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1. Motivation via example applications



Fast and slow states

Time

Fast states

Slow states



Recommendation systems

• Consider a recommendation system setting where:


• Users return (i.e., log on) to the platform more often if they are seeing content that is 
interesting (Sumida & Zhou, 2023)


• Users return to the platform more often if they have a diverse recent content history. 

• Users interests can shift over time as a function of the content they see.

Sumida, Mika, and Angela Zhou. "Optimizing and Learning Assortment Decisions in the Presence of Platform 
Disengagement." Available at SSRN 4537925 (2023).
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Demand response (shifting electricity demand)

K. Khezeli, W. Lin, E. Bitar. Learning to buy (and sell) demand response. Proceedings of the International Federation of 
Automatic Control (IFAC) World Congress, 2017.

Energy market

Demand response company

Promise to elicit 
reductions in 
energy usage 

(“negawatt-hour”)

Payment 
based on day-

ahead price 
(Less volatile)

Offers compensation to 
customers to reduce usage

Customers

Customers respond to 
compensation offer and 

reduce energy use

Penalty based on 
real-time price if 

promise not fulfilled 
(More volatile)



What do they have in common?

Time

Fast states

Slow states
Slow states from examples:


• Day-ahead prices


• Underlying user interests


Longer timescales

Fast states from examples:


• Real-time prices


• Recent content history


Shorter timescales



Current practice when modeling a new problem

• While modeling an MDP, additional state variables is expensive:


• Each iteration of value iteration 


• What do practitioners do (anecdotally)?  

• If a state is deemed a “slow state” (contexts, environmental 
variables, etc), they might be ignored/omitted


• e.g. assume costs are deterministic, demand is 
stationary, weather doesn’t change


• This work: A compromise between computational tractability 
and fully ignoring the slow state


• We propose to periodically ignore slow states


• We give evidence and argue that completely omitting slow 
states from the decision model is often not a viable heuristic

𝒪(S2A)



2. Fast-slow Markov decision processes



Fast-slow Markov decision processes
• A -discounted, infinite horizon MDP:


• States 


• Actions 


• Rewards 

• Transition function


•  , 

γ

s ∈ 𝒮

a ∈ 𝒜

r(s, a) ∈ [0, rmax]

st+1 = f(st, at, wt+1) wt+1 ∈ 𝒲

• Fast-slow MDP:


• States 


• Actions 


• Rewards 


• Transition function


• 


•

s = (x, y) ∈ 𝒮 = (𝒳 × 𝒴)

a ∈ 𝒜

r(s, a) ∈ [0, rmax]

xt+1 = f𝒳(st, at, wt+1)

yt+1 = f𝒴(st, at, wt+1)

Slow Fast

Main assumption (“fast-slow property”): 

 

Lipschitz assumptions (let  be the optimal value function): 

 

 

∥y − f𝒴(x, y, a, w)∥2 ≤ d𝒴 and ∥x − f𝒳(x, y, a, w)∥2 ≤ αd𝒴 .

U⋆(s)

|r(s, a) − r(s′￼, a′￼) | ≤ Lr ∥(s, a) − (s′￼, a′￼)∥2,

∥f(s, a, w) − f(s′￼, a′￼, w)∥2 ≤ Lf ∥(s, a) − (s′￼, a′￼)∥2,

∥U⋆(s) − U⋆(s′￼)∥2 ≤ LU∥s − s′￼∥2.



3. Hierarchical reformulation



Hierarchical reformulation (of any MDP)

• A hierarchical reformulation is at the basis of our proposed approach


• Consider an MDP 


• Let  be a stationary policy


• The value function is





• The policy can be thought of as :

⟨𝒮, 𝒜, 𝒲, f, r, γ⟩

ν : 𝒮 → 𝒜

Uν(s) = 𝔼[
∞

∑
t=0

γtr(st, ν) s0 = s] = r(s, ν) + γ 𝔼[Uν(s′￼)]

(ν, ν, …)

ν ν ν ν ν ν ν ⋯ν



Hierarchical reformulation (of any MDP)

ν ν ν ν ν ν ν ⋯ν

π1 π2 π3 ⋯μ π1 π2 π3μ

-periodic policy (illustration has )T T = 4

• Given a -periodic policy , -horizon reward is
T (μ, π) = (μ, π1, …, πT−1) T

R(s0, μ(s0), π) = r(s0, μ) +
T−1

∑
t=1

γt r(st, πt)

