Structured Actor-Critic for Managing Public Health Points-of-Dispensing

Daniel Jiang

joint work with Yijia Wang

Operations Management Seminar, April 9, 2021 Singapore Management University

Outline

- Introduction to the public health problem
- Hierarchical MDP inventory and dispensing model
- The structured actor-critic approach
- Synthetic experiments
- · Case study: Naloxone for First Responders Program

Introduction

- Public health organizations manage "points-of-dispensing" (PODs) for dispensing critical medical supplies during emergency situations.
 - Examples: vaccines, antibiotics, and others, such as **naloxone**, an opioid overdose reversal drug for harm reduction.
- Our problem: **optimal inventory control and dispensing** for a public health agency and "independent" PODs.

Problem preview

- Components of our problem:
 - A central inventory storage managed by the public health agency
 - Inventory is replenished periodically
 - · A lower-level dispensing coordinator that interfaces with PODs
 - Receives inventory from central storage
 - Receives requests from arriving PODs (demands)

Problem preview

- Features of our problem:
 - Heterogeneous utility functions that depend on the requesting POD
 - Effectiveness of the public health intervention can vary across different groups of the affected population
 - Trade-off for the dispensing coordinator:
 - Should we satisfy a lower-priority demand now, or save the inventory for a possible higher-priority demand in the future?
 - Two timescales
 - Slower one for inventory replenishment (central inventory manager)
 - Faster one for dispensing decisions (dispensing coordinator)
 - Stochastic demands
 - Discrete inventory states

- The U.S. Department of Health and Human Services (HHS) declared it a public health emergency in 2017.
- HHS: "Increased prescription of opioid medications led to widespread misuse of both prescription and nonprescription opioids before it became clear that these medications could indeed be highly addictive."
 - Previously, pharmaceutical companies said that these drugs were not addictive.

THE OPIOID EPIDEMIC BY THE NUMBERS

70,630 people died from drug overdose in 2019²

10.1 million
people misused prescription
opioids in the past year¹

1.6 million
people had an opioid use
disorder in the past year¹

2 million
people used methamphetamine
in the past year¹

745,000 people used heroin in the past year¹

50,000 people used heroin for the first time¹

1.6 million

people misused prescription
pain relievers for the first time¹

14,480
deaths attributed to overdosing on heroin (in 12-month period ending June 2020)³

48,006
deaths attributed to overdosing on synthetic opioids other than methadone (in 12-month period ending June 2020)³

SOURCES

- 1. 2019 National Survey on Drug Use and Health, 2020.
- NCHS Data Brief No. 394, December 2020.
- NCHS, National Vital Statistics System. Provisional drug overdose death counts.

Daily chart

Opioid deaths in America reached new highs in the pandemic

Once a problem confined to the eastern part of the country, fentanyl has spread west

- Spreading to the western part of the country
- Job losses and social isolation may have worsened the situation
- Using drugs alone is more dangerous (no one to help)
- In King County (where Seattle is):
 - 2015 overdose deaths: 3
 - 2020 overdose deaths: 176

bource. Certifes for Disease Control and Freventi

The Economist

- Naloxone is a drug that has the ability to reverse overdoses within minutes
 - To save lives, it is critical that this drug is widely distributed
- "Harm reduction" programs are distributing naloxone free of charge to first responders (incl. EMS, law enforcement, fire fighters, public transit drivers)
- Utility of naloxone varies across regions due to the varying levels of opioid usage in different populations
 - e.g., West Virginia DHHR distributes extra naloxone to high priority counties
- Utility of naloxone also varies across different types of first responders
 - e.g., law enforcement officers are "often a community's first contact with opioid overdose victims after 9-1-1 services have been summoned" (Goodloe and Dailey (2014); Rando et al. (2015))

Example 2: Vaccine distribution, COVID-19 & H1N1

- Heterogenous utilities are very clear:
 - COVID-19: Compared with 5-17 age group, the rate of death is 1100 times higher in 65-74 age group, 2800 times higher in 75-84 age group, and 7900 times higher in 85 and older age group (CDC, 2021).
 - H1N1: The reported H1N1 cases from April 15 to July 24, 2009, show that the infected rate (number of cases per 100,000 population) of 0 to 4 age group is 17.6 times of the infected rate of 65 and older age group, and the rate of 5 to 24 age group is 20.5 times of the rate of 65 and older age group (CDC, 2009).

