Dynamic Inventory Repositioning in On-Demand Rental Networks

Daniel Jiang⁴ Joint work with Saif Benjaafar², Xiang Li³, Xiaobo Li¹

Industrial Systems Engineering and Management, National University of Singapore¹ Industrial & Systems Engineering, University of Minnesota² Target Corporation³ Industrial Engineering, University of Pittsburgh⁴

2020 INFORMS Annual Meeting

Outline

2 Model Description

3 Main Results

- The Inventory Repositioning Problem
- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Bicycle Sharing

(ISyE@UMN, IE@Pitt)

INFORMS 2020 3 / 46

3

<ロ> (日) (日) (日) (日) (日)

Bicycle Repositioning

(ISyE@UMN, IE@Pitt)

(日) (周) (三) (三)

Car Rental

◆□> ◆圖> ◆理> ◆理> 三語

Car Repositioning

3

イロト イヨト イヨト イヨト

Shipping Containers

(ISyE@UMN, IE@Pitt)

3

<ロ> (日) (日) (日) (日) (日)

Outline

2 Model Description

3) Main Results

- The Inventory Repositioning Problem
- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

3

< ロ > < 同 > < 三 > < 三

Problem Description

- The rental firm has a stock of N units of a single product distributed in several locations.
- The rental firm faces stochastic demands in different locations.
- The unsatisfied demand is lost.
- Inventory at locations cannot be replenished using an external source.
- The firm can reposition the inventory before demand realization.
- The objective is to minimize the total discounted lost sales cost and repositioning cost.
- Rented units can be returned to different locations than its origin.
- Rented units can be "in-service" or "ongoing" and are not assumed to be returned after one period.

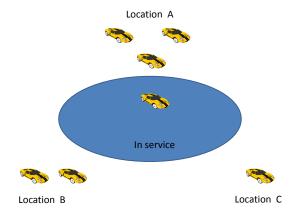
(日) (周) (三) (三)

The Sequence of Events

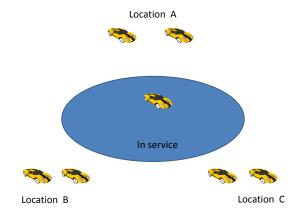
In each period, the sequence of events is as follows:

- The current inventory level x_t = (x_{t,1},..., x_{t,n}) and the current ongoing rentals γ_t = (γ_{t,1},..., γ_{t,n}) are reviewed.
- A decision on inventory repositioning is made, with $y_t = (y_{t,1}, \dots, y_{t,n})$ being the new inventory.
- The repositioning cost C(y x) is incurred.
- The random demand d_t at all locations is realized.
- The rented units enter service; demand that cannot be satisfied at location *i* incurs a lost sale cost *l_i*.
- **o** A random fraction of the in-service units returns to locations.

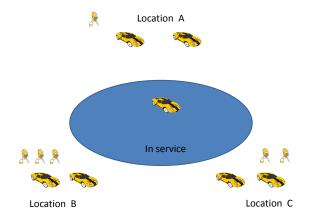
イロト 不得 トイヨト イヨト 二日

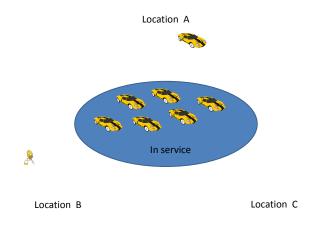


(ISyE@U	IMN, I	IE@Pitt)
---------	--------	----------



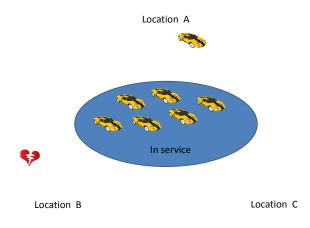
(ISyE@UMN, IE@	Pitt)
----------------	-------





