Structured Actor-Critic for
Managing Public Health Points-of-Dispensing

Daniel Jiang
joint work with Yijia Wang

Operations Management Seminar, April 9, 2021
Singapore Management University



Outline

Introduction to the public health problem
Hierarchical MDP inventory and dispensing model
The structured actor-critic approach

Synthetic experiments

Case study: Naloxone for First Responders Program



Introduction

Public health organizations manage “points-of-dispensing” (PODs) for dispensing
critical medical supplies during emergency situations.

Examples: vaccines, antibiotics, and others, such as naloxone, an opioid
overdose reversal drug for harm reduction.

Our problem: optimal inventory control and dispensing for a public health
agency and “independent” PODs.




Problem preview

Components of our problem:
- A central inventory storage managed by the public health agency
Inventory is replenished periodically
- A lower-level dispensing coordinator that interfaces with PODs
Receives inventory from central storage

Receives requests from arriving PODs (demands)

Periodically:
Inventory replenishment
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Problem preview

- Features of our problem:
- Heterogeneous utility functions that depend on the requesting POD

- Effectiveness of the public health intervention can vary across different groups of
the affected population

- Trade-off for the dispensing coordinator:

- Should we satisfy a lower-priority demand now, or save the inventory for a
possible higher-priority demand in the future?

- Two timescales
- Slower one for inventory replenishment (central inventory manager)
- Faster one for dispensing decisions (dispensing coordinator)

- Stochastic demands

- Discrete inventory states



Example 1: Opioid overdose epidemic

The U.S. Department of Health and
Human Services (HHS) declared it a
public health emergency in 2017.

HHS: “Increased prescription of
opioid medications led to widespread
misuse of both prescription and non-
prescription opioids before it became
clear that these medications could
indeed be highly addictive.”

Previously, pharmaceutical
companies said that these drugs
were not addictive.

70,630

people died from drug
overdose in 2019?

1.6 million

people had an opioid use
disorder in the past year®

745,000

people used heroin
in the past year'

1.6 million

people misused prescription
pain relievers for the first time*

48,006

deaths attributed to overdosing
on synthetic opioids other

than methadone (in 12-month
period ending June 2020)*
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THE OPIOID EPIDEMIC BY THE NUMBERS

10.1 million

people misused prescription
opioids in the past year®

2 million

people used methamphetamine
in the past year®

50,000

people used heroin
for the first time*

14,480

deaths attributed to overdosing
on heroin (in 12-month period ending
June 2020)°

1. 2019 National Survey on Drug Use and Health, 2020.

2. NCHS Data Brief No. 394, December 2020.

3. NCHS, National Vital Statistics System. Provisional
drug overdose death counts.

((. HHS.GOV/OPIOIDS
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Example 1: Opioid overdose epidemic

A deadly dose e
. . : Ao er 100,000 population
United States, overdose deaths involving opioids
By county, 2015 (2] i
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Source: Centres for Disease Control and Prevention Source: Economist, 2017



Example 1: Opioid overdose epidemic

Daily chart

Opioid deaths in America reached new

] ' : Spreading to th t rt of
highs in the pandemic preading to the western part o

the country

Once a problem confined to the eastern part of the country, fentanyl has Job losses and social isolation

spread west . _
may have worsened the situation
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The other epidemic . . .
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Source: Economist, 2021



Example 1: Opioid overdose epidemic

- Naloxone is a drug that has the ability to reverse overdoses within minutes
- To save lives, it is critical that this drug is widely distributed

- “Harm reduction” programs are distributing naloxone free of charge to first
responders (incl. EMS, law enforcement, fire fighters, public transit drivers)

- Utility of naloxone varies across regions due to the varying levels of opioid usage in
different populations

- e.g., West Virginia DHHR distributes extra naloxone to high priority counties
- Utility of naloxone also varies across different types of first responders

- e.g., law enforcement officers are “often a community’s first contact with opioid
overdose victims after 9-1-1 services have been summoned” (Goodloe and
Dailey (2014); Rando et al. (2015))



Example 2: Vaccine distribution, COVID-19 & H1N1

- Heterogenous utilities are very clear:

- COVID-19: Compared with 5-17 age group, the rate of death is 1100 times
higher in 65-74 age group, 2800 times higher in 75-84 age group, and 7900
times higher in 85 and older age group (CDC, 2021).

- H1N1: The reported H1N1 cases from April 15 to July 24, 2009, show that the
infected rate (humber of cases per 100,000 population) of 0 to 4 age group is
17.6 times of the infected rate of 65 and older age group, and the rate of 5 to
24 age group is 20.5 times of the rate of 65 and older age group (CDC, 2009).