Sequence of events

- In each period, there are n sub-periods for which dispensing takes place
- Timing of events:
 - The central inventory manager decides how much to replenish and how much to dispense throughout the n sub-periods
 - The dispensing coordinator receives the inventory allotment and the sequentially receives POD requests and allocates inventory to maximize utility

Lower-level problem: Dispensing MDP

- The dispensing coordinator optimizes utility over n sub-periods (they want spend their allotment of inventory for this period optimally)
- · In sub-period i of period t, the arriving POD is represented by an attribute-demand pair $(\xi_{t,i}, D_{t,i})$, with $D_{t,i} \in \{0,1,\ldots,D_{\text{max}}\}$.
 - When there is no arriving POD, demand is zero.
- The utility function of satisfying x_i units of demand is $u(x_i, \xi_{t,i})$
- Lower-level objective:

Lower-level dispensing policy

$$U_0(x,\xi \mid w) = \max_{\mu \in \mathcal{M}} \mathbf{E} \left[\sum_{i=0}^{n-1} u(\min(\mu_i(x_i,\xi_i), D_i), \xi_i) \mid x_0 = x, \xi_0 = \xi, W_t = w \right].$$

Upper-level problem: Inventory control MDP

- T planning periods, with two decision to be made in each period:
 - Replenish-up-to level z_t^{rep}
 - Dispense-down-to level z_t^{dis}
- · The inventory state is R_t and information state is W_t
 - The information state may contain information such as past demands, current disease trends, or other dynamic information
- Holding cost h, ordering cost c_{W_t}

Upper-level problem: Inventory control MDP

Objective is to maximize dispensing utility minus costs

$$\max_{\pi \in \Pi} \ \mathbf{E} \left[\sum_{t=0}^{T-1} \left(-hR_t - c_{W_t} \left(\pi_t^{\text{rep}}(R_t, W_t) - R_t \right) + U_0 \left(\pi_t^{\text{rep}}(R_t, W_t) - \pi_t^{\text{dis}}(R_t, W_t), \xi_{t,0} \mid W_t \right) \right].$$

Bellman equation

Upper-level problem: Inventory control MDP

 Note that we can compute the Bellman step in two steps, one for replenishment and one for dispensing:

$$V_{t}(r, w) = \max_{z^{\text{rep}}, z^{\text{dis}}} (c_{w} - h) r - c_{w} z^{\text{rep}} + \mathbf{E}_{w} \left[U_{0} \left(z^{\text{rep}} - z^{\text{dis}}, \xi_{t,0} \,|\, w \right) + V_{t+1} \left(z^{\text{dis}}, W_{t+1} \right) \right].$$

Can consider this the "dispensing" value function after replenishment is decided

· With a post-decision reformulation, we get the following:

$$\begin{split} \tilde{V}_{t}^{\text{rep}}(z^{\text{rep}}, w) &= -c_{w}z^{\text{rep}} + \mathbb{E}_{w} \big[U_{0} \big(z^{\text{rep}} - \pi_{t}^{\text{dis},*}(z^{\text{rep}}, w), \xi_{t,0} \, | \, w \big) \big] + \tilde{V}_{t}^{\text{dis}} \big(\pi_{t}^{\text{dis},*}(z^{\text{rep}}, w), w \big) \big], \\ \tilde{V}_{t}^{\text{dis}}(z^{\text{dis}}, w) &= \mathbb{E}_{w} \big[(c_{W_{t+1}} - h) z^{\text{dis}} + \tilde{V}_{t+1}^{\text{rep}} \big(\pi_{t+1}^{\text{rep},*}(z^{\text{dis}}, W_{t+1}), W_{t+1} \big) \big] \end{split}$$

