

Fast-slow MDPs: What they are and how to solve them

Daniel Jiang
joint work with Yijia Wang

University of Pittsburgh

Decision Sciences Seminar, April 13, 2022

Fuqua School of Business, Duke University

1. Motivation via three example applications

Demand response provider

• Energy demand response is the practice of paying
energy consumers to reduce usage at certain times

• An energy aggregator / demand response provider

• Bids an amount of demand reduction into the
market, given day-ahead price

• Offers a compensation to residential customers to
reduce consumption

• Potentially penalized by (the more volatile) real-
time price if shortage between promised and
realized demand reduction

• Profit = revenue from market - compensation

K. Khezeli, W. Lin, E. Bitar. Learning to buy (and sell) demand response. Proceedings of the International Federation of
Automatic Control (IFAC) World Congress, 2017.

(Energy/carbon-aware) job scheduling in data centers

• Dynamic service allocation with multi-class queues

• Multiple queues of different job types (e.g., training
different models) to be served by a single node

• At each period, choose one type of job to serve

• Cost = the holding costs endured by the jobs

• Energy/carbon-aware: Holding costs depend on:

• Electricity prices, generation sources, etc. and
might vary slowly throughout the day

P. Ansell, K. D. Glazebrook, J. Nino-Mora, and M. O’Keeffe. Whittle’s index policy for a multi-class queueing system with convex
holding costs. Mathematical Methods of Operations Research, 2003.

D. B. Brown and M. B. Haugh. Information relaxation bounds for infinite horizon MDPs. Operations Research, 2017.

https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows/

D. Lee and M. Vojnovic. Scheduling jobs with stochastic holding costs. NeurIPS, 2021.

Restless multi-armed bandit with environmental states

• A decision-maker faces:

• A set of “arms,” each associated with an evolving

internal state

• Global environmental states that affect the

dynamics of each arm

• Which arms to intervene (at a cost) in each period?

• Applications:

• Machine maintenance (environmental factors affect
the likelihood of each machine failing)

• Public health intervention decisions

• Dynamic assortment planning

• Preventative healthcare (limited screening resources

for a set of patients)

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 1973.

B. Bhattacharya. Restless bandits visiting villages: A preliminary study on distributing public health services. In Proceedings of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies, 2018.

D. B. Brown and J. E. Smith. Index policies and performance bounds for dynamic selection problems. Management Science, 2020.

E. Lee, M. S. Lavieri, and M. Volk. Optimal screening for hepatocellular carcinoma: A restless bandit model. Manufacturing & Service Operations Management, 2019.

What do they have in common?

Time

Fast states

Slow states

Slow states from examples:

• Day-ahead prices

• Holding cost of queue

• Environmental factors

Longer timescales

Fast states from examples:

• Real-time prices

• Queue lengths

• Machine statuses

Shorter timescales

Current practice

• Additional state variables in a DP is expensive:

• Each iteration of value iteration

• What do practitioners do (anecdotally)?

• From the beginning, ignore/omit slow states (contexts,
environmental variables, etc) in the modeling

• e.g. assume costs are deterministic, demand is
stationary, weather doesn’t change

• This work: a compromise between computational tractability
and fully ignoring the slow state

• We propose: an approach that periodically ignores slow
states

• We give evidence and argue that completely omitting slow
states from the decision model is often not a viable heuristic

𝒪(S2A)

Outline

• Fast-slow MDP

• Propose the concept of an MDP where some states move fast and others
relatively slowly

• Frozen-state approximation (another MDP)

• What if we “freeze” the slow state for a few periods at a time?

