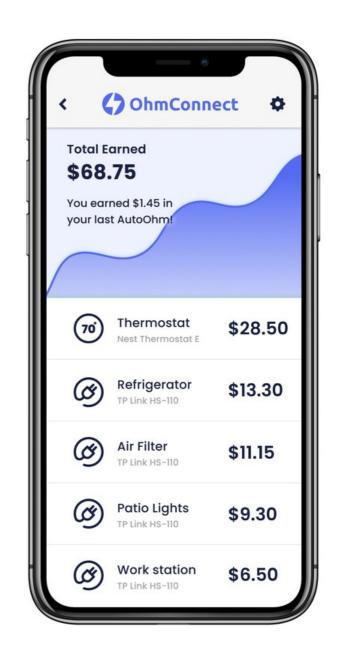
Fast-slow MDPs: What they are and how to solve them

Daniel Jiang *joint work with* Yijia Wang University of Pittsburgh

Decision Sciences Seminar, April 13, 2022 Fuqua School of Business, Duke University 1. Motivation via three example applications

Demand response provider

- Energy demand response is the practice of paying energy consumers to reduce usage at certain times
- An energy aggregator / demand response provider
 - Bids an amount of demand reduction into the market, given **day-ahead price**
 - Offers a compensation to residential customers to reduce consumption
 - Potentially penalized by (*the more volatile*) realtime price if shortage between promised and realized demand reduction
- Profit = revenue from market compensation



K. Khezeli, W. Lin, E. Bitar. Learning to buy (and sell) demand response. *Proceedings of the International Federation of Automatic Control (IFAC) World Congress*, 2017.

(Energy/carbon-aware) job scheduling in data centers

- Dynamic service allocation with multi-class queues
- Multiple queues of different job types (e.g., training different models) to be served by a single node
 - At each period, choose one type of job to serve
 - Cost = the *holding* costs endured by the jobs
- Energy/carbon-aware: Holding costs depend on:
 - Electricity prices, generation sources, etc. and might vary slowly throughout the day

P. Ansell, K. D. Glazebrook, J. Nino-Mora, and M. O'Keeffe. Whittle's index policy for a multi-class queueing system with convex holding costs. *Mathematical Methods of Operations Research*, 2003.

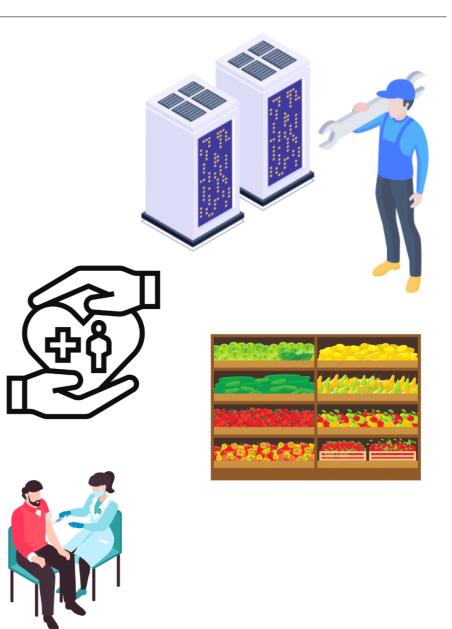
D. B. Brown and M. B. Haugh. Information relaxation bounds for infinite horizon MDPs. Operations Research, 2017.

https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows/

D. Lee and M. Vojnovic. Scheduling jobs with stochastic holding costs. NeurIPS, 2021.

Restless multi-armed bandit with environmental states

- A decision-maker faces:
 - A set of "arms," each associated with an evolving internal state
 - Global environmental states that affect the dynamics of each arm
- Which arms to intervene (at a cost) in each period?
- Applications:
 - Machine maintenance (environmental factors affect the likelihood of each machine failing)
 - Public health intervention decisions
 - Dynamic assortment planning
 - Preventative healthcare (limited screening resources for a set of patients)



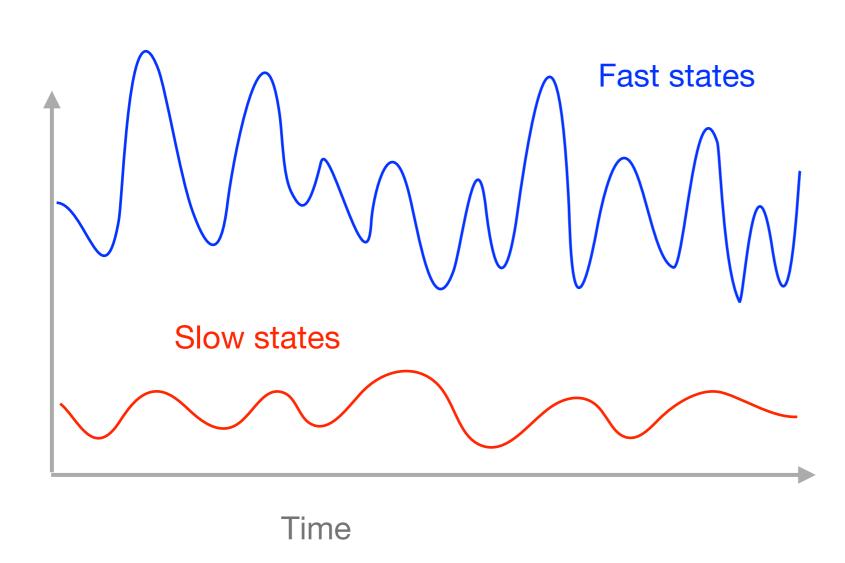
R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 1973.

B. Bhattacharya. Restless bandits visiting villages: A preliminary study on distributing public health services. In *Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies*, 2018.

D. B. Brown and J. E. Smith. Index policies and performance bounds for dynamic selection problems. *Management Science*, 2020.

E. Lee, M. S. Lavieri, and M. Volk. Optimal screening for hepatocellular carcinoma: A restless bandit model. *Manufacturing & Service Operations Management*, 2019.

What do they have in common?