(ISyE@UMN,	IE@Pitt)
------------	----------

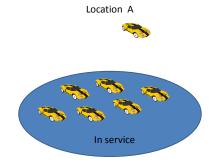
INFORMS 2020 11 / 46



(ISyE@UMN, IE@Pitt)

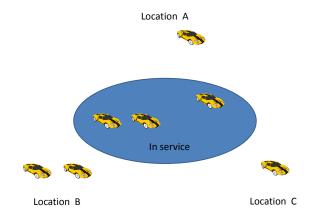
Inventory Repositioning

INFORMS 2020 11 / 46



Location B

Location C



Ongoing Rentals Assumption

Let $p_{t,ij}$ be the fraction of inventory rented from *i* that is returned at *j* after one period. Note that $\sum_j p_{t,ij} < 1$ means rentals can potentially be multiple periods.

Assumption 1

We assume the following conditions on π_t and the repositioning costs c_{ij} .

• For every period t, there exists a random variable $p_t \in [p_{\min}, 1]$ such that

$$\sum_{j=1}^{n} p_{t,ij} = \sum_{j=1}^{n} p_{t,kj} = p_t, \text{ for all } i, k = 1, 2, \dots, n.$$

An alternative statement is that $p_{t,ij} = p_t \tilde{q}_{t,ij}$ for some $\tilde{q}_{t,ij}$ where $\sum_{j=1}^{n} \tilde{q}_{t,ij} = 1, \forall i$.

3 The repositioning costs satisfy $\rho c_{\max} - c_{\min} \leq p_{\min} (\beta - c_{\min})$.

イロン 不聞と 不同と 不同と

Additional Assumptions

- \boldsymbol{x}_t , \boldsymbol{y}_t and \boldsymbol{d}_t are continuous.
- The cost of moving one unit from location *i* to location *j* is *c_{ij}*.
- $c_{ik} \leq c_{ij} + c_{jk}$ for all i, j, k (Triangle inequality)
- For simplicity, we assume $I_i = I$ for all locations *i*.
- $l \ge c_{ji}$ for all i, j.

イロト イポト イヨト イヨト 二日

Outline

Model Description

3 Main Results

- The Inventory Repositioning Problem
- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

< A > < > > <

DP Formulation

Let \boldsymbol{x} be the initial inventory for each locations (excluding in-service products).

$$v_t(\boldsymbol{x}_t, \boldsymbol{\gamma}_t) = \min_{\boldsymbol{y}_t \in \Delta_{n-1}(\boldsymbol{e}^T \boldsymbol{x}_t)} r_t(\boldsymbol{x}_t, \boldsymbol{\gamma}_t, \boldsymbol{y}_t) + \rho \int v_{t+1}(\boldsymbol{x}_{t+1}, \boldsymbol{\gamma}_{t+1}) \, \mathrm{d}\mu_t \quad (1)$$

where:

•
$$\Delta(I) \triangleq \{ \mathbf{x} | \mathbf{x} \ge 0, \mathbf{e}^T \mathbf{x} = I \}, \ \mathbf{e}^T \mathbf{x} \le N$$

• $r_t(\mathbf{x}_t, \gamma_t, \mathbf{y}_t) = C(\mathbf{y}_t - \mathbf{x}_t) + l_t(\mathbf{y}_t)$
• $C(\mathbf{y}_t - \mathbf{x}_t)$ is the cost to reposition the inventory from \mathbf{x}_t to \mathbf{y}_t .
• $l_t(\mathbf{y}_t) = \int L_t(\mathbf{y}_t, \mathbf{d}_t) d\mu_t = \beta \int \sum_i (d_{t,i} - y_{t,i})^+ d\mu_t$.
• $x_{t+1,i} = (y_{t,i} - d_{t,i})^+ + \sum_{j=1}^n (\gamma_{t,j} + \min(y_{t,j}, d_{t,j})) p_{t,ji}$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Model Description

3 Main Results

• The Inventory Repositioning Problem

- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

A (10) F (10)