Sequence of events

FOD FPOD Y FPOD it POD" PO | POD wi POD " "POD | ' POD R
l | l | | | l l | | l | .
| I |
t=0 t=1 t=2
I dispensing decisions I dispensing decisions I dispensing decisions
inventory decisions inventory decisions inventory decisions

replenish-up-to  dispense-down-to

In each period, there are n sub-periods for which dispensing takes place

Timing of events:

The central inventory manager decides how much to replenish and how
much to dispense throughout the n sub-periods

The dispensing coordinator receives the inventory allotment and the
sequentially receives POD requests and allocates inventory to maximize utility



Lower-level problem: Dispensing MDP

- The dispensing coordinator optimizes utility over n sub-periods (they want spend
their allotment of inventory for this period optimally)

- In sub-period 1 of period ¢, the arriving POD is represented by an attribute-demand
pair (&, ;, D, ;), with D, ; € {0,1,..., Dyax}.

- When there is no arriving POD, demand is zero.
- The utility function of satisfying x; units of demand is u(x;, &, ;)

- Lower-level objective:

Lower-level dispensing policy

/ _

u(min(,ul-(xl-,fl-),Di),fi> Xg=X6p=6W,=w

_ i=0 / | |

An information state that transitions at the upper-level timescale
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Upper-level problem: Inventory control MDP

- T planning periods, with two decision to be made in each period:

- Replenish-up-to level z,°P

. Dispense-down-to level 73

- The inventory state is R, and information state is W,

- The information state may contain information such as past demands, current
disease trends, or other dynamic information

. Holding cost A, ordering cost Cw, <

Amount given to dispensing coordinator




Upper-level problem: Inventory control MDP

- Objective is to maximize dispensing utility minus costs

o _
max E D (=hR = cy (PR, W) = R,) + Uy(xP(R, W) — 2SR, W), &,y | W,)
" | =0 _

- Bellman equation

Vi(r,w) = max (c,, —h)r —¢, 2" + EW[UO<Zrep —z%, &rol W) + Vi (Zdis’ WZ+1)] '

Zrep’Zdls

Amount given to dispensing coordinator




Upper-level problem: Inventory control MDP

- Note that we can compute the Bellman step in two steps, one for replenishment
and one for dispensing:

Vt(r’ w) = rrglljaés (Cw —h)r— szrep T EW[U()(Zrep - Zdis, gz,o | W) + Vt+1 (Zdis, Wt+l>] .
7Pz

Can consider this the “dispensing” value function after replenishment is decided

- With a post-decision reformulation, we get the following:
VIR, w) = — ¢,2"P + K, | Uy (a"P—7 (2P, w), & o [ w) | + VIS (2857 2™P, w), w)).
V;iiS(Zdis, w)=E,_ [(CWH] — Jp)zdisy jrep (ﬂrep,*(zdis, W, ). Wt+1)]

1\ +1

- Policies (in red) and values (in blue) can be written in interleaving fashion



Structural properties of the MDP

p

. Assumption: For any &, the utility function u(x, 5) Is discretely concave in Xx.

- Proposition:

1. The lower-level MDP value function Ui(x, | w) IS discretely concave in the

inventory state x for all &, w, and i.

2. The upper-level MDP value functions Vﬁep(zrep, w) and V;ﬁs(zdis, w) are

discretely concave in z'P and z9%, resp.

3. Optimal policies are both state-dependent, discrete basestock policies:

2P = [[°P(w)

rep, ™ _ rep
o (r,w) = max{r, [P(w)},
dis,* ¢ rep s rep ldis rep
- (P, w) = min{z"P, [M5(z"P, w)},

- where ['*P(w), [5("P, w) € {0,1,...,R_,.

1.

dis _ ydi
Z is _ lt 18(Z

R, =r < I'™P(w)

rep
4

, W)
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Structural properties of the MDP

Main algorithmic research question:

In a data-driven setting, is it possible to take advantage of both the structure in the
policy and structure in the value function?



Approximate dynamic programming (ADP)
Reinforcement learning (RL)

- ADP/RL algorithms can be classified into the following classes:

1. Value-based methods, such as Q-learning (Watkins et al., 1989), use a
combination of stochastic approximation and the Bellman equation to
iteratively learn an approximate value function (or state-action values Q):

. QMs,a) = (1 —a®) Q" (s, a) + a - observation

2. Policy-based methods, such as policy gradient (Sutton et al., 1999), directly
parameterize a class of approximate policy functions r, and optimize it via
stochastic gradient methods.

3. Actor-critic methods (Konda & Tsitsiklis, 2000) approximate both the policy
and value function. Typically use linear models for function approximation.

- Our method is falls here, but we utilize two types of structure.