Fast states from examples:

Real-time prices

•

•

•

•

- Queue lengths
- Machine statuses

Shorter timescales

Slow states from examples:

- Day-ahead prices
- Holding cost of queue
 - Environmental factors

Longer timescales

Current practice

٠

- Additional state variables in a DP is expensive:
 - Each iteration of value iteration $\mathcal{O}(S^2A)$
- What do practitioners do (anecdotally)?
 - From the beginning, *ignore/omit* slow states (contexts, environmental variables, etc) in the modeling
 - e.g. assume costs are deterministic, demand is stationary, weather doesn't change
 - **This work:** a *compromise* between computational tractability and fully ignoring the slow state
 - We propose: an approach that periodically ignores slow states
 - We give evidence and argue that completely omitting slow states from the decision model is often not a viable heuristic

Outline

•

•

Fast-slow MDP

- Propose the concept of an MDP where some states move fast and others relatively slowly
- Frozen-state approximation (another MDP)
 - What if we "freeze" the slow state for a few periods at a time?
- Algorithms
 - Frozen-state value iteration / approximate value iteration
 - Regret analysis
- Numerical experiments on motivating examples

2. Fast-slow Markov decision processes

Fast-slow Markov decision processes

- A γ -discounted, infinite horizon MDP:
 - States $s \in \mathcal{S}$
 - Actions $a \in \mathscr{A}$
 - Rewards $r(s, a) \in [0, r_{\max}]$
 - Transition function
 - $s_{t+1} = f(s_t, a_t, w_{t+1}), w_{t+1} \in \mathcal{W}$

- Fast-slow MDP: Slow Fast • States $s = (x, y) \in \mathcal{S} = (\mathcal{X} \times \mathcal{Y})$
 - Actions $a \in \mathscr{A}$
 - Rewards $r(s, a) \in [0, r_{\max}]$
 - Transition function
 - $\cdot \quad x_{t+1} = f_{\mathcal{X}}(s_t, a_t, w_{t+1})$
 - $\cdot \quad y_{t+1} = f_{\mathcal{Y}}(s_t, a_t, w_{t+1})$

Main assumption ("fast-slow property"):

$$\|y - f_{\mathcal{Y}}(x, y, a, w)\|_2 \le d_{\mathcal{Y}} \text{ and } \|x - f_{\mathcal{X}}(x, w)\|_2 \le \alpha d_{\mathcal{Y}}.$$

Lipschitz assumptions (let $U^{\star}(s)$ be the optimal value function):

 $r(s,a) - r(s',a') \leq L_r ||(s,a) - (s',a')||_2,$

 $\|f(s, a, w) - f(s', a', w)\|_2 \le L_f \|(s, a) - (s', a')\|_2,$

 $\|U^{\star}(s) - U^{\star}(s')\|_{2} \leq L_{U}\|s - s'\|_{2}$. \leftarrow Can be removed, included for clarity

3. Hierarchical reformulation

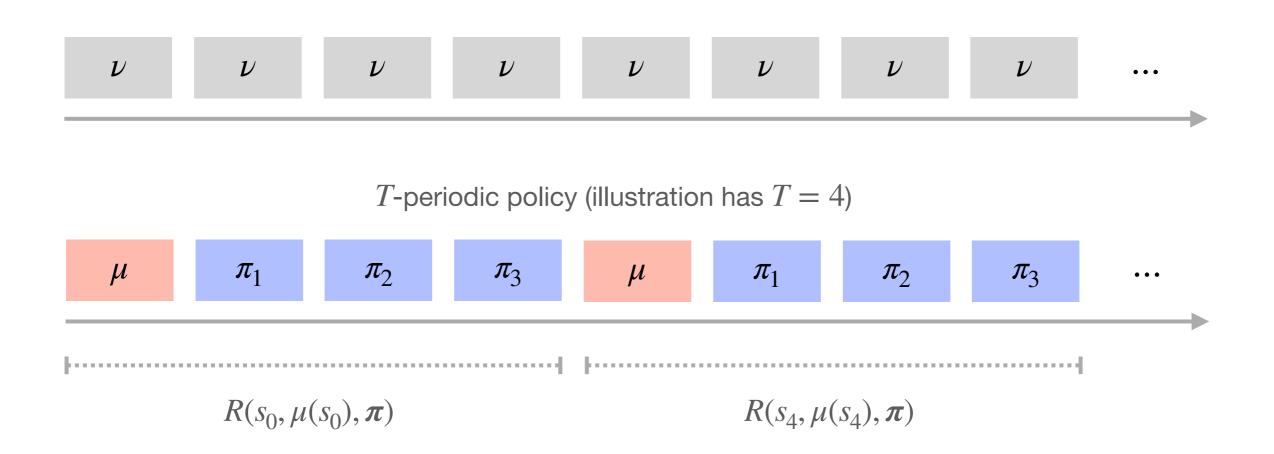
Hierarchical reformulation (of any MDP)

- · A hierarchical reformulation is at the basis of our proposed approach
- Consider an MDP $\langle S, \mathscr{A}, \mathscr{W}, f, r, \gamma \rangle$
- Let $\nu : \mathcal{S} \to \mathscr{A}$ be a stationary policy
- The value function is

$$U^{\nu}(s) = \mathbb{E}\left[\left|\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \nu)\right| | s_{0} = s\right] = r(s, \nu) + \gamma \mathbb{E}\left[U^{\nu}(s')\right]$$

• The policy can be thought of as $(\nu, \nu, ...)$:

Hierarchical reformulation (of any MDP)

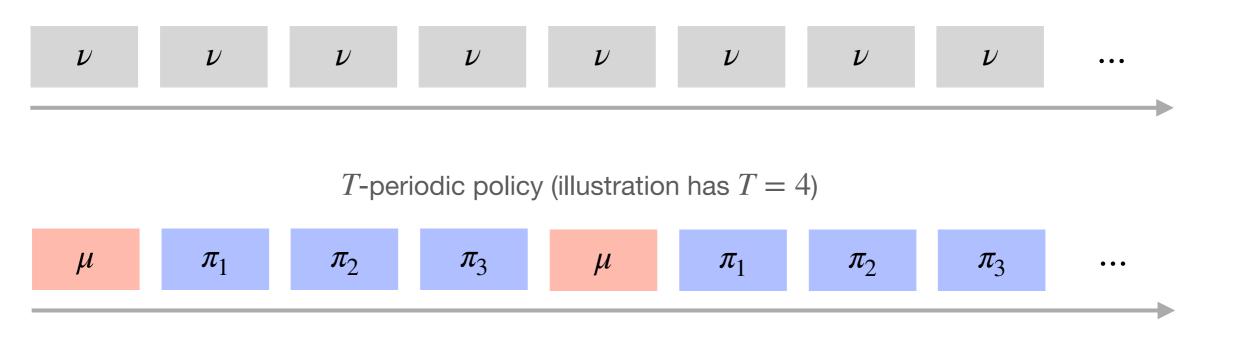


• Given a *T*-periodic policy $(\mu, \pi) = (\mu, \pi_1, ..., \pi_{T-1})$, *T*-horizon reward is

$$R(s_0, \mu(s_0), \pi) = r(s_0, \mu) + \sum_{t=1}^{T-1} \gamma^t r(s_t, \pi_t)$$

Hierarchical reformulation (of any MDP)

•



Bellman equations of the base model and its hierarchical reformulation are:

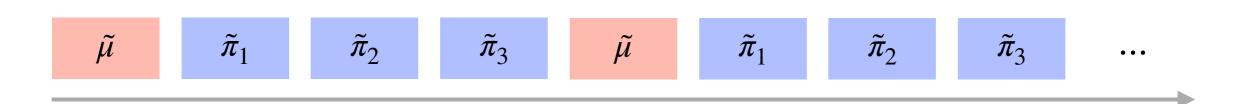
$$U^{\star}(s_0) = \max_{a} r(s, a) + \gamma \mathbb{E}\left[U^{\star}(s_1)\right]$$

How can we take advantage of this?
$$\bar{U}^{\star}(s_0) = \max_{(\mu, \pi)} \mathbb{E}\left[R(s_0, \mu(s_0), \pi) + \gamma^T \bar{U}^{\star}(s_T)\right]$$

Proposition. The optimal values are equal: $U^{\star}(s) = \overline{U}^{\star}(s)$. Therefore, we can use the hierarchical reformulation as a basis for our approximation.