· Policies (in red) and values (in blue) can be written in interleaving fashion

Structural properties of the MDP

- Assumption: For any ξ , the utility function $u(x, \xi)$ is discretely concave in x.
- Proposition:
 - 1. The lower-level MDP value function $U_i(x, \xi \mid w)$ is discretely concave in the inventory state x for all ξ , w, and i.
 - 2. The upper-level MDP value functions $\tilde{V}_t^{\text{rep}}(z^{\text{rep}}, w)$ and $\tilde{V}_t^{\text{dis}}(z^{\text{dis}}, w)$ are discretely concave in z^{rep} and z^{dis} , resp.
 - 3. Optimal policies are both state-dependent, discrete basestock policies:

•
$$\pi_t^{\text{rep},*}(r, w) = \max\{r, l_t^{\text{rep}}(w)\},$$

$$\cdot \pi_t^{\mathrm{dis},*}(z^{\mathrm{rep}}, w) = \min\{z^{\mathrm{rep}}, l_t^{\mathrm{dis}}(z^{\mathrm{rep}}, w)\},$$

• where
$$l_t^{\text{rep}}(w), l_t^{\text{dis}}(z^{\text{rep}}, w) \in \{0, 1, ..., R_{\text{max}}\}.$$

$$z_{t}^{\text{rep}} = l_{t}^{\text{rep}}(w)$$

$$z_{t}^{\text{dis}} = l_{t}^{\text{dis}}(z_{t}^{\text{rep}}, w)$$

$$R_{t} = r < l_{t}^{\text{rep}}(w)$$

$$R_t = r < l_t^{\text{rep}}(w)$$

Structural properties of the MDP

- Assumption: For any ξ , the utility function $u(x, \xi)$ is discretely concave in x.
- Proposition:
 - 1. The lower-level MDP value function $U_i(x, \xi \mid w)$ is discretely concave in the inventory state x for all ξ , w, and i.
 - 2. The upper-level MDP value functions $\tilde{V}_t^{\text{rep}}(z^{\text{rep}}, w)$ and $\tilde{V}_t^{\text{dis}}(z^{\text{dis}}, w)$ are discretely concave in z^{rep} and z^{dis} , resp.
 - 3. Optimal policies are both state-dependent, discrete basestock policies:

$$\pi_t^{\text{rep},*}(r,w) = \max\{r, l_t^{\text{rep}}(w)\},$$

$$\cdot \pi_t^{\mathrm{dis},*}(z^{\mathrm{rep}}, w) = \min\{z^{\mathrm{rep}}, l_t^{\mathrm{dis}}(z^{\mathrm{rep}}, w)\},$$

• where
$$l_t^{\text{rep}}(w), l_t^{\text{dis}}(z^{\text{rep}}, w) \in \{0, 1, ..., R_{\text{max}}\}.$$

$$z_{t}^{\text{rep}} = l_{t}^{\text{rep}}(w)$$

$$z_{t}^{\text{dis}} = l_{t}^{\text{dis}}(z_{t}^{\text{rep}}, w)$$

$$R_{t} = r < l_{t}^{\text{rep}}(w)$$

$$R_t = r < l_t^{\text{rep}}(w)$$

Structural properties of the MDP

Main algorithmic research question:

In a data-driven setting, is it possible to take advantage of both the structure in the policy and structure in the value function?

