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1. Motivation via three example applications



Demand response provider

• Energy demand response is the practice of paying 
energy consumers to reduce usage at certain times


• An energy aggregator / demand response provider


• Bids an amount of demand reduction into the 
market, given day-ahead price


• Offers a compensation to residential customers to 
reduce consumption


• Potentially penalized by (the more volatile) real-
time price if shortage between promised and 
realized demand reduction


• Profit = revenue from market - compensation

K. Khezeli, W. Lin, E. Bitar. Learning to buy (and sell) demand response. Proceedings of the International Federation of 
Automatic Control (IFAC) World Congress, 2017.



(Energy/carbon-aware) job scheduling in data centers

• Dynamic service allocation with multi-class queues


• Multiple queues of different job types (e.g., training 
different models) to be served by a single node


• At each period, choose one type of job to serve


• Cost = the holding costs endured by the jobs


• Energy/carbon-aware: Holding costs depend on:


• Electricity prices, generation sources, etc. and 
might vary slowly throughout the day

P. Ansell, K. D. Glazebrook, J. Nino-Mora, and M. O’Keeffe. Whittle’s index policy for a multi-class queueing system with convex 
holding costs. Mathematical Methods of Operations Research, 2003.

D. B. Brown and M. B. Haugh. Information relaxation bounds for infinite horizon MDPs. Operations Research, 2017.

https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows/

D. Lee and M. Vojnovic. Scheduling jobs with stochastic holding costs. NeurIPS, 2021.



Restless multi-armed bandit with environmental states

• A decision-maker faces:

• A set of “arms,” each associated with an evolving 

internal state

• Global environmental states that affect the 

dynamics of each arm

• Which arms to intervene (at a cost) in each period?

• Applications:


• Machine maintenance (environmental factors affect 
the likelihood of each machine failing)


• Public health intervention decisions

• Dynamic assortment planning

• Preventative healthcare (limited screening resources 

for a set of patients)

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 1973.


B. Bhattacharya. Restless bandits visiting villages: A preliminary study on distributing public health services. In Proceedings of the 1st ACM SIGCAS Conference on 
Computing and Sustainable Societies, 2018.


D. B. Brown and J. E. Smith. Index policies and performance bounds for dynamic selection problems. Management Science, 2020.


E. Lee, M. S. Lavieri, and M. Volk. Optimal screening for hepatocellular carcinoma: A restless bandit model. Manufacturing & Service Operations Management, 2019.



What do they have in common?

Time

Fast states

Slow states

Slow states from examples:


• Day-ahead prices


• Holding cost of queue


• Environmental factors


Longer timescales

Fast states from examples:


• Real-time prices


• Queue lengths


• Machine statuses


Shorter timescales



Current practice

• Additional state variables in a DP is expensive:


• Each iteration of value iteration 


• What do practitioners do (anecdotally)?  

• From the beginning, ignore/omit slow states (contexts, 
environmental variables, etc) in the modeling


• e.g. assume costs are deterministic, demand is 
stationary, weather doesn’t change


• This work: a compromise between computational tractability 
and fully ignoring the slow state


• We propose: an approach that periodically ignores slow 
states


• We give evidence and argue that completely omitting slow 
states from the decision model is often not a viable heuristic

𝒪(S2A)



Outline

• Fast-slow MDP 

• Propose the concept of an MDP where some states move fast and others 
relatively slowly


• Frozen-state approximation (another MDP) 

• What if we “freeze” the slow state for a few periods at a time?


• Algorithms 

• Frozen-state value iteration / approximate value iteration


• Regret analysis


• Numerical experiments on motivating examples



2. Fast-slow Markov decision processes



Fast-slow Markov decision processes
• A -discounted, infinite horizon MDP:


• States 


• Actions 


• Rewards 

• Transition function


•  , 

γ

s ∈ 𝒮

a ∈ 𝒜

r(s, a) ∈ [0, rmax]

st+1 = f(st, at, wt+1) wt+1 ∈ 𝒲

• Fast-slow MDP:


• States 


• Actions 


• Rewards 


• Transition function


• 


•

s = (x, y) ∈ 𝒮 = (𝒳 × 𝒴)

a ∈ 𝒜

r(s, a) ∈ [0, rmax]

xt+1 = f𝒳(st, at, wt+1)

yt+1 = f𝒴(st, at, wt+1)

Slow Fast

Main assumption (“fast-slow property”): 

 

Lipschitz assumptions (let  be the optimal value function): 

 

 

∥y − f𝒴(x, y, a, w)∥2 ≤ d𝒴 and ∥x − f𝒳(x, w)∥2 ≤ αd𝒴 .