4. Frozen-state approximation and its regret

Frozen-state approximation



What we hope for...

Implementation

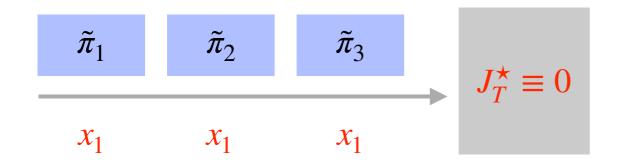
- 1. At t = 0, take a "upper-level" action (using $\tilde{\mu}$), i.e., an action that considers the γ^T timescale
- 2. At t = 1, observe slow state and pretend it is frozen until t = T and that t = T is the end of the horizon
- 3. Solve this *easier* lower-level finite horizon problem.
- 4. Execute this *T*-period lower-level policy $(\tilde{\pi}_1, \tilde{\pi}_2, ..., \tilde{\pi}_{T-1})$ in the real system

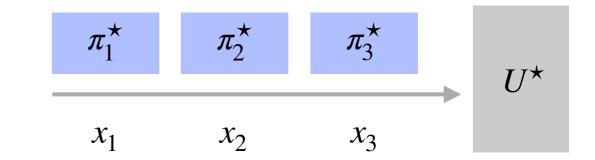
Computation

- **Pre-compute** finite-horizon lower-level policy with frozen slow states
- Re-use pre-computed lower-level policy to solve infinite-horizon upper-level problem, which takes advantage of γ^T

5. Repeat

Frozen-state, lower-level problem





Frozen-state lower-level MDP

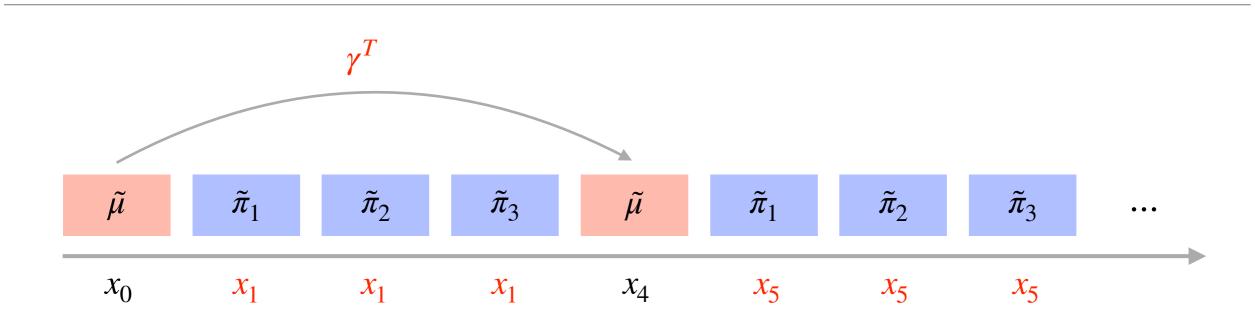
$$J_{1}^{\star}(x, y) = \max_{\tilde{\pi}} \mathbb{E}\left[\sum_{t=1}^{T-1} \gamma^{t-1} r(x_{1}, y_{t}, \tilde{\pi}_{t}) \middle| (x_{1}, y_{1}) = (x, y)\right]$$

$$J_{1}^{\star}(x, y) = \max_{a} r(x, y, a) + \gamma \mathbb{E}[J_{t+1}^{\star}(x, y')], \quad J_{T}^{\star} \equiv 0$$

$$\tilde{\pi}_{t}^{\star}(x, y) = \operatorname{argmax}_{a} r(x, y, a) + \gamma \mathbb{E}[J_{t+1}^{\star}(x, y')].$$
Independent across x

$$\cdot$$
 Independent from upper-level problem (replaced U^{\star} by 0)

Frozen-state, upper-level problem



Frozen-state upper-level MDP
Let
$$(\tilde{\pi}^{\star}, J_{1}^{\star})$$
 be the optimal policy/value of the lower-level problem.
 $\tilde{R}(s_{0}, a, J_{1}^{\star}) = r(s_{0}, a) + \gamma J_{1}^{\star} (f(s_{0}, a, w))$
 $V^{\star}(s_{0}, J_{1}^{\star}, \tilde{\pi}^{\star}) = \max_{a} \mathbb{E} [\tilde{R}(s_{0}, a, J_{1}^{\star}) + \gamma^{T} V^{\star}(s_{T}, J_{1}^{\star}, \tilde{\pi}^{\star})]$ [transitions according to $\tilde{\pi}^{\star}$]
After solving both levels, let $(\tilde{\mu}^{\star}, \tilde{\pi}^{\star})$ be the solution of the frozen-state approximation.
In the exact reformulation, we were maximizing over policies, now it is just a single action.

