
(
r(st, at)− ζπϕ

t (st, at, wt+1 |ϕ)
)}]

,

where πϕ = greedy policy with respect to the value function ϕ.

Two challenges here are (1) computing the inner expecation (due to not having
the distribution of w) and (2) maximizing over an infinite sequence of actions a.



Inner Expecation? Infinite Sequence of Actions?

Empirical Penalty: GivenK observations of exogenous information {w1, . . . , wK},

ζ̂πt (st, at, wt+1 |ϕ)

= γt+1
(
ϕ(st+1, π(st+1))− 1

K

K∑
k=1

[
ϕ
(
f(st, at, w

k), π(f(st, at, w
k))
)])

.

Indefinite Horizon: Solve an undiscounted τ -horizon MDP where each state
transitions to zero reward terminal state w.p. 1− γ (thus, τ ∼ Geom(γ)):

Q∗(s0, a0) ≤ E

[
max

a

{
τ∑
t=0

(
r(st, at)− ζ̂πϕ

t (st, at, wt+1 |ϕ)
)}]

.

(Theory still holds using these two changes.)



Infinite Horizon Information Relaxation Dual Bound



Sampled Infinite Horizon Information Relaxation Dual Bound

For a given sample path w = (w1, . . . , wτ ) where τ ∼ Geom(γ), we can compute
sampled bounds.

Upper Bound: Each of the “inner” DP problems can be solved via the backward
recursion

QUt (st, at) = r(st, at)− ζ̂πϕ
t (st, at, wt+1 |ϕ) + max

a
QUt+1(st+1, a),

for t = τ − 1, τ − 2, . . . , 0 with st+1 = h(st, at, wt+1) and QUτ ≡ 0 (as there is
no additional reward after entering the absorbing state s̃). The optimal value of
the inner problem is given by QU0 (s0, a0).

Lower Bound: A sampled lower bound is:

QLt (st, at) = r(st, at)− ζ̂πϕ
t (st, at, wt+1 |ϕ) +QLt+1(st+1, π(st+1)),

for t = 0, . . . , τ − 1, with st+1 = h(st, at, wt+1) and QLτ ≡ 0.



Behavior of an Algorithm that Uses Dynamically Learned Bounds

(Showing some “intended” results before the proposed algorithm.)

Ingredients:

I Q-learning, which produces a sequence of value function approximations
converging to Q∗,

I Bound procedure (input: value function approximation, output: estimated
lower and upper bounds), with the property that better value function
approximations produce tighter bounds (Prop. 2.3 of Brown et al., 2010).

Could we use these ingredients to design an algorithm that uses these bounds to
“squeeze” the iterates toward the optimal value (something like the plot below)?



Q-Learning with Lookahead Upper and Lower Bounds

Main Idea: Generate improving upper/lower bounds such that the Q-iterates
are “squeezed” toward optimality by setting ϕ to the current Q-iterate.

1. On a given iteration n, experience a realization of the exogenous
information wt+1 and make a standard Q-learning update.

2. We then set ϕ to be the newly updated Q-iterate and compute upper and
lower bounds on the true Q∗, which are then tracked and averaged using a
stochastic approximation step.

3. Finally, we project the Q-iterate so that it satisfies the averaged upper and
lower bounds and return to Step 1.



Lookahead-Bounded Q-Learning

Q improves ⇒ bounds improve ⇒ Q improves more ⇒ bounds improve more



An Example of LBQL on a Simple Problem



Convergence

Lemma (Asymptotic Bounds on Ln and Un). For all (s, a) ∈ S × A, we have
the following:

1. If L0(s, a) ≤ U0(s, a), then Ln(s, a) ≤ Un(s, a) for all iterations n.

2. For every η > 0, and with probability one, there exists some finite iteration
index n0 such that

Ln(s, a) ≤ Q∗(s, a) + η and Q∗(s, a)− η ≤ Un(s, a)

for all iterations n ≥ n0.



Convergence

Theorem (Convergence of LBQL). Suppose that:

1.
∑∞
n=0 αn(s, a) =∞,

∑∞
n=0 α

2
n(s, a) <∞,

2.
∑∞
n=0 βn(s, a) =∞,

∑∞
n=0(βn(s, a))2 <∞,

3. Each state s ∈ S is visited infinitely often with probability one.

The following hold:

1. With probability one, Q′n(s, a) converges to the optimal action-value
function Q∗(s, a) for all state-action pairs (s, a).

2. If the penalty terms were computed exactly, then with probability one, the
iterates Ln(s, a), Q′n(s, a), Un(s, a) converge to the optimal action-value
function Q∗(s, a) for all state-action pairs (s, a).



Practical Extension: LBQL with Experience Replay

Issue: In a real setting, we cannot get samples of the exogenous information
wt+1, let alone use its distribution. Instead, we can:

1. Use a noise buffer B is used to record observed w’s. We can then sample
from the buffer B whenever we need samples of w (both batch samples for
computing the expecation within the penalty, and sample path to compute
the inner DP).

2. The same convergence results can be obtained for this practical extension
(but need to account for additional bias due to sampling from the buffer).



Numerical Illustrations

I Windy Gridworld
– There is an upward crosswind with a random intensity, and the agent moves

extra steps in the wind direction whenever it reaches an affected square.

I Stormy Gridworld
– We then consider a new domain that adds the additional complexity of rain

and multi-directional wind to windy gridworld. The location of the rain is
random and when it occurs, puddles that provide negative rewards are
created.

I Spatial Pricing for Carsharing (2 and 4 Locations)
– The actions are to set a price at each station, which influence the station’s

(stochastic) demand for rentals. Rentals can either be one-way or
round-trip. The goal is to maximize revenue, where unmet demands are
charged a lost sales cost. The largest version of this problem has 1771
states and 16 actions.



Behavior of LBQL (Windy Gridworld)

Q improves ⇒ bounds improve ⇒ Q improves more ⇒ bounds improve more



Behavior of LBQL (Stormy Gridworld)

Q improves ⇒ bounds improve ⇒ Q improves more ⇒ bounds improve more



Behavior of LBQL (Pricing in Carsharing)

Q improves ⇒ bounds improve ⇒ Q improves more ⇒ bounds improve more



Comparison to Other Algorithms



When to use LQBL?

I Many sampled DPs need to be solved for this algorithm to work.

– If experience is cheap, then no need for LBQL – simply run Q-learning. But
if samples are expensive to obtain, solving the DPs may be reasonable.

– Each DP “solve” actually provides DP solutions to the entire state space –
one can actually do updates to the bounds everywhere.

I Need to know the transition function f to solve DPs.

– Because the transition function f needs to be known, LBQL is not strictly a
model-free RL algorithm. Knowledge of f , however, is common in OR/OM
applications (e.g., inventory, RM, scheduling, routing), as discussed
previously.



Thank you for the invitation! Any questions?

Please feel free to email me at drjiang@pitt.edu and we can chat anytime.
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