Faster RL by Freezing Slow States

Daniel Jiang (Meta, Applied RL)
joint work with Yijia Wang (Pitt)

International Symposium on Mathematical Programming
Montreal
July 23, 2024

1. Motivation via example applications

Fast and slow states

Fast states

\/

Slow states

NN NN

Time

Recommendation systems

Consider a recommendation system setting where:

Users return (i.e., log on) to the platform more often if they are seeing content that is
interesting (Sumida & Zhou, 2023)

Users return to the platform more often if they have a diverse recent content history.

Users interests can shift over time as a function of the content they see.

'X’nz'i

User interests
User interests

+1 -1 +1 +1 +1

+1 -1 +1 +1
S Recent content history
Recent content history (+1 = view, -1 = skip)
(+1 = view, -1 = skip) New recommendation

Sumida, Mika, and Angela Zhou. "Optimizing and Learning Assortment Decisions in the Presence of Platform
Disengagement." Available at SSRN 4537925 (2023).

Demand response (shifting electricity demand)

Customers respond to

<+ compensation offer and
reduce energy use

Energy market

A A

Promise to elicit Payment Penalty based on

reductions in based on day- real-time price if

energy usage ahead price promise not fulfilled

(“negawatt-hour”) (Less volatile) (More volatile)
v
Offers compensation to
Demand response company customers to reduce usage

Customers

K. Khezeli, W. Lin, E. Bitar. Learning to buy (and sell) demand response. Proceedings of the International Federation of
Automatic Control (IFAC) World Congress, 2017.

What do they have in common?

Fast states Fast states from examples:
t | Real-time prices |
_ Recent content history
\j éShorter timescales

SIOW States R
- Slow states from examples: :

\/\/\/\/\/\ - Day-ahead prices

Underlying user interests

Time _
:Longer timescales

Current practice when modeling a new problem

\ 1y

While modeling an MDP, additional state variables is expensive:\\ /,

Each iteration of value iteration O(S2A) -

. 7 |\ SR
What do practitioners do (anecdotally)? ‘u » ’
= ' |
If a state is deemed a “slow state” (contexts, environmental
variables, etc), they might be ignored/omitted '

._, e

e.g. assume costs are deterministic, demand is
stationary, weather doesn’t change

This work: A compromise between computational tractability
and fully ignoring the slow state

We propose to periodically ignore slow states ‘

We give evidence and argue that completely omitting slow
states from the decision model is often not a viable heuristic

2. Fast-slow Markov decision processes

Fast-slow Markov decision processes

A y-discounted, infinite horizon MDP: + Fast-slow MDP: SloW past
States s € & - States s = (x, yf/e =T XY)
Actions a € - Actionsa €

Rewards r(s,a) € [0, 1] Rewards r(s, @) € [0, 7yl

Transition function Transition function

St+1 =f(Sta ata Wl‘+1)’ WI+1 = W) 'xt+1 =f,fl'(st9 Clt, Wt+l)

Yea1 =S/ (Sp @ Wiy 1)

EMain assumption (“fast-slow property”):
|y _fg(xa Y, d, w)ll, < dg and ||x —fo(x,y,a,w)||, < ad?.
ELipschitz assumptions (let U™ () be the optimal value function):
| r(s,a) = r(s’,a’) | < L, ||(s,a) — (s, @)l,,
1/ (s, a, w) = f(s", a’s wlly < Lyl (s, @) = (5", @)l

1U*(s) = U*(sO)l> < Lylls — 5'll,.

3. Hierarchical reformulation

Hierarchical reformulation (of any MDP)

- A hierarchical reformulation is at the basis of our proposed approach

- Consideran MDP (S, A, W', f,r,7)

- Letrv : & — & be a stationary policy

- The value function is

U“(s) = E [Z ytr(st, 1/)
=0

So = S] —= r(s,v) + y[E[U”(S’)]

- The policy can be thought of as (v, v, ...):

Hierarchical reformulation (of any MDP)

T-periodic policy (illustration has T = 4)