• Algorithms

• Frozen-state value iteration / approximate value iteration

• Regret analysis

• Numerical experiments on motivating examples

2. Fast-slow Markov decision processes

Fast-slow Markov decision processes
• A -discounted, infinite horizon MDP:

• States

• Actions

• Rewards

• Transition function

• ,

γ

s ∈ 𝒮

a ∈ 𝒜

r(s, a) ∈ [0, rmax]

st+1 = f(st, at, wt+1) wt+1 ∈ 𝒲

• Fast-slow MDP:

• States

• Actions

• Rewards

• Transition function

•

•

s = (x, y) ∈ 𝒮 = (𝒳 × 𝒴)

a ∈ 𝒜

r(s, a) ∈ [0, rmax]

xt+1 = f𝒳(st, at, wt+1)

yt+1 = f𝒴(st, at, wt+1)

Slow Fast

Main assumption (“fast-slow property”):

Lipschitz assumptions (let be the optimal value function):

∥y − f𝒴(x, y, a, w)∥2 ≤ d𝒴 and ∥x − f𝒳(x, w)∥2 ≤ αd𝒴 .

U⋆(s)

|r(s, a) − r(s′￼, a′￼) | ≤ Lr ∥(s, a) − (s′￼, a′￼)∥2,

∥f(s, a, w) − f(s′￼, a′￼, w)∥2 ≤ Lf ∥(s, a) − (s′￼, a′￼)∥2,

∥U⋆(s) − U⋆(s′￼)∥2 ≤ LU∥s − s′￼∥2. Can be removed, included for clarity

3. Hierarchical reformulation

Hierarchical reformulation (of any MDP)

• A hierarchical reformulation is at the basis of our proposed approach

• Consider an MDP

• Let be a stationary policy

• The value function is

• The policy can be thought of as :

⟨𝒮, 𝒜, 𝒲, f, r, γ⟩

ν : 𝒮 → 𝒜

Uν(s) = 𝔼[
∞

∑
t=0

γtr(st, ν) s0 = s] = r(s, ν) + γ 𝔼[Uν(s′￼)]

(ν, ν, …)

ν ν ν ν ν ν ν ⋯ν

Hierarchical reformulation (of any MDP)

ν ν ν ν ν ν ν ⋯ν

π1 π2 π3 ⋯μ π1 π2 π3μ

-periodic policy (illustration has)T T = 4

• Given a -periodic policy , -horizon reward is
T (μ, π) = (μ, π1, …, πT−1) T

R(s0, μ(s0), π) = r(s0, μ) +
T−1

∑
t=1

γt r(st, πt)

R(s0, μ(s0), π) R(s4, μ(s4), π)

Hierarchical reformulation (of any MDP)

ν ν ν ν ν ν ν ⋯ν

• Bellman equations of the base model and its hierarchical reformulation are:

U⋆(s0) = max
a

r(s, a) + γ 𝔼[U⋆(s1)]
Ū⋆(s0) = max

(μ,π)
𝔼[R(s0, μ(s0), π) + γT Ū⋆(sT)]

π1 π2 π3 ⋯μ π1 π2 π3μ

-periodic policy (illustration has)T T = 4

Proposition. The optimal values are equal: . Therefore, we
can use the hierarchical reformulation as a basis for our approximation.

U⋆(s) = Ū⋆(s)

How can we take
advantage of this?

4. Frozen-state approximation and its regret

Frozen-state approximation

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Implementation

1. At , take a “upper-level” action (using),
i.e., an action that considers the timescale

2. At , observe slow state and pretend it is
frozen until and that is the end of
the horizon

3. Solve this easier lower-level finite horizon
problem.

4. Execute this -period lower-level policy
() in the real system

5. Repeat

t = 0 μ̃
γT

t = 1
t = T t = T

T
π̃1, π̃2, …, π̃T−1

What we hope for…

Computation

• Pre-compute finite-horizon lower-level
policy with frozen slow states

• Re-use pre-computed lower-level policy to
solve infinite-horizon upper-level problem,
which takes advantage of γT

Frozen-state, lower-level problem

π̃1 π̃2 π̃3

x1 x1 x1

Frozen-state lower-level MDP

J⋆
1 (x, y) = max

π̃
𝔼 [

T−1

∑
t=1

γt−1 r(x1, yt, π̃t) (x1, y1) = (x, y)]
J⋆

t (x, y) = max
a

r(x, y, a) + γ 𝔼[J⋆
t+1(x, y′￼)], J⋆

T ≡ 0

π̃⋆
t (x, y) = argmaxa r(x, y, a) + γ 𝔼[J⋆

t+1(x, y′￼)] .