The Repositioning Cost

• Denote the space of feasible inventory repositioning by

$$\operatorname{dom}(\mathcal{K}) = \left\{ (\boldsymbol{x}, \boldsymbol{y}) | \boldsymbol{x} \ge 0, \boldsymbol{y} \ge 0, \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \right\}.$$

For each (x, y) ∈ dom(K), the repositioning cost is determined by solving the following optimization problem.

$$egin{aligned} \mathcal{C}(oldsymbol{y}-oldsymbol{x}) &= \min_{oldsymbol{z}=(z_{i,j};i
eq j)} & oldsymbol{cz} & oldsymbol{cz} & \ & \sum_{i,j:i
eq j} z_{i,j}(oldsymbol{e}_j-oldsymbol{e}_i) &= oldsymbol{y}-oldsymbol{x} & \ & oldsymbol{z}\geq 0, \end{aligned}$$

where $z_{i,j}$ is the number of cars to be relocated from location *i* to location *j*.

(ISyE@UMN, IE@Pitt)

INFORMS 2020 17 / 46

イロト 不得下 イヨト イヨト 二日

Properties of Repositioning Cost

•
$$C(y - x)$$
 depends only on $y - x$.

• Due to triangle inequality, we have:

Proposition 1

There exists an optimal solution z such that

$$\sum_i z_{i,j} = (y_j - x_j)^+$$
 and $\sum_k z_{j,k} = (y_j - x_j)^ \forall$ j.

Outline

2 Model Description

3 Main Results

- The Inventory Repositioning Problem
- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

The Generic One-Period Problem

• We are interested in solving a problem of the form:

$$v(\boldsymbol{x}, \boldsymbol{\gamma}) = \min_{\boldsymbol{y} \in \Delta_{n-1}(\boldsymbol{e}^T \boldsymbol{x})} C(\boldsymbol{y} - \boldsymbol{x}) + u(\boldsymbol{y}, \boldsymbol{\gamma}) \text{ for } (\boldsymbol{x}, \boldsymbol{\gamma}) \in \Delta.$$
 (2)

Let:

$$\Omega_u(\boldsymbol{\gamma}) = \{ \boldsymbol{x} : u(\boldsymbol{x}, \boldsymbol{\gamma}) \leq C(\boldsymbol{y} - \boldsymbol{x}) + u(\boldsymbol{y}, \boldsymbol{\gamma}) \forall \boldsymbol{y} \}, \forall \boldsymbol{\gamma} \in S \quad (3)$$

Ω_u(γ) a region where no repositioning is needed if x is in this region.
We called this region the *no-repositioning region*.

The Optimal Policy for the Generic One-Period Problem

Theorem 1

The no-repositioning set $\Omega_u(\gamma)$ is nonempty, connected and compact for all $\gamma \in S$. An optimal policy π^* to (2) satisfies

$$\pi^*(\mathbf{x}, \mathbf{\gamma}) = \mathbf{x} \quad if \quad \mathbf{x} \in \Omega_u(\mathbf{\gamma}); \ \pi^*(\mathbf{x}, \mathbf{\gamma}) \in \mathcal{B}(\Omega_u(\mathbf{\gamma})) \quad if \quad \mathbf{x} \notin \Omega_u(\mathbf{\gamma}).$$

Therefore, the optimal policy is:

- If $\mathbf{x} \in \Omega_u(\gamma)$, no relocation is needed.
- If $\mathbf{x} \notin \Omega_u(\gamma)$, $\mathbf{y}_t^*(\mathbf{x}, \gamma)$ lies in the boundary of $\Omega_u(\gamma)$ and is determined by the convex optimization.

イロト 人間ト イヨト イヨト

(4)

Characterizing the No-Repositioning Region

Proposition 2

 $oldsymbol{x}\in\Omega_u(oldsymbol{\gamma})$ if and only if

$$-u'(\boldsymbol{x},\boldsymbol{\gamma};\boldsymbol{z},\boldsymbol{0}) \leq C(\boldsymbol{z}) \tag{5}$$

for any feasible direction (z, 0) at (x, γ) .