- Given a T-periodic policy (¢,) = (u, 7y, ..., wy_1), T-horizon reward is

T—1
R(s. t(50), 70) = (50, 1) + Y 7' 1(5,,)
=1

Hierarchical reformulation (of any MDP)

T-periodic policy (illustration has T = 4)

w0 Dal Dad el De Dal Tad] fal

- Bellman equations of the base model and its hierarchical reformulation are:

How can we take

U*(S) = max F(S, a) -+ 14 = U*(S) advantage of this?
0) 1

0*(s9) = max E[R(sp, pu(sp).) + 7 0*(sy)
MHTT

: Proposition. The optimal values are equal: U *(s) = U*(s). Therefore, we
can use the hierarchical reformulation as a basis for our approximation.

4. Frozen-state approximation and its regret

Frozen-state approximation

~ ~/ ~

H T & 73

~ ~/ ~

75 %) 73

=

Main idea: Since slow states don’t change much, let’s freeze them for some
number (1) of periods. Easier sub-problem with a smaller state space.

Fast states

\/

Slow states

Vi AV avans

Time

Frozen-state approximation

~ ~/ ~ ~ ~/ ~

f T 1) 73 f 7T 75} 73
>
Main idea: Since slow states don’t change much, let’s freeze them for some
number (1) of periods. Easier sub-problem with a smaller state space.
: Implementation i Computation
:1. At1 = 0, take a “upper-level” action (using /i), : i+ Pre-compute finite-horizon lower-level
i.e., an action that considers the y' timescale : i policy with frozen slow states
:2. At = 1, observe slow state and pretend it is : Re-use pre-computed lower-level policy to :
frozen until # = T'and that ¢ = T'is the end of : : solve infinite-horizon upper-level problem,
the horizon : which takes advantage of y’

3. Solve this easier lower-level finite horizon
problem.

4. Execute this T-period lower-level policy
(7, 7Ty, ..., Ty_q) in the real system

Frozen-state, lower-level problem

>l

X1 X2 X1 X1
The true problem (Or, we can use any VEA we
would like as the terminal value.)

: Frozen-state lower-level MDP : Computational benefits
T-1 - Small number of successor states (smce
Jr(x,y) = max E Z v r(x, Ve it,) | (X1, y1) = (X,) : slow state is frozen)
=1 :

. O(S%2A) —» O(XY?A)
JX(x,y) = maX r(x,y,a) + }/[E[2y)] JFr=0 _
:+ Independent across x

¥ (x,y) = argmax, r(x,y,a) + y E|J%,(x,y)] . '+ Independent from upper-level problem
i ¢ (replaced U™ by 0)

Frozen-state, upper-level problem

T
/4

7] Ty V%) T3 2 Ty %) TT3

XO xl xl Xl X4 XS XS x5

. Frozen-state upper-level MDP

ELet (7™, J) be the optimal policy/value of the lower-level problem.
R(sg, a,J*) = r(sp, @) + y J* (f(so, a, w))

V*(sq, J ¥, #*) = max E [R(SO, a, J)+y V*(sp, Jl*,ﬁ'*)] (transitions according to ft*)
a :

After solving both levels, let (ﬂ*, 7*) be the solution of the frozen-state approximation.

In the exact reformulation, we were maximizing
over policies, now it is just a single action.

Per-cycle reward approximation error

EProposition. The difference between true and approximate 7-horizon rewards:

‘ E[R(sy, a, 7*)|—E[R(sp, @, J7)] ‘

True Frozen

T—2 -1 T2
< ady <L"2 ¥ Z LJ{) + ¢, [ad? Z L]{ + ydy(a + 2)(T - 1)]

i=1 j=0 j=0

error from freezing end of horizon error

1. E [R(xo, Yo, @, n*)] =[E [r(xo, Yoo @) + ¥ (HT‘lU*)(xl,yl) —yT U*(x7, y7)
where (HU)(x,y) = max r(x,y,a) + y E [f(s, a, w))] (true Bellman operator)
a

2. E[RG.y0. 0. 7] = G300 @) + 7(A70)(ry.yy)

where (FIJt +1)(x, y) =max r(x,y,a)+yE [Jt +1(x, f?(x, v, a, w))] (frozen Bellman operator)