Approximate dynamic programming (ADP) Reinforcement learning (RL)

- ADP/RL algorithms can be classified into the following classes:
 - 1. **Value-based methods,** such as Q-learning (Watkins et al., 1989), use a combination of stochastic approximation and the Bellman equation to iteratively learn an *approximate value function* (or state-action values Q):
 - $Q_t^n(s, a) = (1 \alpha_t^n) Q_t^{n-1}(s, a) + \alpha_t^n$ observation
 - **2. Policy-based methods**, such as policy gradient (Sutton et al., 1999), directly parameterize a class of *approximate policy functions* π_{θ} and optimize it via stochastic gradient methods.
 - 3. Actor-critic methods (Konda & Tsitsiklis, 2000) approximate both the policy and value function. Typically use linear models for function approximation.
 - Our method is falls here, but we utilize two types of structure.
 - "Actor" is the policy approximation, "critic" is the value approximation

Structured actor-critic algorithm

· Recall:

$$\begin{split} \tilde{V}_{t}^{\text{rep}}(z^{\text{rep}}, w) &= -c_{w} z^{\text{rep}} + \mathbb{E}_{w} \Big[U_{0} \Big(z^{\text{rep}} - \pi_{t}^{\text{dis},*}(z^{\text{rep}}, w), \xi_{t,0} \, \big| \, w \Big) \Big] + \tilde{V}_{t}^{\text{dis}} \Big(\pi_{t}^{\text{dis},*}(z^{\text{rep}}, w), w \Big), \\ \tilde{V}_{t}^{\text{dis}}(z^{\text{dis}}, w) &= \mathbb{E}_{w} \Big[(c_{W_{t+1}} - h) z^{\text{dis}} + \tilde{V}_{t+1}^{\text{rep}} \Big(\pi_{t+1}^{\text{rep},*}(z^{\text{dis}}, W_{t+1}), W_{t+1} \Big) \Big] \end{split}$$

· Also, note that:

$$\pi_t^{\text{rep,*}}(r,w) \in \operatorname{argmax}_{z^{\text{rep}}} \tilde{V}_t^{\text{rep}}(z^{\text{rep}},w),$$

$$\pi_t^{\text{dis,*}}(z^{\text{rep}},w) \in \operatorname{argmax}_{z^{\text{dis}},z^{\text{rep}})} U_0(z^{\text{rep}}-z^{\text{dis}},\xi_{t,0} \,|\, w) + \tilde{V}_t^{\text{dis}}(z^{\text{dis}},w)$$

- · If the optimal policy and next stage value is known, we can write the current value
- · If the optimal value is known, then we can write the current policy
- · Let's apply these relationships in an alternating fashion

Structured actor-critic (S-AC) algorithm

- On policy update steps:
 - Use the value function approximation to update the policy
- On value function update steps:
 - · Simulate the policy approximation forward (red) to update the value function

How do we represent the structure?

· For the policy:

- · Only store the base-stock threshold $l_t^{\rm rep}(w), l_t^{\rm dis}(z^{\rm rep}, w)$ and then make use of the base-stock form when using the policy
- In the case of $l_t^{\text{rep}}(w)$, reduces the need to store individual policies for each inventory state

On value function update steps:

- Store the value function as a sequence of slopes between points
- After each observation, project the value function to maintain concavity (i.e., make sure the slopes are non-increasing) (Nascimento and Powell, 2009)

How do we represent the structure?

Structured actor-critic algorithm

- Input: random initial policies and piecewise concave value function
- At each iteration k, loop through all time periods t
- Simulate current policy forward to get new slope observations
- Update value function using the slope observations (and do concave proj.)
- The updated value function implies new basestock thresholds
- Update the policies
- · Repeat

Algorithm 1: Structured Actor-Critic Method

Input: Lower level optimal policy μ^* (learned from backward dynamic programming). Initial policy estimates $\bar{l}^{\text{rep},0}$ and $\bar{\pi}^{\text{dis},0}$, and value estimates $\bar{v}^{\text{rep},0}$ and $\bar{v}^{\text{dis},0}$ (nonincreasing in z^{rep} and z^{dis} respectively). Stepsize rules $\tilde{\alpha}_t^k$ and $\tilde{\beta}_t^k$ for all t, k.

Output: Approximations $\bar{l}^{\text{rep},k}$, $\bar{\pi}^{\text{dis},k}$, $\bar{v}^{\text{rep},k}$, and $\bar{v}^{\text{dis},k}$.