Proposition 3

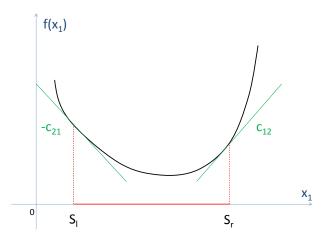
Suppose $u(\cdot, \gamma)$ is differentiable at $\mathbf{x} \in \Delta_{n-1}(I)$. Then, $\mathbf{x} \in \Omega_u(\gamma)$ if and only if

$$\frac{\partial u(\boldsymbol{x},\boldsymbol{\gamma})}{\partial x_{i}} - \frac{\partial u(\boldsymbol{x},\boldsymbol{\gamma})}{\partial x_{j}} \leq c_{ij}$$
(6)

< □ > < □

for all i, j.

Optimal Policy for Two Locations



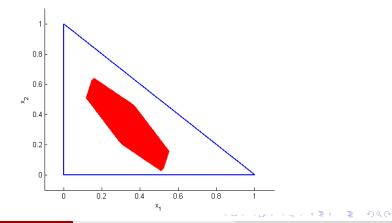
3

(人間) トイヨト イヨト

A Quadratic Example $(p_{\min} = 1)$

•
$$u(\mathbf{x}) = (\mathbf{x} - \mathbf{c})^T A(\mathbf{x} - \mathbf{c}), A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 6 & 4 \\ 1 & 4 & 9 \end{pmatrix} b = [1/3, 1/3, 1/3]^T$$

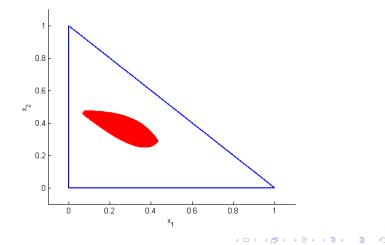
• $c_{ij} = 2.$



(ISyE@UMN, IE@Pitt)

A Cubic Example ($p_{min} = 1$)

•
$$u(\mathbf{x}) = \sum_{i=1}^{3} x_i^3$$
, $c_{ij} = 0.1$, $N = 1$.

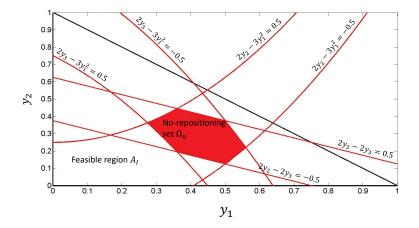


(ISyE@UMN, IE@Pitt)

INFORMS 2020 25 / 46

Another Quadratic Example (Possibly Nonconvex)

•
$$\gamma = 0$$
 and $u(y) = y_1^3 + y_2^2 + y_3^2$ and $c_{ij} = 0.5$.



Outline

2 Model Description

3 Main Results

- The Inventory Repositioning Problem
- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

The Multi-Period Problem with $v_{T+1} = 0$

Theorem 2

Suppose Assumption 1 holds. For any given t = 1, ..., T, the function $u_t(\cdot)$ is convex and continuous in Δ . The no-repositioning set $\Omega_{u_t}(\gamma)$ is nonempty, connected and compact for all $\gamma \in S$, and can be characterized as we did in the single period problem. An optimal policy $\pi^* = (\pi_1^*, ..., \pi_T^*)$ to the multi-period problem satisfies

$$\pi_t^*(\boldsymbol{x}_t, \boldsymbol{\gamma}_t) = \boldsymbol{x}_t \quad \text{if} \quad \boldsymbol{x}_t \in \Omega_{u_t}(\boldsymbol{\gamma}_t); \\ \pi_t^*(\boldsymbol{x}_t, \boldsymbol{\gamma}_t) \in \mathcal{B}(\Omega_{u_t}(\boldsymbol{\gamma}_t)) \quad \text{if} \quad \boldsymbol{x}_t \notin \Omega_{u_t}(\boldsymbol{\gamma}_t).$$
(7)

