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Model Description

Problem Description

The rental firm has a stock of N units of a single product distributed
in several locations.

The rental firm faces stochastic demands in different locations.

The unsatisfied demand is lost.

Inventory at locations cannot be replenished using an external source.

The firm can reposition the inventory before demand realization.

The objective is to minimize the total discounted lost sales cost and
repositioning cost.

Rented units can be returned to different locations than its origin.

Rented units can be “in-service” or “ongoing” and are not assumed
to be returned after one period.
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Model Description

The Sequence of Events

In each period, the sequence of events is as follows:

1 The current inventory level x t = (xt,1, . . . , xt,n) and the current
ongoing rentals γt = (γt,1, . . . , γt,n) are reviewed.

2 A decision on inventory repositioning is made, with
y t = (yt,1, . . . , yt,n) being the new inventory.

3 The repositioning cost C (y − x) is incurred.

4 The random demand d t at all locations is realized.

5 The rented units enter service; demand that cannot be satisfied at
location i incurs a lost sale cost li .

6 A random fraction of the in-service units returns to locations.
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Model Description

Ongoing Rentals Assumption

Let pt,ij be the fraction of inventory rented from i that is returned at j
after one period. Note that

∑
j pt,ij < 1 means rentals can potentially be

multiple periods.

Assumption 1

We assume the following conditions on πt and the repositioning costs cij .

1 For every period t, there exists a random variable pt ∈ [pmin, 1] such
that

n∑
j=1

pt,ij =
n∑

j=1

pt,kj = pt , for all i , k = 1, 2, . . . , n.

An alternative statement is that pt,ij = pt q̃t,ij for some q̃t,ij where∑n
j=1 q̃t,ij = 1,∀ i .

2 The repositioning costs satisfy ρcmax − cmin ≤ pmin (β − cmin).
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Model Description

Additional Assumptions

x t , y t and d t are continuous.

The cost of moving one unit from location i to location j is cij .

cik ≤ cij + cjk for all i , j , k (Triangle inequality)

For simplicity, we assume li = l for all locations i .

l ≥ cji for all i , j .
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Main Results

DP Formulation

Let x be the initial inventory for each locations (excluding in-service
products).

vt(x t ,γt) = min
y t∈∆n−1(eT x t)

rt(x t ,γt , y t) + ρ

∫
vt+1(x t+1,γt+1) dµt (1)

where:

∆(I ) ,
{
x |x ≥ 0, eTx = I

}
, eTx ≤ N

rt(x t ,γt , y t) = C (y t − x t) + lt(y t)

C (y t − x t) is the cost to reposition the inventory from x t to y t .

lt(y t) =
∫
Lt(y t ,d t) dµt = β

∫ ∑
i (dt,i − yt,i )

+ dµt .

xt+1,i = (yt,i − dt,i )
+ +

∑n
j=1(γt,j + min(yt,j , dt,j)) pt,ji
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Main Results The Inventory Repositioning Problem

The Repositioning Cost

Denote the space of feasible inventory repositioning by

dom(K ) =

{
(x , y)|x ≥ 0, y ≥ 0,

n∑
i=1

xi =
n∑

i=1

yi

}
.

For each (x , y) ∈ dom(K ), the repositioning cost is determined by
solving the following optimization problem.

C (y − x) = minz=(zi,j ;i 6=j) cz
s.t.

∑
i ,j :i 6=j

zi ,j(e j − e i ) = y − x

z ≥ 0,

where zi ,j is the number of cars to be relocated from location i to
location j .
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Main Results The Inventory Repositioning Problem

Properties of Repositioning Cost

C (y − x) depends only on y − x .

Due to triangle inequality, we have:

Proposition 1

There exists an optimal solution z such that∑
i

zi ,j = (yj − xj)
+ and

∑
k

zj ,k = (yj − xj)
− ∀ j .
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Main Results The Generic One-Period Problem

The Generic One-Period Problem

We are interested in solving a problem of the form:

v(x ,γ) = min
y∈∆n−1(eT x)

C (y − x) + u(y ,γ) for (x ,γ) ∈ ∆. (2)

Let:

Ωu(γ) = {x : u(x ,γ) ≤ C (y − x) + u(y ,γ) ∀ y} , ∀γ ∈ S (3)

Ωu(γ) a region where no repositioning is needed if x is in this region.