- “Actor” is the policy approximation, “critic” is the value approximation



Structured actor-critic algorithm

- Recall:
VPP, w) = — ¢,2"P + E, | Uy (2" P—n" (2P, w), & | w) | + VI (57 (2™P, w), w),
VG, w) = E, [(ey,, = M2+ VI8 (m GO Wiy ), Wiy
- Also, note that:
7P (r, w) € argmax ., V'P(z"P, w),
ﬂtdis’*(zrep, w) € argmax_ai ,repy U (zrep — 79 ol w)+\7fis(zdis, W)
- If the optimal policy and next stage value is known, we can write the current value

- If the optimal value is known, then we can write the current policy

- Let’s apply these relationships in an alternating fashion



Structured actor-critic (S-AC) algorithm
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- On policy update steps:

- Use the value function approximation to update the policy

- On value function update steps:

-+ Simulate the policy approximation forward (red) to update the value function



How do we represent the structure?

* For the policy:

- Only store the base-stock threshold /;*P(w), ltdis(zrep, w) and then make use of the base-
stock form when using the policy

- In the case of [[*P(w), reduces the need to store individual policies for each inventory state
- On value function update steps:

- Store the value function as a sequence of slopes between points

- After each observation, project the value function to maintain concavity (i.e., make sure
the slopes are non-increasing) (Nascimento and Powell, 2009)

,r‘ (; LC’)‘QDV\ n /
/\/\.\ ,\,r \3’9&
—_—
D

/0
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How do we represent the structure?

VrPR (2, w)
A
=
Y,

-~
-
~ -
Tt —m—m =T

update structured policy, update value function,
optimize value function run policy and observe new value enforce structure
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Structured actor-critic algorithm

Input: random initial policies and
piecewise concave value function

At each iteration k, loop through all
time periods ¢

Simulate current policy forward to get
new slope observations

Update value function using the slope
observations (and do concave proj.)

The updated value function implies
new basestock thresholds

Update the policies

Repeat

Algorithm 1: Structured Actor-Critic Method

Input: Lower level optimal policy p* (learned from backward dynamic programming).
Initial policy estimates I™P? and 7950, and value estimates 7**P? and 7910

(nonincreasing in z™P and 2% respectively). Stepsize rules a¥ and ¥ for all ¢, k.
Output: Approximations [*P-F gdisk grepk and gdisk

1 for k=1,2,... do

2 | Sample initial states z;”* and 20"

3 fort=20.,1,.... T —1do

4 Observe wf and &, then observe ﬁ;.ep'k and f)?is’k according to (17) and (18)
respectively.

5 Perform SA step:

TP (2P, w) = (1 - of (2P, w)) TPF (2P, w) + af (2", w) 5}PF,

'&?is’k(zdis, w) = (1 — af (2%, w)) 17fiis‘k_l(zdis, w) + of (29, w) z")?is’k.

6 Perform the concavity projection operation (19):
—rep,k __ ~rep,k ~dis,k __ A ~dis,k
v, = H::cp.k.wlk (o, 7%), v, "= HZ:I.,.A-JUIA. (0, 7).
7 Observe and update the replenish-up-to threshold:
rep,k B 2P _repk (.  k
LT = argmaX repe 5(0) D50 Ut (4, wf),

P (w) = (1= B (w)) P (w) + Bf (w) P

8 Observe and update the dispense-down-to policy:
9 for z;P = 0,1,..., Rpax do
10

~ di - . k k dis _{j k-
70 — arg MAX. dis¢ 2 (1°P) Ul (7 - zd‘s,ft’o [wy} ) + Z;:O v, " (4, wf),

ﬁ?is’k(zrep, w) = (1 - a*(z"P,w)) ir?is’k_l(zrep, w) + oF(27P, w) 7S,

11 end
12 Ift <T — 1, take zfipl’k and z?fl‘k according to the e-greedy exploration policy.
13 end

14 end




Almost sure convergence of S-AC

Theorem. Both the value function and policy approximations converge to their
optimal counterparts almost surely. We have

—rep k(Zrep W) k— 00 rep,*(zrep, W),

_ k
TP K, w) 225 P “(r,w),

almost surely. Same holds for the dispensing values and policies.



Baseline algorithms vs S-AC

- Multi-stage version of SPAR (Nascimento and Powell, 2009)

- Uses concave value functions + a temporal difference to update slopes without
a policy approximation

- Actor-critic (AC) with linear function approximations for both policy and value
function

- Monte-Carlo policy gradient (PG) with the same policy function approximation as
the AC algorithm

- Q-learning (QL): each state-action pair is updated independently

- S-AC and SPAR lie in between the extremes of AC/PG and QL



Synthetic experiments (iterations)

0 0;
R —
o o
5 g -2/
o = AC
3 34 —— PG
10! 10° 103 101 102 103 10 102 100 —T S-AC
Number of iterations, log scale Number of iterations, log scale Number of iterations, log scale —— SPAR
(a) Rmax = 20, |W| =3 (b) Rmax = 40,[W| =9