J⋆
T ≡ 0

π⋆
1 π⋆

2 π⋆
3

x1 x2 x3

U⋆

Computational benefits

• Small number of successor states (since
slow state is frozen)

•

• Independent across

• Independent from upper-level problem
(replaced by 0)

𝒪(S2A) → 𝒪(XY2A)

x

U⋆

Frozen-state, upper-level problem

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Frozen-state upper-level MDP

Let be the optimal policy/value of the lower-level problem.

 [transitions according to]

(π̃⋆, J⋆
1)

R̃(s0, a, J⋆
1) = r(s0, a) + γ J⋆

1 (f(s0, a, w))
V⋆(s0, J⋆

1 , π̃⋆) = max
a

𝔼[R̃(s0, a, J⋆
1)+γTV⋆(sT, J⋆

1 , π̃⋆)] π̃⋆

After solving both levels, let be the solution of the frozen-state approximation.(μ̃⋆, π̃⋆)

x1 x1 x1x0 x4 x5 x5 x5

γT

In the exact reformulation, we were maximizing
over policies, now it is just a single action.

Per-cycle reward approximation error

Proposition. The difference between true and approximate -horizon rewards: T

𝔼[R(s0, a, π⋆)]

True

−𝔼[R̃(s0, a, J⋆
1)]

Frozen

≤ αd𝒴(Lr

T−2

∑
i=1

γi
i−1

∑
j=0

Lj
f)

error from freezing

+ γT−1LU[αd𝒴

T−2

∑
j=0

Lj
f + γd𝒴(α + 2)(T − 1)]

end of horizon error

Main ideas.

1.

where [true Bellman operator]

2.

where [frozen Bellman operator]

𝔼[R(x0, y0, a, π*)] = 𝔼[r(x0, y0, a) + γ (HT−1U⋆)(x1, y1) − γT U⋆(xT, yT)]
(HU)(x, y) = max

a
r(x, y, a) + γ 𝔼[f(s, a, w))]

𝔼[R̃(x0, y0, a, J⋆
1)] = r(x0, y0, a) + γ(H̃T−1 0)(x1, y1)

(H̃Jt+1)(x, y) = max
a

r(x, y, a) + γ 𝔼[Jt+1(x, f𝒴(x, y, a, w))]

Per-cycle reward approximation error

Initial increase due to
error from freezing states

Eventual decrease due terminal
value error being discounted
more and more

Proposition. The difference between true and approximate -horizon rewards: T

𝔼[R(s0, a, π⋆)]

True

−𝔼[R̃(s0, a, J⋆
1)]

Frozen

≤ αd𝒴(Lr

T−2

∑
i=1

γi
i−1

∑
j=0

Lj
f)

error from freezing

+ γT−1LU[αd𝒴

T−2

∑
j=0

Lj
f + γd𝒴(α + 2)(T − 1)]

end of horizon error

5. Frozen-state value iteration

Standard value iteration on the base model

Recall: Given an MDP and Bellman operator , where , the value iteration

algorithm is

• Convergence to optimal value function: for any initial estimate

• where

H (HU)(s) = max
a

r(s, a) + γ𝔼U(f (s, a, w))

Uk = HkU0

lim
t→∞

Ht U = U⋆ V

∥Uνk − U*∥∞ ≤
2rmaxγk+1

(1 − γ)2
, νk(s) = argmaxa r(s, a) + γ 𝔼[Uk(f (s, a, w))]

Depends on

•

•

•

∥Uk − U⋆∥∞ ≤ γk ∥U0 − U⋆∥∞

∥U0 − U⋆∥∞ ≤
rmax

1 − γ

∥Uνk − U⋆∥∞ ≤
2∥Uk − U⋆∥∞

1 − γ

Frozen-state value iteration (FSVI)