1 for
$$k = 1, 2, ...$$
 do

Sample initial states $z_0^{\text{rep},k}$ and $z_0^{\text{dis},k}$.

for
$$t = 0, 1, ..., T - 1$$
 do

Observe w_t^k and $\xi_{t,1}^k$, then observe $\hat{v}_t^{\text{rep},k}$ and $\hat{v}_t^{\text{dis},k}$ according to (17) and (18) respectively.

Perform SA step:

$$\begin{split} \tilde{v}_t^{\mathrm{rep},k}(z^{\mathrm{rep}},w) &= \left(1 - \alpha_t^k(z^{\mathrm{rep}},w)\right) \bar{v}_t^{\mathrm{rep},k-1}(z^{\mathrm{rep}},w) + \alpha_t^k(z^{\mathrm{rep}},w) \, \hat{v}_t^{\mathrm{rep},k}, \\ \tilde{v}_t^{\mathrm{dis},k}(z^{\mathrm{dis}},w) &= \left(1 - \alpha_t^k(z^{\mathrm{dis}},w)\right) \bar{v}_t^{\mathrm{dis},k-1}(z^{\mathrm{dis}},w) + \alpha_t^k(z^{\mathrm{dis}},w) \, \hat{v}_t^{\mathrm{dis},k}. \end{split}$$

Perform the concavity projection operation (19):

$$\bar{v}_t^{\mathrm{rep},k} = \Pi_{z_t^{\mathrm{rep},k},w_t^k}(\tilde{v}_t^{\mathrm{rep},k}), \quad \bar{v}_t^{\mathrm{dis},k} = \Pi_{z_t^{\mathrm{dis},k},w_t^k}(\tilde{v}_t^{\mathrm{dis},k}).$$

Observe and update the replenish-up-to threshold:

$$\hat{l}_t^{\mathrm{rep},k} = \arg\max\nolimits_{z^{\mathrm{rep}} \in \bar{\mathcal{Z}}(0)} \sum_{j=0}^{z^{\mathrm{rep}}} \bar{v}_t^{\mathrm{rep},k} \big(j,w_t^k\big),$$

$$\bar{l}_t^{\mathrm{rep},k}(w) = \left(1 - \beta_t^k(w)\right) \bar{l}_t^{\mathrm{rep},k-1}(w) + \beta_t^k(w) \hat{l}_t^{\mathrm{rep},k}.$$

Observe and update the dispense-down-to policy:

$$\begin{aligned} & \text{for } z_t^{\text{rep}} = 0, 1, \dots, R_{\text{max}} \quad \text{do} \\ & \qquad \qquad \hat{\pi}_t^{\text{dis}} = \arg\max_{z^{\text{dis}} \in \underline{\mathcal{Z}}(z_t^{\text{rep}})} U_0^{\mu^*} \big(z_t^{\text{rep}} - z^{\text{dis}}, \xi_{t,0}^k | w_t^k \big) + \sum_{j=0}^{z^{\text{dis}}} \bar{v}_t^{\text{dis},k} \big(j, w_t^k \big), \\ & \qquad \qquad \bar{\pi}_t^{\text{dis},k} (z^{\text{rep}}, w) = \big(1 - \alpha^k (z^{\text{rep}}, w) \big) \, \bar{\pi}_t^{\text{dis},k-1} (z^{\text{rep}}, w) + \alpha^k (z^{\text{rep}}, w) \, \hat{\pi}_t^{\text{dis}}. \end{aligned} \end{aligned}$$
 end

If t < T - 1, take $z_{t+1}^{\text{rep},k}$ and $z_{t+1}^{\text{dis},k}$ according to the ϵ -greedy exploration policy.

14 end

11

13

Almost sure convergence of S-AC

Theorem. Both the value function and policy approximations converge to their optimal counterparts almost surely. We have

$$\bar{v}_t^{\text{rep},k}(z^{\text{rep}}, w) \xrightarrow{k \to \infty} v_t^{\text{rep},*}(z^{\text{rep}}, w),$$

$$\bar{\pi}_t^{\text{rep},k}(r, w) \xrightarrow{k \to \infty} \pi_t^{\text{rep},*}(r, w),$$

almost surely. Same holds for the dispensing values and policies.