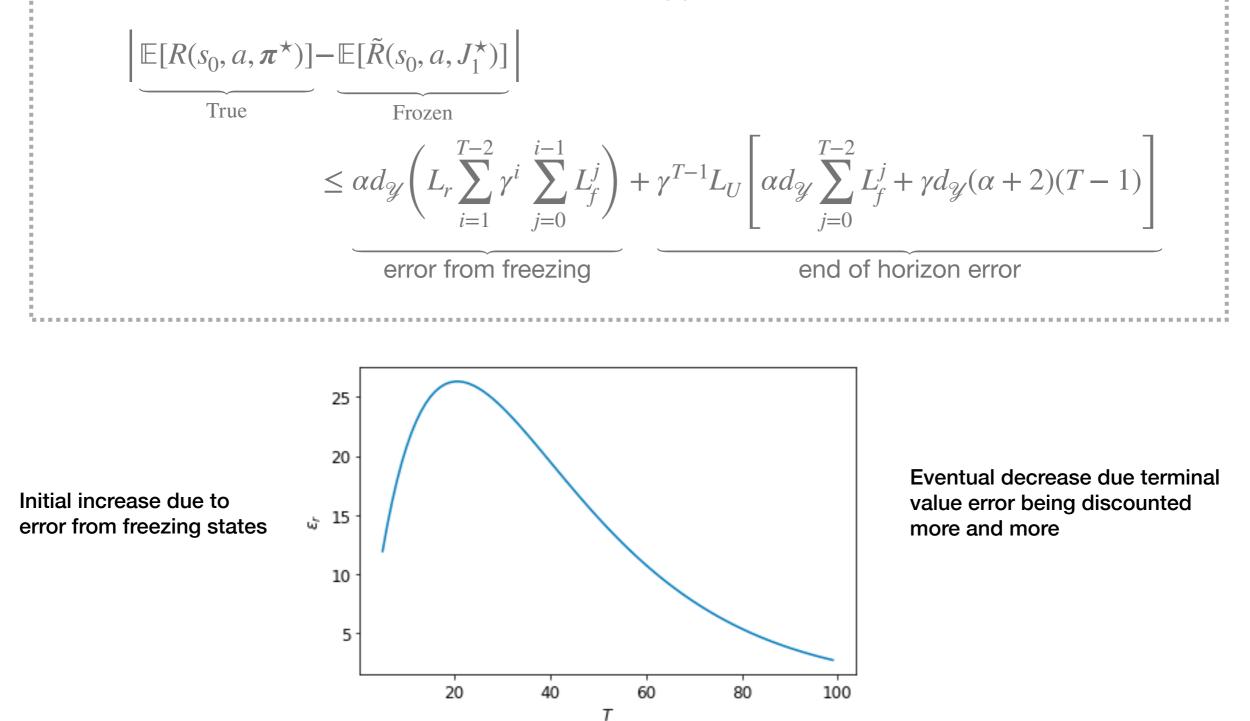
Per-cycle reward approximation error

Proposition. The difference between true and approximate T-horizon rewards:

$$\begin{split} \left| \underbrace{\mathbb{E}[R(s_{0}, a, \pi^{\star})]}_{\text{True}} - \underbrace{\mathbb{E}[\tilde{R}(s_{0}, a, J_{1}^{\star})]}_{\text{Frozen}} \right| \\ \leq \alpha d_{\mathscr{Y}} \left(L_{r} \sum_{i=1}^{T-2} \gamma^{i} \sum_{j=0}^{i-1} L_{f}^{j} \right) + \gamma^{T-1} L_{U} \left[\alpha d_{\mathscr{Y}} \sum_{j=0}^{T-2} L_{f}^{j} + \gamma d_{\mathscr{Y}}(\alpha + 2)(T-1) \right] \\ \underbrace{error \text{ from freezing}}_{\text{error from freezing}} \underbrace{end \text{ of horizon error}}_{\text{end of horizon error}} \end{split}$$

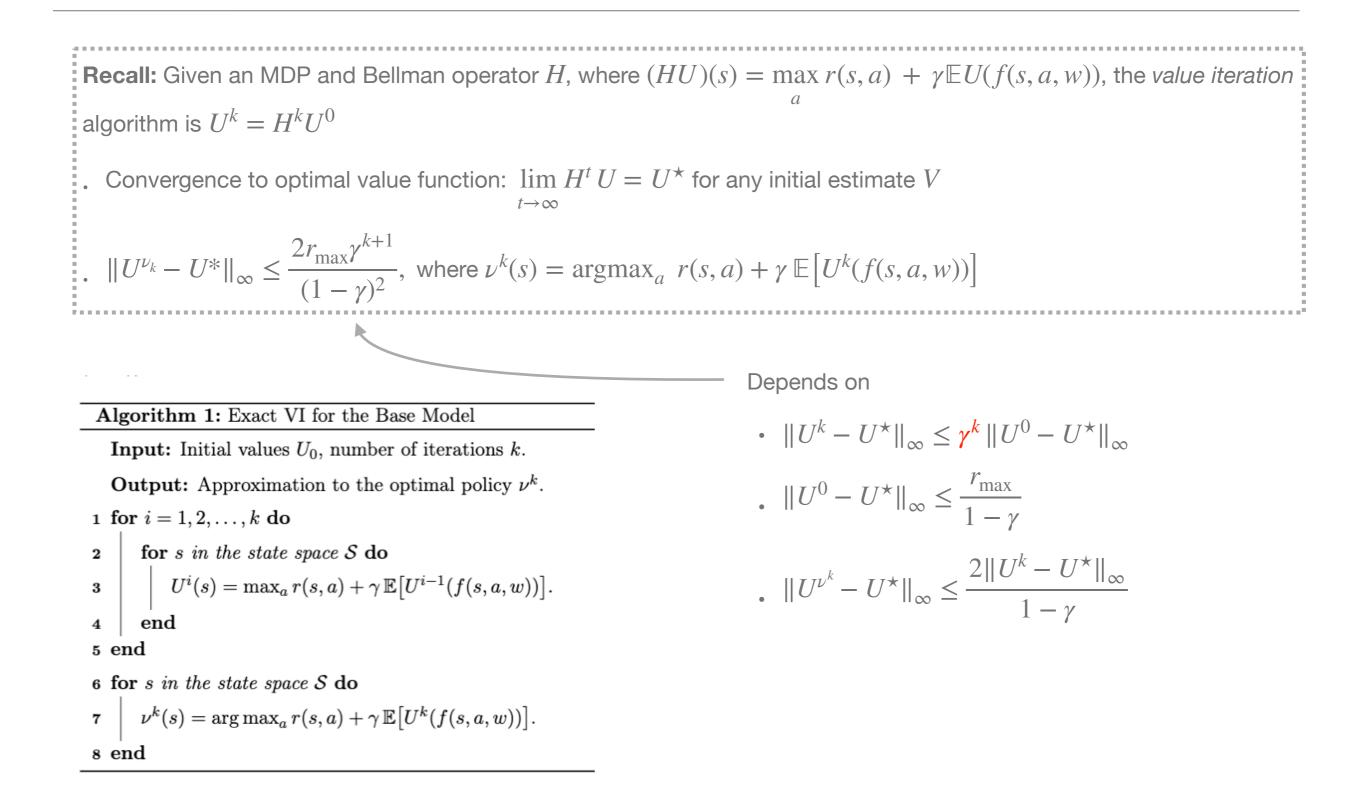
Per-cycle reward approximation error

Proposition. The difference between true and approximate T-horizon rewards:

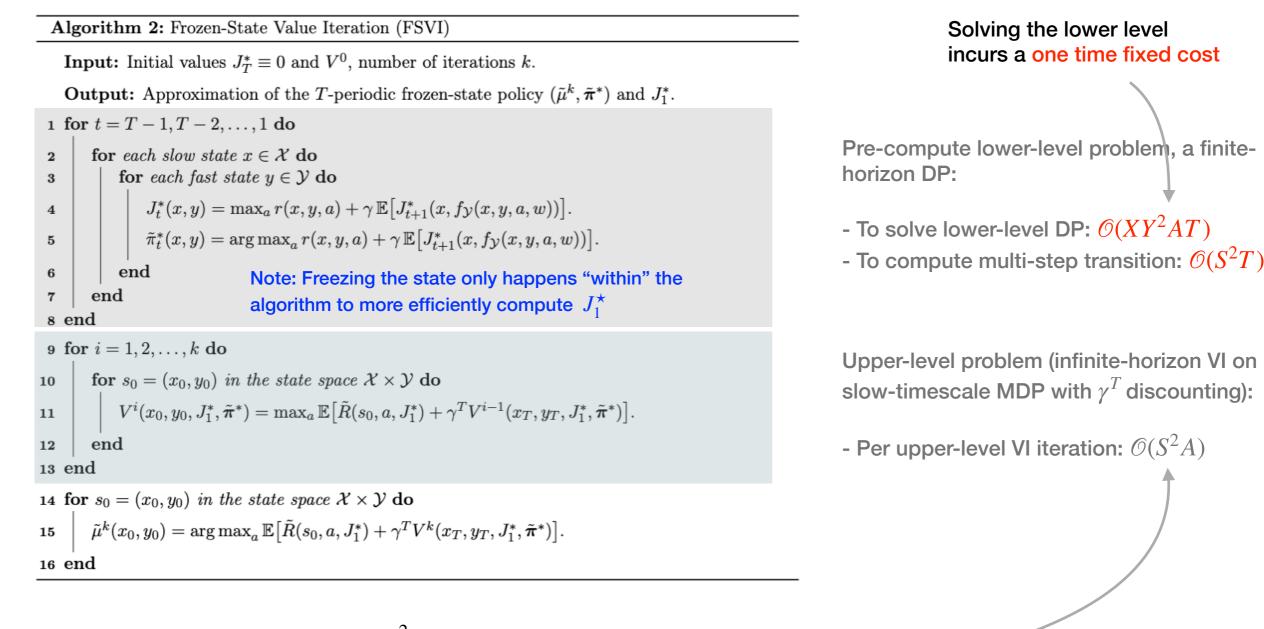


5. Frozen-state value iteration

Standard value iteration on the base model



Frozen-state value iteration (FSVI)



 $\mathcal{O}(S^2A)$ per iteration is the same as Base VI...but keep in mind that here the discount factor is γ^T instead of γ !

Regret of a periodic policy (μ, π)

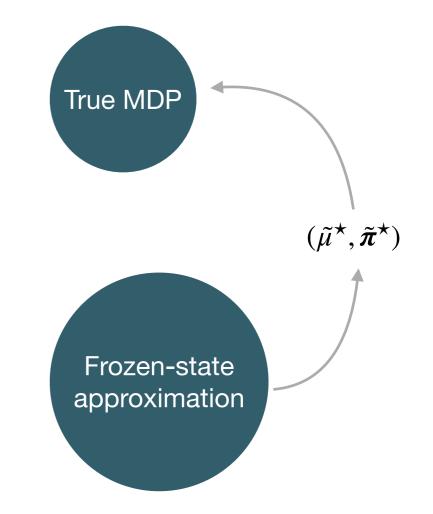
Definition. Suppose the optimal policy is ν^{\star} . The regret is

$$\mathscr{R}(s,\mu,\pi) = U^{\nu^{\star}}(s) - \bar{U}^{\mu}(s,\pi) = \bar{U}^{\star}(s) - \bar{U}^{\mu}(s,\pi) \text{ and } \mathscr{R}(\mu,\pi) = \max_{s} \mathscr{R}(s,\mu,\pi)$$

where we have used the equivalence between the base and hierarchical formulations.

Remarks:

- We always measure regret with respect to the true MDP.
 - Although (μ, π) is computed with the help of frozen states, it is evaluated in the original MDP with true dynamics.
- Consider $\mathscr{R}(\tilde{\mu}^{\star}, \tilde{\pi}^{\star})$, notice that $V^{\star}(J_1^{\star}, \tilde{\pi}^{\star})$ does not directly enter the regret definition.
 - It is the optimal value of the approximation, but doesn't reflect the performance of $(\tilde{\mu}^{\star}, \tilde{\pi}^{\star})$ in the true model.



Main idea behind regret analysis

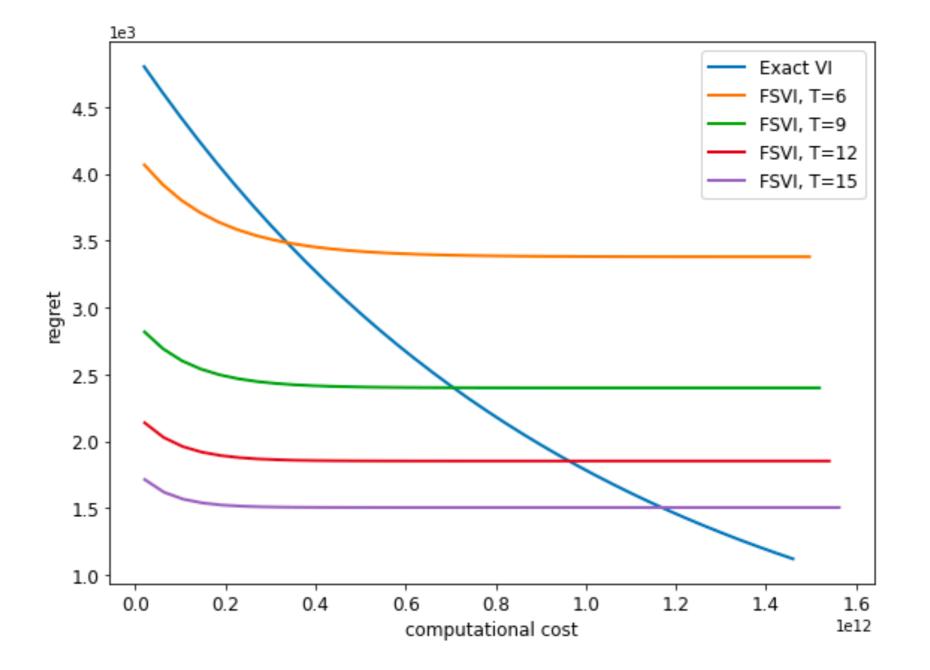
Lemma (Approximation to FSVI). Suppose we approximately solve the lower-level problem and obtain π, J_1 , instead of the optimal solutions π^*, U^* . Suppose we approximately solve the upper-level problem and obtain V instead of $V^{\star}(J_1, \pi)$, as we expected. • Let μ be greedy with respect to both J_1 and V: • $\mu(s_0) = \operatorname{argmax}_{a \in \mathscr{A}} \mathbb{E} \left[\tilde{R}(s_0, a, J_1) + \gamma^T V(s_T(a, \pi)) \right].$ **Reward error** • Then, $\mathscr{R}(\mu, \boldsymbol{\pi}) \leq \left(\frac{2\gamma^T}{(1 - \gamma^T)^2} + \frac{2}{1 - \gamma^T}\right) \boldsymbol{\epsilon}_r(\boldsymbol{\pi}^{\star}, \boldsymbol{J}_1)$ $+\left(\frac{2\gamma^{2T}}{(1-\gamma^{T})^{2}}+\frac{2\gamma^{T}}{1-\gamma^{T}}\right)L_{U}d(\alpha,d_{\mathcal{Y}},T)+\frac{2\gamma^{T}}{1-\gamma^{T}}\|V^{\star}(J_{1},\boldsymbol{\pi})-V\|_{\infty}.$ V-approximation error End of horizon error