Moreover, for any $t = 1, 2, \ldots, T$, we have

- $u'_t(\mathbf{y}_t, \boldsymbol{\gamma}_t; -\boldsymbol{\eta}, \boldsymbol{\eta}) \leq \beta \sum_{i=1}^n \eta_i \text{ for all } (\mathbf{x}, \boldsymbol{\gamma}) \in \Delta \text{ and any feasible direction } (-\boldsymbol{\eta}, \boldsymbol{\eta}) \text{ with } \boldsymbol{\eta} \geq \mathbf{0};$
- $u'_t(\mathbf{y}_t, \mathbf{\gamma}_t; \mathbf{0}, \mathbf{v}) \le (\rho c_{\max}/2) \sum_{i=1}^n |v_i|$ for all $(\mathbf{x}, \mathbf{\gamma}) \in \Delta$ and any feasible direction $(\mathbf{0}, \mathbf{v})$ with $\mathbf{e}^T \mathbf{v} = 0$.

The Infinite-Horizon Problem

Now, let us consider

$$v(\boldsymbol{x},\boldsymbol{\gamma}) = \min_{\boldsymbol{\pi}} \mathbb{E}_{\boldsymbol{x}}^{\boldsymbol{\pi}} \left\{ \sum_{t=1}^{\infty} \rho^{t-1} r(X_t, \Gamma_t, \pi(X_t, \Gamma_t)) \right\}$$

Theorem 3

Suppose Assumption 1 holds. The function $u(\cdot, \gamma)$ is convex and continuous in Δ . The no-repositioning set Ω_u is nonempty, connected and compact for all $\gamma \in S$, and can be characterized as we did before. An optimal policy $\pi^* = (\pi^*, \pi^*, ...)$ to the stationary problem with infinitely many periods satisfies

$$\pi^*(\boldsymbol{x},\boldsymbol{\gamma}) = \boldsymbol{x} \quad \text{if} \quad \boldsymbol{x} \in \Omega_u(\boldsymbol{\gamma}); \\ \pi^*(\boldsymbol{x},\boldsymbol{\gamma}) \in \mathcal{B}(\Omega_u(\boldsymbol{\gamma})) \quad \text{if} \quad \boldsymbol{x} \notin \Omega_u(\boldsymbol{\gamma}).$$
(8)

Outline

2 Model Description

3 Main Results

- The Inventory Repositioning Problem
- The Generic One-Period Problem
- The Multi-Period/Infinite-Horizon Problem
- Repositioning-ADP

- 4 同 ト - 4 三 ト - 4 三

Infinite-Horizon ADP Algorithm

③ Suppose we currently have $u_J(\boldsymbol{y}, \boldsymbol{\gamma}) = \max_{k=1,...,N_J} g_k(\boldsymbol{y}, \boldsymbol{\gamma})$ where

$$g_k(\boldsymbol{y},\boldsymbol{\gamma}) = (\boldsymbol{y} - \boldsymbol{y}_k)^T \boldsymbol{a}_k + (\boldsymbol{\gamma} - \boldsymbol{\gamma}_k)^T \boldsymbol{b}_k + c_k,$$

and N_J is the total number of cuts in the approximation after iteration J.

2 At iteration *J*, add cuts (solve LPs) $N_J + 1, ..., N_{J+1}$ by computing tangent hyperplanes to $\mathcal{L}u_J$ at randomly sampled states \mathcal{S}_J , where

$$(\mathcal{L}f)(\boldsymbol{y},\boldsymbol{\gamma}) = l(\boldsymbol{y}) + \rho \int \min_{\boldsymbol{y}' \in \Delta_{n-1}(\boldsymbol{e}^{\mathsf{T}}\boldsymbol{x}')} C(\boldsymbol{y}' - \boldsymbol{x}') + f(\boldsymbol{y}',\boldsymbol{\gamma}') d\mu$$

is the Bellman operator.