Baseline algorithms vs S-AC

- · Multi-stage version of SPAR (Nascimento and Powell, 2009)
 - Uses concave value functions + a temporal difference to update slopes without a policy approximation
- Actor-critic (AC) with linear function approximations for both policy and value function
- Monte-Carlo policy gradient (PG) with the same policy function approximation as the AC algorithm
- · Q-learning (QL): each state-action pair is updated independently
 - S-AC and SPAR lie in between the extremes of AC/PG and QL

Synthetic experiments (iterations)

Main takeaways:

- · AC is the most competitive when accounting for the number of iterations
- PG and AC do well initially, especially for the largest problem, likely due to the fact that they use stochastic policies (initially random) that encourage exploration early on
- Vanilla Q-learning is largely ineffective

Synthetic experiments (CPU time)

Main takeaways:

- SPAR (value functions with concavity projection) is most competitive
- PG and AC act on the original action space $(z^{\text{rep}}, z^{\text{dis}})$, so updates are slightly slower than SPAR and S-AC (which take advantage of structure)

Synthetic experiments (convergence of thresholds)

· Main takeaway:

 S-AC exhibits more stable convergence to the true threshold, compared to the "implied" thresholds of the other algorithms

Synthetic experiments (sensitivity analysis)

Figure 8: Convergence of replenish-up-to thresholds at t=0 for the $R_{\text{max}}=60, |\mathcal{W}|=15$ instance.

Table 3: Impact of parameters on ADP algorithms for the $R_{\text{max}} = 50, |\mathcal{W}| = 9$ instance.

Parameter	Value	AC	PG	QL	S-AC	SPAR	Exact
Mean total demand	30, Normal	19,037	16,009	7,287	20,313	19,077	21,332
	30, Uniform	18,113	15,142	8,476	$20,\!865$	20,098	21,332
	50, Normal	28,422	23,237	10,318	29,080	$28,\!278$	29,387
	50, Uniform	28,023	23,112	10,286	29,077	$28,\!150$	29,387
Mean ordering cost	30	30,914	25,488	15,125	33,532	32,671	34,647
	50	18,037	14,009	7,287	$20,\!313$	19,077	20,689
	70	11,257	8,660	6,032	11,866	$11,\!553$	11,984
Holding cost	5	18,037	14,009	7,287	20,313	19,077	20,689
	20	18,402	15,064	7,189	$19,\!839$	19,285	20,131
	35	17,807	14,498	5,855	$19,\!381$	18,784	19,592
	50	17,150	15,011	$4,\!582$	18,988	18,418	19,203
	65	16,575	13,708	2,954	$18,\!597$	17,931	$18,\!835$

· Setup:

- Motivation: the NFRP program's hierarchical structure relies on a centralized coordination entity (our "dispensing coordinator")
- Data: monthly opioid overdose data from the five most-affected counties in Pennsylvania (these are the PODs)
- Utility function of a county is based on proportion of incidents occurring there relative to the other counties

S-AC with clustered information states

- Weakness of S-AC: Exploits structure in the inventory dimension but not the information dimension
- The case study has a 5dimensional information space, which becomes challenging to handle
- Minor extension: Perform kmeans clustering in the information dimension and then run S-AC on an "aggregated MDP"
 - Similar to aggregation in Tsitsiklis and Van Roy, 1996, but *only* in the information state

Heuristics

- Upper-level: Mean = replenish up to the mean demand
- Lower-level: FCFS = dispense in a first-come-first-serve manner
- Lower-level: DPR = solve using DP with discrete states, then regress on result

Thank you! Questions?

Please feel free to email me at <u>drjiang@pitt.edu</u> for additional comments!

A revised version of this paper will be available soon.