Regret of FSVI

Theorem. The regret of FSVI after k upper-level iterations is:

$$\begin{aligned} \mathscr{R}(\mu, \boldsymbol{\pi}) &\leq \left(\frac{2\gamma^{T}}{(1-\gamma^{T})^{2}} + \frac{2}{1-\gamma^{T}}\right) \varepsilon_{r}(\boldsymbol{\pi}^{\star}, J_{1}) \\ &+ \left(\frac{2\gamma^{2T}}{(1-\gamma^{T})^{2}} + \frac{2\gamma^{T}}{1-\gamma^{T}}\right) L_{U} d(\alpha, d_{\mathscr{Y}}, T) + \frac{2r_{\max}\gamma^{(k+1)T}}{(1-\gamma)(1-\gamma^{T})}, \end{aligned}$$
which replaces the V-approximation error term with the VI error.

Comparison of FSVI versus Base VI sub-optimality



6. Nominal-state approximation for the lower level

Nominal state version of FSVI for nearly factored MDPs

- In FSVI, one still has to solve the lower-level MDP for each x.
- What if we solve it for a few slow states only?

$$\cdot \quad \mathcal{O}(S^2A) \to \mathcal{O}(XY^2A) \to \mathcal{O}(X_{\mathrm{nom}}Y^2A)$$

- Nominal FSVI:
 - Reward function *nearly* factored:
 - $g(x) + h(y, a) r(x, y, a) \le \zeta$
 - Solve lower level for a few nominal states:

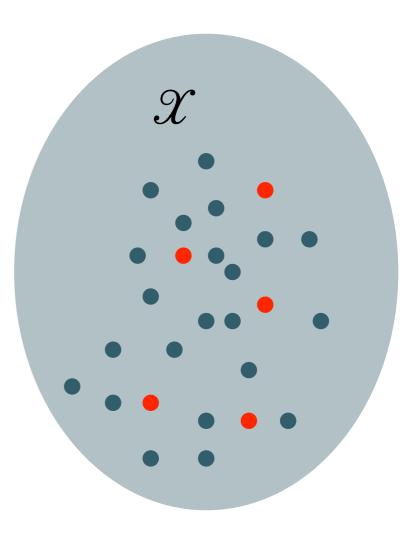
.
$$J_{t,\text{nom}}(x^*, y) = \max_{a} g(x^*) + h(y, a) + \gamma \mathbb{E}[J_{t+1,\text{nom}}(x^*, y')]$$

Extrapolate to nearby states:

$$J_{t,\text{nom}}(x,y) = \sum_{i=0}^{T-t-1} \gamma^i (g(x) - g(x^*)) + J_{t,\text{nom}}(x^*,y).$$

Theoretical analysis requires analyzing the new reward error:

$$\mathbb{E}\left[\tilde{R}(s_0, a, J_1^{\star})\right] - \mathbb{E}\left[\tilde{R}(s_0, a, J_{1,\text{nom}})\right]$$



7. Feature-based approximate value iteration

Scaling to larger state spaces using feature-based approximate value iteration

Architecture:

- Consider *M* pre-selected states $\tilde{S} = \{s_1, s_2, ..., s_M\}$.
- Consider an *M*-dimensional feature vector $\phi(s)$, where $\phi(s_m)$ are linearly independent.

Assume there exists $\gamma' \in [\gamma, 1)$ s.t. for any *s*, there exists $\theta_m(s)$, where

$$\sum_{m} \theta_{m}(s) \leq 1 \text{ and } \phi(s) = \frac{\gamma'}{\gamma} \sum_{m=1}^{M} \theta_{m}(s) \phi(s_{m}).$$

• Lower level: $\hat{J}(s, \boldsymbol{\omega}_t) = \boldsymbol{\phi}^{\mathsf{T}}(s)\boldsymbol{\omega}_t$.

Upper level:
$$\hat{V}(s, \boldsymbol{\beta}^k) = \boldsymbol{\phi}^{\mathsf{T}}(s) \boldsymbol{\beta}^k$$
.

Update procedure:

- 1. Compute Bellman update at pre-selected states only: $y(s_m)$.
- 2. Compute next parameter vector (ω_{t-1} or β^{k+1}) such that the updated value function evaluated at the pre-selected states is equal: e.g., $\hat{J}(s_m, \omega_{t-1}) = y(s_m)$.

Limited "expansion" after going to parameter space and back:

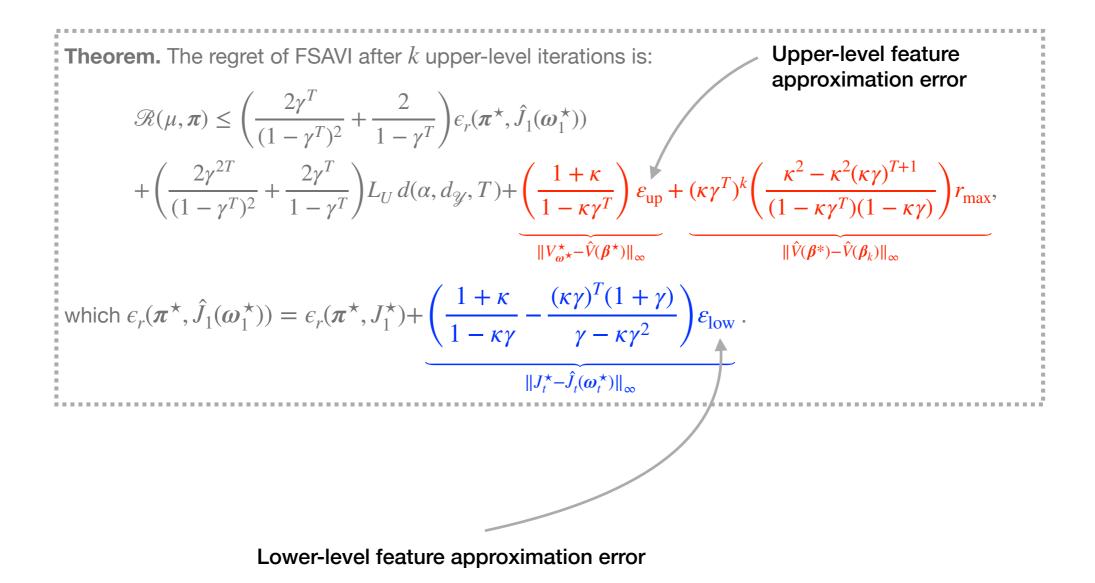
$$\|(\Phi\Phi^{\dagger})(J) - (\Phi\Phi^{\dagger})(J')\|_{\infty} \leq \kappa \|J - J'\|_{\infty} \quad (\kappa = \gamma'/\gamma)$$

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. *Machine Learning*, 1996.