Infinite-Horizon ADP Algorithm

- By using the no-repositioning set characterization, cuts computation can be sped up (thus, we are utilizing both policy and value structure in this algorithm).
- This algorithm is related to the stochastic dual dynamic programming (SDDP) algorithm, which is an algorithm for finite-horizon problems (and is known to converge).
- We prove a new convergence result for the infinite horizon setting using a different proof technique.

- 4 同 6 4 日 6 4 日 6

Infinite-Horizon ADP Algorithm

Assumption 2

The sampling distribution produces sets S_J that satisfy $\sum_{J=1}^{\infty} \mathbf{P}(S_J \cap A \neq \emptyset) = \infty$ for any set $A \subseteq \Delta$ with positive volume.

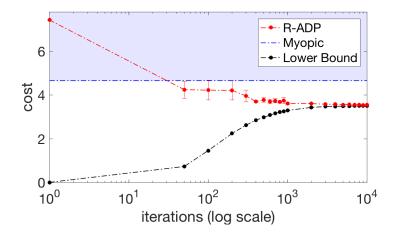
Theorem 4

Suppose Assumption 1 and 2 hold. If $u_0(\cdot)$ satisfies a technical condition and $u_0(\cdot) \le u(\cdot)$, then

{u_J(·)} converges uniformly and almost surely to the optimal value function u(·), i.e., it holds that ||u_J − u||_∞ → 0 almost surely.

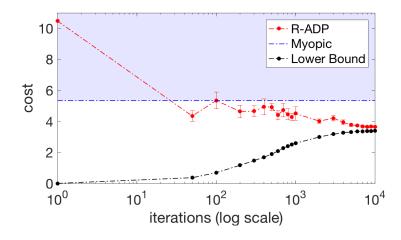
◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Results for n = 3 Locations / d = 6 Inventory States

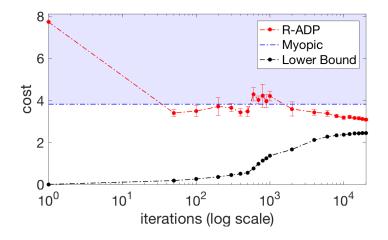


34 / 46

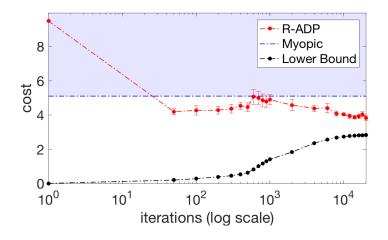
Results for n = 5 Locations / d = 10 Inventory States



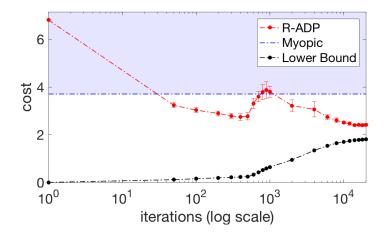
Results for n = 7 Locations / d = 14 Inventory States



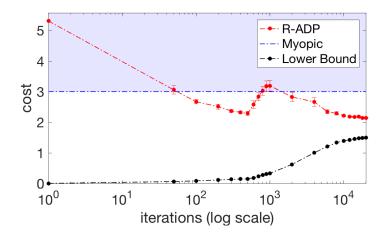
Results for n = 8 Locations / d = 16 Inventory States