(¢) Rmax = 60,|W| =15

- Main takeaways:

- AC is the most competitive when accounting for the number of iterations

- PG and AC do well initially, especially for the largest problem, likely due to the fact
that they use stochastic policies (initially random) that encourage exploration early on

- Vanilla Q-learning is largely ineffective



Synthetic experiments (CPU time)

0 0 0-
-2 —— . ] B B
o _\\M 0_2- ‘ (@)
S 4 2 52 Malalll (—— AC
o = g
3 6. 34 = -3 —— PG
- — QL
10-1 10° 10-2 100 10-1 10° = S-AC
CPU time (seconds), log scale CPU time (seconds), log scale CPU time (seconds), log scale ~ —— SPAR

- Main takeaways:
- SPAR (value functions with concavity projection) is most competitive

. PG and AC act on the original action space (z"P, z9%), so updates are slightly
slower than SPAR and S-AC (which take advantage of structure)



Synthetic experiments (convergence of thresholds)

60 60
o o T 40 —— AC
E 40 - E 40 _8 —— PG
Instance 1: 9 information states g ] [ 20 QL
g £ 20- c _—
0 0 0 - SPAR
10? 102 10° 10! 102 10° 10! 10? 10° — Exact
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- Main takeaway:

- S-AC exhibits more stable convergence to the true threshold, compared to the “implied”
thresholds of the other algorithms



Synthetic experiments (sensitivity analysis)

Figure 8: Convergence of replenish-up-to thresholds at ¢ = 0 for the R,,.x = 60, |W| = 15 instance.

Table 3: Impact of parameters on ADP algorithms for the R, .. = 50, |[W| = 9 instance.

Parameter Value AC PG QL S-AC SPAR  Exact

30, Normal | 19,037 16,009 7,287 20,313 19,077 21,332

Mean total demand 30, Uniform | 18,113 15,142 8476 20,865 20,098 21,332
50, Normal | 28,422 23,237 10,318 29,080 28,278 29,387

50, Uniform | 28,023 23,112 10,286 29,077 28,150 29,387

30 30,914 25488 15,125 33,532 32,671 34,647

Mean ordering cost 50 18,037 14,009 7,287 20,313 19,077 20,689
70 11,257 8,660 6,032 11,866 11,553 11,984

5 18,037 14,009 7,287 20,313 19,077 20,689

20 18,402 15,064 7,189 19,839 19,285 20,131

Holding cost 35 17,807 14,498 5855 19,381 18,784 19,592

50 17,150 15,011 4,582 18,988 18,418 19,203

65 16,575 13,708 2,954 18,597 17,931 18,835




Case study: Naloxone for First Responders Program

Inventory Control Center

Centralized Coordinating Entity (CCE)

Allegheny County York County Bucks County Dauphine County Luzerne County

- Setup:

- Motivation: the NFRP program’s hierarchical structure relies on a centralized
coordination entity (our “dispensing coordinator”)

- Data: monthly opioid overdose data from the five most-affected counties in
Pennsylvania (these are the PODs)

- Utility function of a county is based on proportion of incidents occurring there relative
to the other counties



S-AC with clustered information states

- Weakness of S-AC: Exploits
structure in the inventory
dimension but not the information
dimension

- The case study has a 5-
dimensional information space,
which becomes challenging to
handle

* Minor extension: Perform k-
means clustering in the information
dimension and then run S-AC on
an “aggregated MDP”

- Similar to aggregation in
Tsitsiklis and Van Roy, 1996,
but only in the information state



Case study: Naloxone for First Responders Program

le7

2.8
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S 2.4 « =« Mean+FCFS
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2.0 . . e
10° 2x 102 3x10%x10? 6x 10 103

Number of iterations, log scale

Heuristics
Upper-level: Mean = replenish up to the mean demand
Lower-level: FCFS = dispense in a first-come-first-serve manner

Lower-level: DPR = solve using DP with discrete states, then regress on result



Case study: Naloxone for First Responders Program
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Case study: Naloxone for First Responders Program

Frequency

=
o
o

%))
o

150
§~ >10
S 100+ q‘:,
-] =)
(on O 5
Y 50- _hliq_Lkﬂ Y
L L
, . 0 . , —_L‘—.
880 900 920 940 640 660 680
Quantity Quantity
(a) Allegheny (b) York
150
> >
1 .

© 100 O 100

Q Q

= -

§- 50 o 501

L L

0L+ . . } r (Vs : . ,
160 180 200 220 240 125 150 17_5 200
Quantity Quantity

(d) Dauphin

o

o

(e) Luzerne

240 260 280

Quantity

200 220

(c) Bucks

Demand
Satisfied Demand



Thank you! Questions?

Please feel free to email me at drjiang@pitt.edu for additional comments!

A revised version of this paper will be available soon.
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