Per-cycle reward approximation error

EProposition. The difference between true and approximate 7T-horizon rewards:

‘ E[R(sy, a, 7*)|—E[R(sp, @, J7)] ‘

True Frozen
-2 . i—1 . -2 .
< ad? <L,,2 ¥ L]{) + yT_lLU ad? 2 L]{ + }/d?(a +2)(T—-1)
i=1 j=0 j=0
error from freezing end of horizon error

16
14 A /
12 4
10 -
v —— overall reward err.
= 87 —— freeze err.
§ —— end-of-horizon err.
6 -
4
2
0 -

20 40 60 80 100

5. A new algorithm: Frozen-state value iteration

Standard value iteration on the base model

: Recall: Given an MDP and Bellman operator H, where (HU)(s) = max r(s,a) + yEU(f(s, a, w)), the value iteration
. a -
: algorithm is U* = H*U'

: . Convergence to optimal value function: lim H' U = U™ for any initial estimate V
I—00

+1

E 2rmaxyk k k
U = Ul < R0, where 14(s) = argmax, r(s.a) +7 E[U"(f(s.a.w)
= —7

Depends on
Algorithm 1: Exact VI for the Base Model Ol Uk — U*” < },k I 1O — U*”
Input: Initial values Uy, number of iterations k. o 0
Output: Approximation to the optimal policy v*. ” U() _U* ” < Fax
1 fori=1,2,...,kdo ’ - 1—]/
2 for s in the state space S do 2“ Uk _U* ”
. . k
3 U'(s) = max, (s, a) + YE[U'(f(s,a,w))]. U =U™|, < =
end b= 4
5 end

6 for s in the state space S do

7 | vF(s) = argmax, r(s,a) + YE[U*(f(s,a,w))].

8 end

Frozen-state value iteration (FSVI)

Algorithm 2: Frozen-State Value Iteration (FSVI)

Input: Initial values J3 = 0 and V°, number of iterations k.

Output: Approximation of the T-periodic frozen-state policy (ﬁk , %) and J7.
1 fort=T-1,T-2,...,1do

2 for each slow state z € X do
3 for each fast state y € Y do
1 Ji (2,y) = maxa 7(z,y,a) + YE[J511 (2, fy(z,y,a,w))].
5 7y (z,y) = argmax, r(z,y,a) + 7IE[J£*+1(:1:, fy(z,y,a, w))]
end Note: Freezing the state only happens “within” the
— algorithm to more efficiently compute J*

8 end
9 fori=1,2,...,k do

10 for sy = (xg,yo) in the state space X x Y do

11 | Vi(zo,yo, JT,T*) = ma.xa]E[R(so,a, JT) +'7TVi_1(xT,yT,Ji",1~t'*)].
12 end
13 end

1

'

for so = (zo,yo) in the state space X x Y do

1 i*(zg,yo) = arg maxa]E[R(so,a,) +TVE@r, yr, J§, 7).

)]

16 end

Solving the lower level
incurs a one time fixed cost

Pre-compute lower-level problem, a finite-
horizon DP:

- To solve lower-level DP: O(XY?AT)
- To compute multi-step transition: O(S>T)

Upper-level problem (infinite-horizon VI on
slow-timescale MDP with ;/T discounting):

- Per upper-level VI iteration: O(S?A)

O(S?A) per iteration is the same as Base VI, but now the discount factor is y” instead of !

Regret of a periodic policy (i, 7)

EDefinition. Suppose the optimal policy is v*. The regret is

R(s, u,) = U (s) — U"(s,) = U*(s) — U¥(s,x) and RB(u,x) = max R(s,u,r),

Ewhere we have used the equivalence between the base and hierarchical formulations.

: Remarks:

o We always measure regret with respect to the true MDP.

+ Although (u, rr) is computed with the help of frozen states
it is evaluated in the original MDP with true dynamics.

(@*, %)
:. Consider Z(ji*, &*), notice that V*(J*, #*) does not directly

enter the regret definition.

- It is the optimal value of the approximation, but doesn’t

N Frozen-state
reflect the performance of (™, £™) in the true model.

approximation

V*(J* ~ %

Main idea behind regret analysis

Lemma (Approximation to FSVI).