R(s0, μ(s0), π) R(s4, μ(s4), π)



Hierarchical reformulation (of any MDP)

ν ν ν ν ν ν ν ⋯ν

• Bellman equations of the base model and its hierarchical reformulation are:



U⋆(s0) = max
a

r(s, a) + γ 𝔼[U⋆(s1)]
Ū⋆(s0) = max

(μ,π)
𝔼[R(s0, μ(s0), π) + γT Ū⋆(sT)]

π1 π2 π3 ⋯μ π1 π2 π3μ

-periodic policy (illustration has )T T = 4

Proposition. The optimal values are equal: . Therefore, we 
can use the hierarchical reformulation as a basis for our approximation.

U⋆(s) = Ū⋆(s)

How can we take 
advantage of this?



4. Frozen-state approximation and its regret



Frozen-state approximation

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Main idea: Since slow states don’t change much, let’s freeze them for some 
number ( ) of periods. Easier sub-problem with a smaller state space.T

Time

Fast states

Slow states



Frozen-state approximation

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Implementation 

1. At , take a “upper-level” action (using ), 
i.e., an action that considers the  timescale


2. At , observe slow state and pretend it is 
frozen until  and that  is the end of 
the horizon


3. Solve this easier lower-level finite horizon 
problem.


4. Execute this -period lower-level policy 
( ) in the real system


5. Repeat

t = 0 μ̃
γT

t = 1
t = T t = T

T
π̃1, π̃2, …, π̃T−1

Main idea: Since slow states don’t change much, let’s freeze them for some 
number ( ) of periods. Easier sub-problem with a smaller state space.T

Computation 

• Pre-compute finite-horizon lower-level 
policy with frozen slow states


• Re-use pre-computed lower-level policy to 
solve infinite-horizon upper-level problem, 
which takes advantage of γT



Frozen-state, lower-level problem

π̃1 π̃2 π̃3

x1 x1 x1

Frozen-state lower-level MDP 







J⋆
1 (x, y) = max

π̃
𝔼 [

T−1

∑
t=1

γt−1 r(x1, yt, π̃t) (x1, y1) = (x, y)]
J⋆

t (x, y) = max
a

r(x, y, a) + γ 𝔼[J⋆
t+1(x, y′￼)], J⋆

T ≡ 0

π̃⋆
t (x, y) = argmaxa r(x, y, a) + γ 𝔼[J⋆

t+1(x, y′￼)] .

J⋆
T ≡ 0

Computational benefits 

• Small number of successor states (since 
slow state is frozen)


• 


• Independent across 


• Independent from upper-level problem 
(replaced  by 0)

𝒪(S2A) → 𝒪(XY2A)

x

U⋆

(Or, we can use any VFA we 
would like as the terminal value.)

π⋆
1 π⋆

2 π⋆
3

x1 x2 x3

U⋆

The true problem



Frozen-state, upper-level problem

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Frozen-state upper-level MDP 

Let  be the optimal policy/value of the lower-level problem.





 (transitions according to )

(π̃⋆, J⋆
1 )

R̃(s0, a, J⋆
1 ) = r(s0, a) + γ J⋆

1 (f(s0, a, w))
V⋆(s0, J⋆

1 , π̃⋆) = max
a

𝔼[R̃(s0, a, J⋆
1 )+γTV⋆(sT, J⋆

1 , π̃⋆)] π̃⋆

After solving both levels, let  be the solution of the frozen-state approximation.(μ̃⋆, π̃⋆)

x1 x1 x1x0 x4 x5 x5 x5

γT

In the exact reformulation, we were maximizing 
over policies, now it is just a single action.



Per-cycle reward approximation error

Proposition. The difference between true and approximate -horizon rewards: T

𝔼[R(s0, a, π⋆)]

True

−𝔼[R̃(s0, a, J⋆
1 )]

Frozen

≤ αd𝒴(Lr

T−2

∑
i=1

γi
i−1

∑
j=0

Lj
f )

error from freezing

+ γT−1LU[αd𝒴

T−2

∑
j=0

Lj
f + γd𝒴(α + 2)(T − 1)]

end of horizon error

Main ideas. 