Pre-compute lower-level problem, a finite-
horizon DP:

- To solve lower-level DP:
- To compute multi-step transition:

𝒪(XY2AT)
𝒪(S2T)

Upper-level problem (infinite-horizon VI on
slow-timescale MDP with discounting):

- Per upper-level VI iteration:

γT

𝒪(S2A)

 per iteration is the same as Base VI...but keep in
mind that here the discount factor is instead of !
𝒪(S2A)

γT γ

Solving the lower level
incurs a one time fixed cost

Note: Freezing the state only happens “within” the
algorithm to more efficiently compute J⋆

1

Regret of a periodic policy (μ, π)

Definition. Suppose the optimal policy is . The regret is

,

where we have used the equivalence between the base and hierarchical formulations.

ν⋆

ℛ(s, μ, π) = Uν⋆(s) − Ūμ(s, π) = Ū⋆(s) − Ūμ(s, π) and ℛ(μ, π) = max
s

ℛ(s, μ, π)

Remarks:

• We always measure regret with respect to the true MDP.

• Although is computed with the help of frozen states,
it is evaluated in the original MDP with true dynamics.

• Consider , notice that does not directly
enter the regret definition.

• It is the optimal value of the approximation, but doesn’t
reflect the performance of in the true model.

(μ, π)

ℛ(μ̃⋆, π̃⋆) V⋆(J⋆
1 , π̃⋆)

(μ̃⋆, π̃⋆)

True MDP

Frozen-state
approximation

(μ̃⋆, π̃⋆)

Main idea behind regret analysis

Lemma (Approximation to FSVI).

• Suppose we approximately solve the lower-level problem and obtain , instead of the optimal
solutions .

• Suppose we approximately solve the upper-level problem and obtain instead of , as
we expected.

• Let be greedy with respect to both and :

• .

• Then,

π, J1
π⋆, U⋆

V V⋆(J1, π)

μ J1 V

μ(s0) = argmaxa∈𝒜 𝔼[R̃(s0, a, J1) + γTV(sT(a, π))]

ℛ(μ, π) ≤ (2γT

(1 − γT)2
+

2
1 − γT)ϵr(π⋆, J1)

+(2γ2T

(1 − γT)2
+

2γT

1 − γT)LU d(α, d𝒴, T) +
2γT

1 − γT
∥V⋆(J1, π) − V∥∞.

Reward error

End of horizon error V-approximation error

Regret of FSVI

Theorem. The regret of FSVI after upper-level iterations is:

which replaces the V-approximation error term with the VI error.

k

ℛ(μ, π) ≤ (2γT

(1 − γT)2
+

2
1 − γT)ϵr(π⋆, J1)

+(2γ2T

(1 − γT)2
+

2γT

1 − γT)LU d(α, d𝒴, T)+
2rmaxγ(k+1)T

(1 − γ)(1 − γT)
,

Comparison of FSVI versus Base VI sub-optimality

6. Nominal-state approximation for the lower level

Nominal state version of FSVI for nearly factored MDPs

• In FSVI, one still has to solve the lower-level MDP for each .

• What if we solve it for a few slow states only?

•

• Nominal FSVI:

• Reward function nearly factored:

•

• Solve lower level for a few nominal states:

•

• Extrapolate to nearby states:

•

• Theoretical analysis requires analyzing the new reward error:

•

x

𝒪(S2A) → 𝒪(XY2A) → 𝒪(XnomY2A)

|g(x) + h(y, a) − r(x, y, a) | ≤ ζ

Jt,nom(x⋆, y) = max
a

g(x⋆) + h(y, a) + γ 𝔼[Jt+1,nom(x⋆, y′￼)]

Jt,nom(x, y) =
T−t−1

∑
i=0

γi(g(x) − g(x⋆)) + Jt,nom(x⋆, y) .

𝔼[R̃(s0, a, J⋆
1)] − 𝔼[R̃(s0, a, J1,nom]

𝒳

7. Feature-based approximate value iteration

Scaling to larger state spaces using feature-based
approximate value iteration

Architecture:

• Consider pre-selected states .