Results for n = 9 Locations / d = 18 Inventory States



Results for n = 10 Locations / d = 20 Inventory States



Results for n = 2 to n = 10 Locations

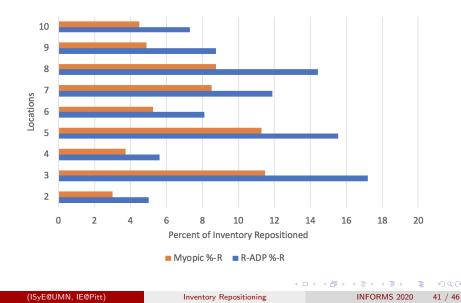
n	Sec./Iter.	R-ADP Cost	% Decr. Myo.	% Decr. No-R	% to LB	R-ADP %-R	Myo. %-R
2	0.06	1.20	56.16%	76.48%	99.18%	5.01%	3.01%
3	0.21	3.55	23.63%	52.17%	98.70%	17.20%	11.50%
4	0.27	1.69	22.25%	60.69%	95.84%	5.62%	3.72%
5	0.22	3.65	31.64%	65.14%	96.38%	15.54%	11.30%
6	0.29	2.45	37.70%	75.20%	94.08%	8.09%	5.26%
7	0.42	3.08	19.23%	60.12%	88.10%	11.87%	8.49%
8	0.44	3.83	24.91%	59.67%	85.03%	14.42%	8.77%
9	0.48	2.40	35.04%	64.65%	88.20%	8.77%	4.89%
10	0.54	2.14	28.58%	59.65%	83.31%	7.28%	4.49%

Table 1: Summary of Results for Repositioning-ADP Benchmarks

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Policy Behavior



Scaling to Large-Scale Instances (20-100 Locations)

Common heuristic is to use a **deterministic lookahead** approximation.

- k-RH-M: Replace random quantities with their means and solve a k-period problem (large-scale LP),
- k-RH-S: Replace random quantities with a single sample and solve a k-period problem (large-scale LP),
- **(3)** Implemented as a repositioning policy in a rolling-horizon fashion.

Scaling to Large-Scale Instances (20-100 Locations)

We also propose **Clustered R-ADP**. Suppose a problem has *n* locations.

- Cluster locations together (summing/averaging problem parameters) to create an *m*-location problem,
- Solve the *m*-location problem using R-ADP.
- Construct an *n*-location policy via an appropriate "splitting" heuristic (split cluster decisions to individual location; e.g., scale by demand).

Results for n = 20 to n = 100 Locations using 10 Clusters

n	CR-ADP	Myo.	No-R	3-RH-M	3-RH-S	5-RH-M	5-RH-S	7-RH-S	7-RH-S	10-RH-M	10-RH-S
20	3.62	4.51	9.30	4.51	5.77	4.43	5.21	4.38	5.05	4.31	5.97
30	2.92	3.24	6.34	3.70	3.83	3.66	4.19	3.62	3.98	3.59	4.58
40	3.37	4.01	7.77	4.60	4.86	4.53	4.92	4.04	4.55	4.05	4.35
50	3.70	4.09	8.35	4.33	4.77	4.19	4.66	4.14	4.48	-	-
60	3.76	4.12	8.90	4.36	4.88	4.24	4.72	-	-	-	-
70	3.57	4.11	8.70	4.31	4.77	4.18	4.67	-	-	-	-
80	3.34	3.81	8.17	3.96	4.51	3.87	4.37	-	-	-	-
90	3.94	4.25	8.74	4.33	4.87	-	-	-	-	-	-
100	3.35	3.70	7.44	3.89	4.39	-	-	-	-	-	-

Table 3: Summary of Results on Large-scale Instances

(日) (同) (三) (三)

Summary of Contributions

- We prove structural results for the dynamic repositioning model (to our knowledge, this model is the most general of its kind due our consideration of in-service rentals).
- A provably convergent, infinite-horizon, cutting-plane ADP method that is also of broader interest, particularly as a contribution toward the SDDP literature.
- A cluster-based extension of the ADP method for problems of up to 100 locations; outperforms common heuristics.

Thank you! Questions?

æ

イロト イヨト イヨト イヨト