1. 


where   (true Bellman operator)


2. 


where   (frozen Bellman operator)

𝔼[R(x0, y0, a, π*)] = 𝔼[r(x0, y0, a) + γ (HT−1U⋆)(x1, y1) − γT U⋆(xT, yT)]
(HU )(x, y) = max

a
r(x, y, a) + γ 𝔼[f(s, a, w))]

𝔼[R̃(x0, y0, a, J⋆
1 )] = r(x0, y0, a) + γ(H̃T−1 0)(x1, y1)

(H̃Jt+1)(x, y) = max
a

r(x, y, a) + γ 𝔼[Jt+1(x, f𝒴(x, y, a, w))]



Per-cycle reward approximation error

Proposition. The difference between true and approximate -horizon rewards: T

𝔼[R(s0, a, π⋆)]

True

−𝔼[R̃(s0, a, J⋆
1 )]

Frozen

≤ αd𝒴(Lr

T−2

∑
i=1

γi
i−1

∑
j=0

Lj
f )

error from freezing

+ γT−1LU[αd𝒴

T−2

∑
j=0

Lj
f + γd𝒴(α + 2)(T − 1)]

end of horizon error



5. A new algorithm: Frozen-state value iteration



Standard value iteration on the base model

Recall: Given an MDP and Bellman operator , where , the value iteration 

algorithm is 


• Convergence to optimal value function:  for any initial estimate 


•  where 

H (HU )(s) = max
a

r(s, a) + γ𝔼U( f (s, a, w))

Uk = HkU0

lim
t→∞

Ht U = U⋆ V

∥Uνk − U*∥∞ ≤
2rmaxγk+1

(1 − γ)2
, νk(s) = argmaxa r(s, a) + γ 𝔼[Uk( f (s, a, w))]

Depends on


• 


• 


•

∥Uk − U⋆∥∞ ≤ γk ∥U0 − U⋆∥∞

∥U0 − U⋆∥∞ ≤
rmax

1 − γ

∥Uνk − U⋆∥∞ ≤
2∥Uk − U⋆∥∞

1 − γ



Frozen-state value iteration (FSVI)

Pre-compute lower-level problem, a finite-
horizon DP: 

- To solve lower-level DP:  
- To compute multi-step transition: 

𝒪(XY2AT )
𝒪(S2T )

Upper-level problem (infinite-horizon VI on 
slow-timescale MDP with  discounting): 

- Per upper-level VI iteration: 

γT

𝒪(S2A)

 per iteration is the same as Base VI, but now the discount factor is  instead of !𝒪(S2A) γT γ

Solving the lower level 
incurs a one time fixed cost

Note: Freezing the state only happens “within” the 
algorithm to more efficiently compute  J⋆

1



Regret of a periodic policy (μ, π)

Definition. Suppose the optimal policy is . The regret is 

,


where we have used the equivalence between the base and hierarchical formulations.

ν⋆

ℛ(s, μ, π) = Uν⋆(s) − Ūμ(s, π) = Ū⋆(s) − Ūμ(s, π) and ℛ(μ, π) = max
s

ℛ(s, μ, π)

Remarks: 

• We always measure regret with respect to the true MDP.


• Although  is computed with the help of frozen states, 
it is evaluated in the original MDP with true dynamics.


• Consider , notice that  does not directly 
enter the regret definition.


• It is the optimal value of the approximation, but doesn’t 
reflect the performance of  in the true model.

(μ, π)

ℛ(μ̃⋆, π̃⋆) V⋆(J⋆
1 , π̃⋆)

(μ̃⋆, π̃⋆)

True MDP

Frozen-state 
approximation

(μ̃⋆, π̃⋆)

V⋆(J⋆
1 , π̃⋆)



Main idea behind regret analysis

Lemma (Approximation to FSVI).  

• Suppose we approximately solve the lower-level problem and obtain , instead of the 
optimal solutions .


• Suppose we approximately solve the upper-level problem and obtain  instead of .


• Let  be greedy with respect to both  and :


• .


• Then,





π, J1
π⋆, U⋆

V V⋆(J1, π)

μ J1 V

μ(s0) = argmaxa∈𝒜 𝔼[R̃(s0, a, J1) + γTV(sT(a, π))]

ℛ(μ, π) ≤ ( 2γT

(1 − γT)2
+

2
1 − γT )ϵr(π⋆, J1)

+( 2γ2T

(1 − γT)2
+

2γT

1 − γT )LU d(α, d𝒴, T ) +
2γT

1 − γT
∥V⋆(J1, π) − V∥∞.