: - Suppose we approximately solve the lower-level problem and obtain x, J, instead of the
optimal solutions z*, U™*.

P Suppose we approximately solve the upper-level problem and obtain V instead of V*(Jl, TT).
P . Let U be greedy with respect to both J; and V-

. p(sy) = argmax ., E [R(SO, a,J) + vy Visy(a, n))].

Reward error

P Then,

o) T

! +
(I=y")2 1=y

R(u,) < < >€,,(7t*,]1)

(N, d(a.do). T) + 2r V*(J,.) — V|
a, ’ s) — 0
(1—yT2 1—y7)" 4 1=yt 1

End of horizon error /\'/-appmximation error /

Regret of FSVI

ETheorem. The regret of FSVI after k upper-level iterations is:

2y7T 2 N
*%(ﬂa TC) S (1 B }/T)Z + 1 B }/T er(ﬂ: 9‘]1)
9) 2T 9) T 2’,.mX (k+1)T
+< ! — + ! T)LUd(a,d?,TH o/ —.
(I—=y")= 11—y (I =y —=y")

Ewhich replaces the V-approximation error term with the VI error.

Main question to answer using the regret analysis

Given some computational budget, should we use the FSVI algorithm at all?

If so, how should we choose T (the number of periods to freeze) and k
(hnumber of upper-level steps iterations)?

How can we use the bound to choose T?

le3

3.75

3.50 1

3.25 - Exact VI

FSVI, T=7
3.00 -

regret
N
~J
wn

2.50 1

2.25 1

2.00 -

175 ! I T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

computational cost lel2

How can we use the bound to choose T?

le3

3.75

3.50 1

3.25 - Exact VI

FSVI, T=7
3.00 -

JFSVI, T=

2.50] \

2.25 1

regret
N
~J
wu

2.00 -

175 ! I T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

computational cost lel2

How can we use the bound to choose T?

le3

3.75

3.50 1

3.25 Exact VI

FSVI, T=7

2.75 - FSVI, T=

2
(@) .
g
2.50 | FSVI’L\

0.0 0.2 0.4 0.6 0.8 1.0 1.2
computational cost lel2

How can we use the bound to choose T?

le3

3.75

3.50 1

3.25 - Exact VI

FSvI, T=7
3.00 -

JFSVI, T=

2.50 - FSVI, T=
FSVlK

regret
N
~
wu

2.25 1

2.00 -

1-75 ! ! T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

computational cost lel2

How can we use the bound to choose T?

le3

395 _FSVI, T=18 Exact Vi

FSVI, T=7

g 2.75 - FSVI, T=
g

2.50 - FSVI, T=
FSVI, =16

! I

0.0 0.2 0.4 0.6 0.8 1.0 1.2
computational cost lel2

How can we use the bound to choose T?

le3

3,95 [FSVI.T=18 | Exact VI

FSVI, T=7 :

1.75 -— - : ' — ,
0.0 : 0.2 0.4 0.6 0.8 1.0

computational cost

Low budget : Medium budget High budget

FSVI (T = 16) FSVI (T = 9) Just use VI!

1.2
lel2

6. Extensions

Extension: Nominal state version of FSVI

In FSVI, we have to solve the lower-level MDP for each x

We can further do approximations by solving the lower-
level MDP for a few nominal states only

O(S*A) » O(XY?A) - O(X,, Y>A)

om

Later, extrapolate to nearby nominal states

Theoretical results can be adapted given an additional
assumption on the MDP rewards

Extension: Scaling to larger state spaces using feature-
based approximate value iteration

LLERELL --. Limited “expansion” aftergoing to parameterspace
- Architecture: ° and back:
- Consider M pre-selected states & = {81,589, «.os Sy} (@D () — (q)cI)T)(J’)”OO <k =Ty =71y

- Consider an M-dimensional feature vector ¢h(s), where (s,) are
linearly independent.