• Consider an -dimensional feature vector , where are
linearly independent.

• Assume there exists s.t. for any , there exists , where

• and .

• Lower level: .

• Upper level:

• Update procedure:

1. Compute Bellman update at pre-selected states only: .

2. Compute next parameter vector (or) such that the
updated value function evaluated at the pre-selected states
is equal: e.g., .

M 𝒮̃ = {s1, s2, …, sM}

M ϕ(s) ϕ(sm)

γ′￼∈ [γ,1) s θm(s)

∑
m

|θm(s) | ≤ 1 ϕ(s) =
γ′￼

γ

M

∑
m=1

θm(s) ϕ(sm)

̂J(s, ωt) = ϕ⊺(s)ωt

̂V(s, βk) = ϕ⊺(s) βk .

y(sm)

ωt−1 βk+1

̂J(sm, ωt−1) = y(sm)

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 1996.

∥(ΦΦ†)(J) − (ΦΦ†)(J′￼)∥∞ ≤ κ ∥J − J′￼∥∞ (κ = γ′￼/γ)

Limited “expansion” after going to parameter space
and back:

Scaling to larger state spaces using feature-based
approximate value iteration

Regret of FSAVI

Theorem. The regret of FSAVI after upper-level iterations is:

which .

k

ℛ(μ, π) ≤ (2γT

(1 − γT)2
+

2
1 − γT)ϵr(π⋆, ̂J1(ω⋆

1))

+(2γ2T

(1 − γT)2
+

2γT

1 − γT)LU d(α, d𝒴, T)+(1 + κ
1 − κγT) εup

∥V ⋆
ω⋆− ̂V(β⋆)∥∞

+ (κγT)k(κ2 − κ2(κγ)T+1

(1 − κγT)(1 − κγ))rmax

∥ ̂V(β*)− ̂V(βk)∥∞

,

ϵr(π⋆, ̂J1(ω⋆
1)) = ϵr(π⋆, J⋆

1)+(1 + κ
1 − κγ

−
(κγ)T(1 + γ)

γ − κγ2)εlow

∥J⋆
t − ̂Jt(ω⋆

t)∥∞

Upper-level feature
approximation error

Lower-level feature approximation error

8. Numerical results

Baseline algorithms

• Base model + VI / AVI

• Slow-agnostic VI / AVI

• Q-learning (QL)

• Deep Q-networks (DQN)

• Ours: FSVI / Nominal FSVI

• Ours: FSAVI / Nominal FSAVI

Overall performance comparison

Service allocation in multi-class queues

• 2 queues, 1 server

• Stochastic holding cost (linear in queue length)

• Actions: serve 1 or serve 2

• Slow state: holding cost

• Fast state: queue lengths

Restless bandits for machine maintenance

• 2 machines, either operating or not ()

• Actions: maintain or not maintain ()

• State of machine influenced by current state,
whether it is maintained, and overall condition of
the system

• Slow state: system condition

• Fast state: operating status of each machine

yt,i ∈ {0,1}

at,i ∈ {0,1}

i

xt

Energy demand response (AVI)

• Energy aggregator bids a quantity

• Also, sets a compensation
for each of 2 large customers

• Slow state: day-ahead price

• Fast state: real-time price

at

αt = (αt,1, αt,2)

xt

y−
t , y+

t

r(xt, y+
t , y−

t , at, αt) = xtat −
2

∑
m=1

qt,m 𝔼[dm(xt, αt,m)]

+𝔼[xty+
t (

2

∑
m=1

dm(xt, αt,m) − at)+ − xty−
t (at −

2

∑
m=1

dm(xt, αt,m))+] .

Shortage penaltyOverage penalty

Compensation paid to
customers

Payment from forward
contract (day-ahead price)

Conclusion

Thank you!

Please feel free to email me at drjiang@pitt.edu for additional comments and discussion.

mailto:drjiang@pitt.edu