We called this region the no-repositioning region.
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Main Results The Generic One-Period Problem

The Optimal Policy for the Generic One-Period Problem

Theorem 1

The no-repositioning set Ωu(γ) is nonempty, connected and compact for
all γ ∈ S. An optimal policy π∗ to (2) satisfies

π∗(x ,γ) = x if x ∈ Ωu(γ);
π∗(x ,γ) ∈ B(Ωu(γ)) if x /∈ Ωu(γ).

(4)

Therefore, the optimal policy is:

If x ∈ Ωu(γ), no relocation is needed.

If x /∈ Ωu(γ), y∗t (x ,γ) lies in the boundary of Ωu(γ) and is
determined by the convex optimization.
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Main Results The Generic One-Period Problem

Characterizing the No-Repositioning Region

Proposition 2

x ∈ Ωu(γ) if and only if

− u′(x ,γ; z , 0) ≤ C (z) (5)

for any feasible direction (z , 0) at (x ,γ).

Proposition 3

Suppose u(·,γ) is differentiable at x ∈ ∆n−1(I ). Then, x ∈ Ωu(γ) if and
only if

∂u(x ,γ)

∂xi
− ∂u(x ,γ)

∂xj
≤ cij (6)

for all i , j .
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Main Results The Generic One-Period Problem

Optimal Policy for Two Locations
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Main Results The Generic One-Period Problem

A Quadratic Example (pmin = 1)

u(x) = (x − c)TA(x − c), A =

 3 2 1
2 6 4
1 4 9

 b = [1/3, 1/3, 1/3]T

cij = 2.
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Main Results The Generic One-Period Problem

A Cubic Example (pmin = 1)

u(x) =
∑3

i=1 x
3
i , cij = 0.1, N = 1.
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Main Results The Generic One-Period Problem

Another Quadratic Example (Possibly Nonconvex)

γ = 0 and u(y) = y3
1 + y2

2 + y2
3 and cij = 0.5.

𝑦1

Feasible region 𝐴𝐼

No-repositioning 
set Ω𝑢
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Main Results The Multi-Period/Infinite-Horizon Problem

The Multi-Period Problem with vT+1 = 0

Theorem 2

Suppose Assumption 1 holds. For any given t = 1, . . . ,T, the function
ut(·) is convex and continuous in ∆. The no-repositioning set Ωut (γ) is
nonempty, connected and compact for all γ ∈ S, and can be characterized
as we did in the single period problem. An optimal policy
π∗ = (π∗1, . . . , π

∗
T ) to the multi-period problem satisfies

π∗t (x t ,γt) = x t if x t ∈ Ωut (γt);
π∗t (x t ,γt) ∈ B(Ωut (γt)) if x t /∈ Ωut (γt).

(7)

Moreover, for any t = 1, 2, . . . ,T, we have

1 u′t(y t ,γt ;−η,η) ≤ β
∑n

i=1 ηi for all (x ,γ) ∈ ∆ and any feasible
direction (−η,η) with η ≥ 0;

2 u′t(y t ,γt ; 0, v) ≤ (ρcmax/2)
∑n

i=1 |vi | for all (x ,γ) ∈ ∆ and any
feasible direction (0, v) with eTv = 0.
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Main Results The Multi-Period/Infinite-Horizon Problem

The Infinite-Horizon Problem

Now, let us consider

v(x ,γ) = min
π

Eπ
x

{ ∞∑
t=1

ρt−1r(Xt , Γt , π(Xt , Γt))

}
.

Theorem 3

Suppose Assumption 1 holds. The function u(·,γ) is convex and
continuous in ∆. The no-repositioning set Ωu is nonempty, connected and
compact for all γ ∈ S, and can be characterized as we did before. An
optimal policy π∗ = (π∗, π∗, . . .) to the stationary problem with infinitely
many periods satisfies

π∗(x ,γ) = x if x ∈ Ωu(γ);
π∗(x ,γ) ∈ B (Ωu(γ)) if x /∈ Ωu(γ).