- Assume there exists ¥’ € [y,1) s.t. for any s, there exists 6, (), where
}// M

- D 16,()] < 1and g(s) = > > 0,(5)PCs,).
m m=1

- Lower level: f(s,a)t) =¢(5w,.
- Upper level: \A/(S,ﬂk) = ¢ 1(s) p~.
- Update procedure:

1. Compute Bellman update at pre-selected states only: y(s,,).

2. Compute next parameter vector (@,_; or ﬁk+1) such that the :
updated value function evaluated at the pre-selected states

is equal: e.g., f(sm, W,_1) = y(s,,)-

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 1996.

Extension: Scaling to larger state spaces using feature-
based approximate value iteration

Algorithm 4: Frozen-State Approximate Value Iteration (FSAVI)

Input: S = {s1,52,...,5:}, ¢, initial weights wr = By = 0, number of iterations k.
Output: Approximation of the T-periodic frozen-state policy (ﬂ(ﬁk,w*), ‘frw*) and J; (w*)
1 fort=T-1,T—-2,...,1do

2 for each pre-selected state s = (z,y) € S do

3 Ji(2,y) = max, r(z,y,a) + YE[Ji11 (2, fy(z,y, a,0),we41)]-

4 end

5 Set remaining entries of J; to zero. Update parameter vector: w; = ®'.J;.
6 end

7 Let #,- be greedy with respect to J;(w}) = ®w}, similar to (23).
8 fori=1,2,...,k do

9 for each pre-selected state so € S do

10 Vi(so) = maxX, E [R(S, a, jl (w{)) + 7T V(ST(G" ﬁ'avi)7 ﬂi—l)] :

11 Set remaining entries of V* to zero. Update parameter vector: 3; = ® V.
12 end

13 end

14 for sy in the state space S do

15 (g, =) (80) = arg max, E[R(so, a, Jy(w?)) + TV (sr(a, Fw), Br)].

16 end

Regret of FSAVI

ETheorem. The regret of FSAVI after k upper-level iterations is: Upper-level feature
- approximation error
Am < (2L 2 et @)
,) < e (x™,J (@
8 (1=y"2 1=y o

2y2T 2T 1+« k2 — k2 (ky) !
+ ! + - Ly d(a,dy, T)+ Ep T (ky Dk (7) Faxs
(1=yD)? 1=y 1 —xy? (1 —xyD)(1 = «xy)

IVars=V(B*)l o VBV

1+« (K]/)T(l +7)
1 —«ky y — Ky?

Elow -

*

Ewhich e (™, fl(a)l*)) = e n*,J)+ <

”Jt*_jt(a)t*)“oo

Lower-level feature approximation error

/. Numerical results

Baseline algorithms

VI / AVI
Slow-agnostic VI / AVI
Average over slow states during learning
Upon implementation, ignore slow state
Q-learning (QL)
Deep Q-networks (DQN)
Ours: FSVI / Nominal FSVI

Ours: FSAVI / Nominal FSAVI

Overall performance comparison

Base VI
Slow-agnostic VI

Test Reward
O G
o w o w (]

Test Reward

—
N

I—-RL
—— Base VI
—— Slow-agnostic VI

EEY

FSVI o —— FSVI
—— Nominal FSVI 81 —— Nominal FSVI 1
00 02 04 06 08 1.0 12 1.4 0.0 0.2 0.4 0.6 0.8 1.0
Computational Cost 126 Computational Cost s

(a) Multi-class service allocation

led
1.4 - /
°
2 13- —— DQN |
&) ~—— Base AVI
H 1.2- —— Slow-agnostic AVI
@ —— FSAVI
1.1- —— Nominal FSAVI
0 1 2 3 4 g
Computational Cost 1e7

(c) Energy demand response

(b) Restless two-armed bandit

Questions

Please feel free to email me at danielrjiang@gmail.com for additional comments and discussion.

le3

3.75

3.50 A1

3 95 JFSVI.T=18 : Exact VI

FSVI, T=7

2.00
1.75 1 - . . — .
0.0 : 0.2 0.4 0.6 0.8 : 1.0 1.2
: computational cost lel2
Low budget Medium budget High budget

FSVI (T = 16) FSVI (T =9) Just use VI!

mailto:danielrjiang@gmail.com