Reward error

End of horizon error V-approximation error



Regret of FSVI

Theorem. The regret of FSVI after  upper-level iterations is:





which replaces the V-approximation error term with the VI error.

k

ℛ(μ, π) ≤ ( 2γT

(1 − γT)2
+

2
1 − γT )ϵr(π⋆, J1)

+( 2γ2T

(1 − γT)2
+

2γT

1 − γT )LU d(α, d𝒴, T )+
2rmaxγ(k+1)T

(1 − γ)(1 − γT)
,



Main question to answer using the regret analysis

Given some computational budget, should we use the FSVI algorithm at all?  

If so, how should we choose  (the number of periods to freeze) and  
(number of upper-level steps iterations)? 

T k



How can we use the bound to choose T?



How can we use the bound to choose T?



How can we use the bound to choose T?



How can we use the bound to choose T?



How can we use the bound to choose T?



How can we use the bound to choose T?

High budgetMedium budgetLow budget

FSVI (T = 16) FSVI (T = 9) Just use VI!



6. Extensions 



Extension: Nominal state version of FSVI

• In FSVI, we have to solve the lower-level MDP for each 


• We can further do approximations by solving the lower-
level MDP for a few nominal states only


• 


• Later, extrapolate to nearby nominal states


• Theoretical results can be adapted given an additional 
assumption on the MDP rewards

x

𝒪(S2A) → 𝒪(XY2A) → 𝒪(XnomY2A)

𝒳



Extension: Scaling to larger state spaces using feature-
based approximate value iteration

Architecture: 

• Consider  pre-selected states .


• Consider an -dimensional feature vector , where  are 
linearly independent. 


• Assume there exists  s.t. for any , there exists , where


•   and .


• Lower level: .


• Upper level: 


• Update procedure:


1. Compute Bellman update at pre-selected states only: .


2. Compute next parameter vector (  or ) such that the 
updated value function evaluated at the pre-selected states 
is equal: e.g., .

M 𝒮̃ = {s1, s2, …, sM}

M ϕ(s) ϕ(sm)

γ′￼∈ [γ,1) s θm(s)

∑
m

|θm(s) | ≤ 1 ϕ(s) =
γ′￼

γ

M

∑
m=1

θm(s) ϕ(sm)

̂J(s, ωt) = ϕ⊺(s)ωt

̂V(s, βk) = ϕ⊺(s) βk .

y(sm)

ωt−1 βk+1

̂J(sm, ωt−1) = y(sm)

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 1996.

∥(ΦΦ†)(J ) − (ΦΦ†)(J′￼)∥∞ ≤ κ ∥J − J′￼∥∞ (κ = γ′￼/γ)

Limited “expansion” after going to parameter space 
and back:



Extension: Scaling to larger state spaces using feature-
based approximate value iteration



Regret of FSAVI

Theorem. The regret of FSAVI after  upper-level iterations is:





which  .

k

ℛ(μ, π) ≤ ( 2γT

(1 − γT)2
+

2
1 − γT )ϵr(π⋆, ̂J1(ω⋆

1 ))

+( 2γ2T

(1 − γT)2
+

2γT

1 − γT )LU d(α, d𝒴, T )+( 1 + κ
1 − κγT ) εup

∥V ⋆
ω⋆− ̂V(β⋆)∥∞

+ (κγT)k( κ2 − κ2(κγ)T+1

(1 − κγT)(1 − κγ) )rmax

∥ ̂V(β*)− ̂V(βk)∥∞

,

ϵr(π⋆, ̂J1(ω⋆
1 )) = ϵr(π⋆, J⋆

1 )+( 1 + κ
1 − κγ

−
(κγ)T(1 + γ)

γ − κγ2 )εlow

∥J⋆
t − ̂Jt(ω⋆

t )∥∞

Upper-level feature 
approximation error

Lower-level feature approximation error



7. Numerical results



Baseline algorithms

• VI / AVI


• Slow-agnostic VI / AVI


• Average over slow states during learning


• Upon implementation, ignore slow state


• Q-learning (QL)


• Deep Q-networks (DQN)


• Ours: FSVI / Nominal FSVI 

• Ours: FSAVI / Nominal FSAVI



Overall performance comparison



Questions

High budgetMedium budgetLow budget

FSVI (T = 16) FSVI (T = 9) Just use VI!

Please feel free to email me at danielrjiang@gmail.com for additional comments and discussion.

mailto:danielrjiang@gmail.com