(8)
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Main Results Repositioning-ADP

Infinite-Horizon ADP Algorithm

1 Suppose we currently have uJ(y ,γ) = maxk=1,...,NJ
gk(y ,γ) where

gk(y ,γ) = (y − yk)Tak + (γ − γk)Tbk + ck ,

and NJ is the total number of cuts in the approximation after
iteration J.

2 At iteration J, add cuts (solve LPs) NJ + 1, . . .NJ+1 by computing
tangent hyperplanes to LuJ at randomly sampled states SJ , where

(Lf )(y ,γ) = l(y) + ρ

∫
min

y ′∈∆n−1(eT x ′)
C (y ′ − x ′) + f (y ′,γ ′) dµ

is the Bellman operator.
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Main Results Repositioning-ADP

Infinite-Horizon ADP Algorithm

1 By using the no-repositioning set characterization, cuts computation
can be sped up (thus, we are utilizing both policy and value structure
in this algorithm).

2 This algorithm is related to the stochastic dual dynamic programming
(SDDP) algorithm, which is an algorithm for finite-horizon problems
(and is known to converge).

3 We prove a new convergence result for the infinite horizon setting
using a different proof technique.
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Main Results Repositioning-ADP

Infinite-Horizon ADP Algorithm

Assumption 2

The sampling distribution produces sets SJ that satisfy∑∞
J=1 P

(
SJ ∩ A 6= ∅

)
=∞ for any set A ⊆ ∆ with positive volume.

Theorem 4

Suppose Assumption 1 and 2 hold. If u0(·) satisfies a technical condition
and u0(·) ≤ u(·), then

{uJ(·)} converges uniformly and almost surely to the optimal value
function u(·), i.e., it holds that ‖uJ − u‖∞ → 0 almost surely.
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Main Results Repositioning-ADP

Results for n = 3 Locations / d = 6 Inventory States
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Main Results Repositioning-ADP

Results for n = 5 Locations / d = 10 Inventory States
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Main Results Repositioning-ADP

Results for n = 7 Locations / d = 14 Inventory States
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Main Results Repositioning-ADP

Results for n = 8 Locations / d = 16 Inventory States
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Main Results Repositioning-ADP

Results for n = 9 Locations / d = 18 Inventory States
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Main Results Repositioning-ADP

Results for n = 10 Locations / d = 20 Inventory States
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Main Results Repositioning-ADP

Results for n = 2 to n = 10 Locations
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Main Results Repositioning-ADP

Policy Behavior
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Main Results Repositioning-ADP

Scaling to Large-Scale Instances (20-100 Locations)

Common heuristic is to use a deterministic lookahead approximation.

1 k-RH-M: Replace random quantities with their means and solve a
k-period problem (large-scale LP),

2 k-RH-S: Replace random quantities with a single sample and solve a
k-period problem (large-scale LP),

3 Implemented as a repositioning policy in a rolling-horizon fashion.
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Main Results Repositioning-ADP

Scaling to Large-Scale Instances (20-100 Locations)

We also propose Clustered R-ADP. Suppose a problem has n locations.

1 Cluster locations together (summing/averaging problem parameters)
to create an m-location problem,

2 Solve the m-location problem using R-ADP.

3 Construct an n-location policy via an appropriate “splitting” heuristic
(split cluster decisions to individual location; e.g., scale by demand).
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Main Results Repositioning-ADP

Results for n = 20 to n = 100 Locations using 10 Clusters
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Main Results Repositioning-ADP

Summary of Contributions

1 We prove structural results for the dynamic repositioning model (to
our knowledge, this model is the most general of its kind due our
consideration of in-service rentals).

2 A provably convergent, infinite-horizon, cutting-plane ADP method
that is also of broader interest, particularly as a contribution toward
the SDDP literature.

3 A cluster-based extension of the ADP method for problems of up to
100 locations; outperforms common heuristics.
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Main Results Repositioning-ADP

Thank you! Questions?
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