Scaling to larger state spaces using feature-based approximate value iteration

Algorithm 4: Frozen-State Approximate Value Iteration (FSAVI)
Input: $\tilde{S} = \{s_1, s_2, \dots, s_M\}, \phi$, initial weights $\omega_T = \beta_0 = 0$, number of iterations k.
Output: Approximation of the <i>T</i> -periodic frozen-state policy $(\hat{\mu}_{(\beta^k, \omega^*)}, \hat{\pi}_{\omega^*})$ and $\hat{J}_1(\omega^*)$
1 for $t = T - 1, T - 2, \dots, 1$ do
2 for each pre-selected state $s = (x, y) \in \tilde{S}$ do
3 $J_t(x,y) = \max_a r(x,y,a) + \gamma \mathbb{E} \big[\hat{J}_{t+1}(x, f_{\mathcal{Y}}(x,y,a,w), \boldsymbol{\omega}_{t+1}) \big].$
4 end
5 Set remaining entries of J_t to zero. Update parameter vector: $\boldsymbol{\omega}_t^* = \Phi^{\dagger} J_t$.
6 end
7 Let $\hat{\pi}_{\omega^*}$ be greedy with respect to $\hat{J}_t(\omega_t^*) = \Phi \omega_t^*$, similar to (23).
8 for $i = 1, 2,, k$ do
9 for each pre-selected state $s_0 \in \tilde{S}$ do
10 $V^{i}(s_{0}) = \max_{a} \mathbb{E} \big[\tilde{R}(s, a, \hat{J}_{1}(\boldsymbol{\omega}_{1}^{*})) + \gamma^{T} \hat{V}(s_{T}(a, \tilde{\boldsymbol{\pi}}_{\text{avi}}), \boldsymbol{\beta}_{i-1}) \big].$
11 Set remaining entries of V^i to zero. Update parameter vector: $\beta_i = \Phi^{\dagger} V^i$.
12 end
13 end
14 for s_0 in the state space \mathcal{S} do
15 $\hat{\mu}_{(\boldsymbol{\beta}^{k},\boldsymbol{\omega}^{*})}(s_{0}) = \arg \max_{a} \mathbb{E} \big[\tilde{R}(s_{0},a,\hat{J}_{1}(\boldsymbol{\omega}_{1}^{*})) + \gamma^{T} \hat{V}(s_{T}(a,\tilde{\boldsymbol{\pi}}_{\boldsymbol{\omega}^{*}}),\boldsymbol{\beta}_{k}) \big].$
16 end

Regret of FSAVI

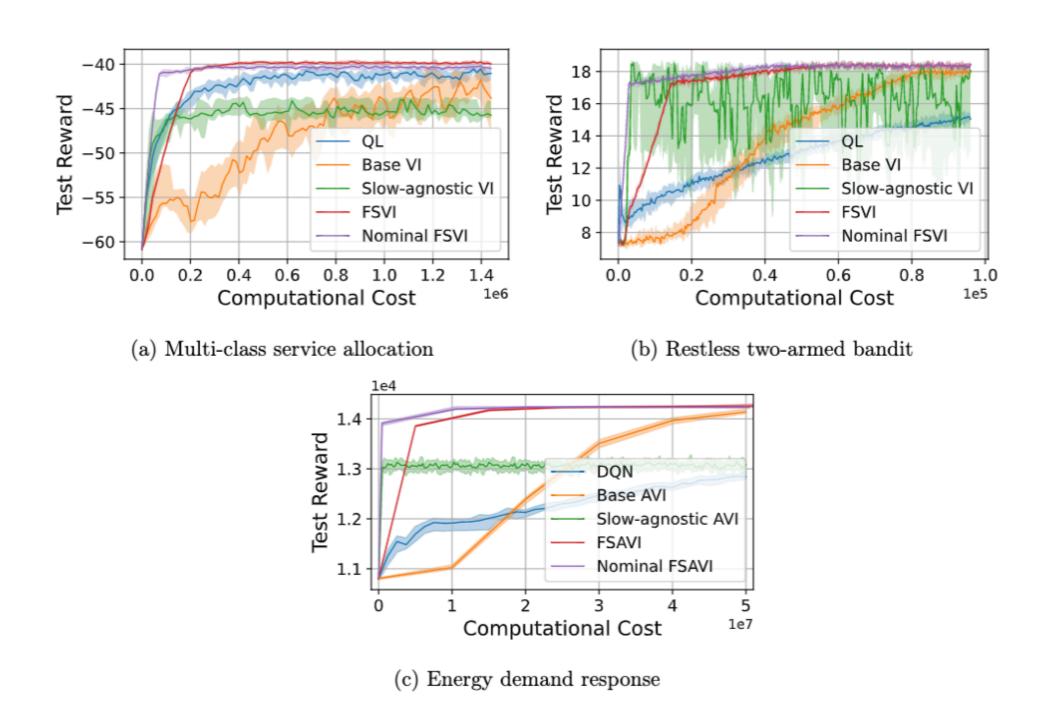


8. Numerical results

Baseline algorithms

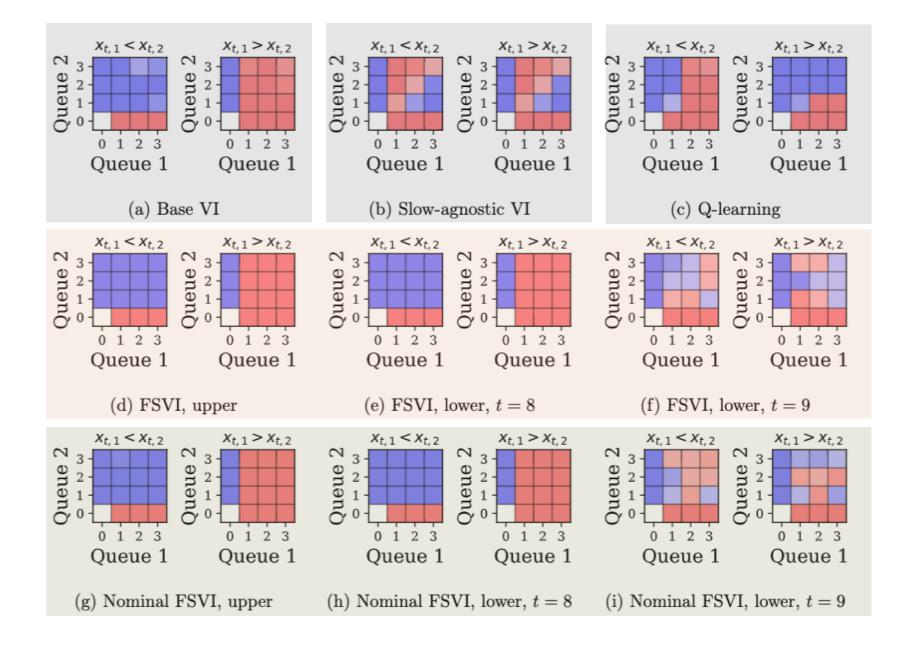
- Base model + VI / AVI
- Slow-agnostic VI / AVI
- Q-learning (QL)
- Deep Q-networks (DQN)
- Ours: FSVI / Nominal FSVI
- Ours: FSAVI / Nominal FSAVI

Overall performance comparison



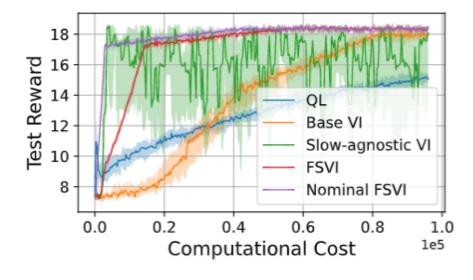
Service allocation in multi-class queues

- 2 queues, 1 server
- Stochastic holding cost (linear in queue length)
- Actions: serve 1 or serve 2
- Slow state: holding cost
- Fast state: queue lengths

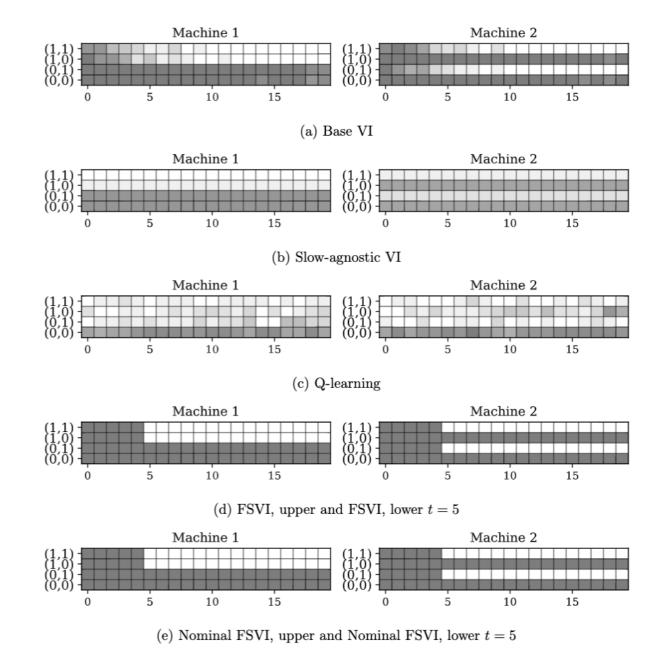


Restless bandits for machine maintenance

- 2 machines, either operating or not $(y_{t,i} \in \{0,1\})$
- Actions: maintain or not maintain ($a_{t,i} \in \{0,1\}$)
- State of machine *i* influenced by current state, whether it is maintained, and overall condition of the system *x_t*
- Slow state: system condition
- Fast state: operating status of each machine



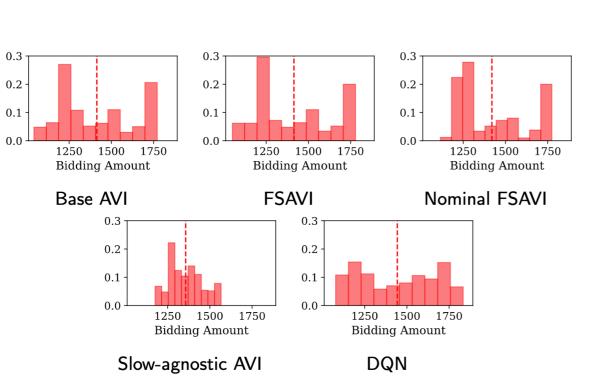
(b) Restless two-armed bandit

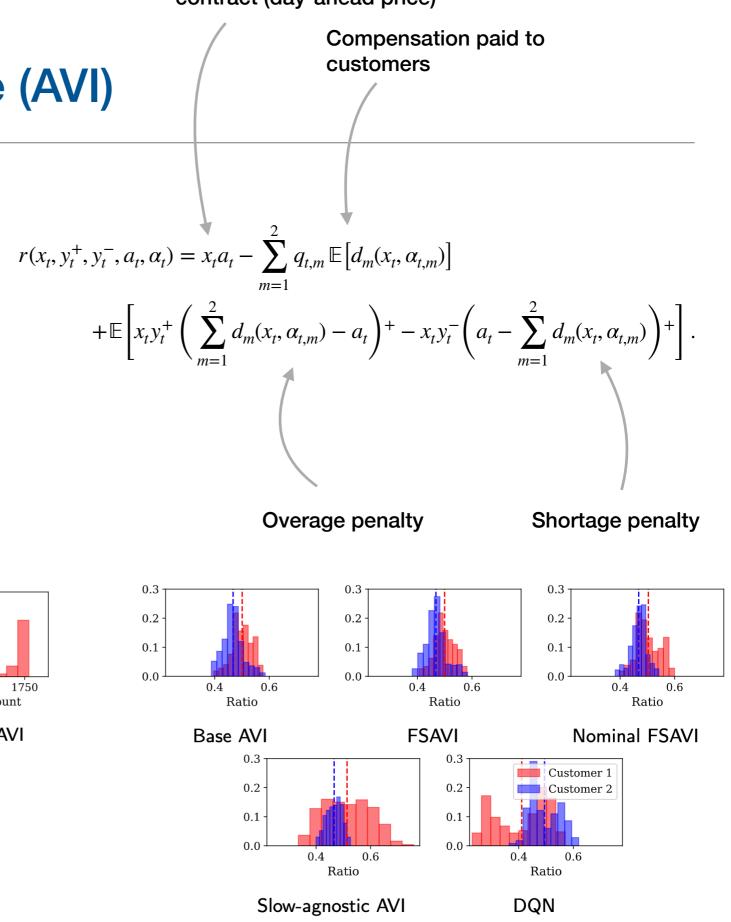


Payment from forward contract (day-ahead price)

Energy demand response (AVI)

- Energy aggregator bids a quantity a_t
- Also, sets a compensation $\alpha_t = (\alpha_{t,1}, \alpha_{t,2})$ for each of 2 large customers
- Slow state: day-ahead price x_t
- Fast state: real-time price y_t^-, y_t^+





Conclusion

Thank you!

Please feel free to email me at drjiang@pitt.edu for additional comments and discussion.