U⋆(s)

|r(s, a) − r(s′ , a′ ) | ≤ Lr ∥(s, a) − (s′ , a′ )∥2,

∥f(s, a, w) − f(s′ , a′ , w)∥2 ≤ Lf ∥(s, a) − (s′ , a′ )∥2,

∥U⋆(s) − U⋆(s′ )∥2 ≤ LU∥s − s′ ∥2. Can be removed, included for clarity



3. Hierarchical reformulation



Hierarchical reformulation (of any MDP)

• A hierarchical reformulation is at the basis of our proposed approach


• Consider an MDP 


• Let  be a stationary policy


• The value function is





• The policy can be thought of as :

⟨𝒮, 𝒜, 𝒲, f, r, γ⟩

ν : 𝒮 → 𝒜

Uν(s) = 𝔼[
∞

∑
t=0

γtr(st, ν) s0 = s] = r(s, ν) + γ 𝔼[Uν(s′ )]

(ν, ν, …)

ν ν ν ν ν ν ν ⋯ν



Hierarchical reformulation (of any MDP)

ν ν ν ν ν ν ν ⋯ν

π1 π2 π3 ⋯μ π1 π2 π3μ

-periodic policy (illustration has )T T = 4

• Given a -periodic policy , -horizon reward is
T (μ, π) = (μ, π1, …, πT−1) T

R(s0, μ(s0), π) = r(s0, μ) +
T−1

∑
t=1

γt r(st, πt)

R(s0, μ(s0), π) R(s4, μ(s4), π)



Hierarchical reformulation (of any MDP)

ν ν ν ν ν ν ν ⋯ν

• Bellman equations of the base model and its hierarchical reformulation are:



U⋆(s0) = max
a

r(s, a) + γ 𝔼[U⋆(s1)]
Ū⋆(s0) = max

(μ,π)
𝔼[R(s0, μ(s0), π) + γT Ū⋆(sT)]

π1 π2 π3 ⋯μ π1 π2 π3μ

-periodic policy (illustration has )T T = 4

Proposition. The optimal values are equal: . Therefore, we 
can use the hierarchical reformulation as a basis for our approximation.

U⋆(s) = Ū⋆(s)

How can we take 
advantage of this?



4. Frozen-state approximation and its regret



Frozen-state approximation

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Implementation 

1. At , take a “upper-level” action (using ), 
i.e., an action that considers the  timescale


2. At , observe slow state and pretend it is 
frozen until  and that  is the end of 
the horizon


3. Solve this easier lower-level finite horizon 
problem.


4. Execute this -period lower-level policy 
( ) in the real system


5. Repeat

t = 0 μ̃
γT

t = 1
t = T t = T

T
π̃1, π̃2, …, π̃T−1

What we hope for…

Computation 

• Pre-compute finite-horizon lower-level 
policy with frozen slow states


• Re-use pre-computed lower-level policy to 
solve infinite-horizon upper-level problem, 
which takes advantage of γT



Frozen-state, lower-level problem

π̃1 π̃2 π̃3

x1 x1 x1

Frozen-state lower-level MDP 







J⋆
1 (x, y) = max

π̃
𝔼 [

T−1

∑
t=1

γt−1 r(x1, yt, π̃t) (x1, y1) = (x, y)]
J⋆

t (x, y) = max
a

r(x, y, a) + γ 𝔼[J⋆
t+1(x, y′ )], J⋆

T ≡ 0

π̃⋆
t (x, y) = argmaxa r(x, y, a) + γ 𝔼[J⋆

t+1(x, y′ )] .

J⋆
T ≡ 0

π⋆
1 π⋆

2 π⋆
3

x1 x2 x3

U⋆

Computational benefits 

• Small number of successor states (since 
slow state is frozen)


• 


• Independent across 


• Independent from upper-level problem 
(replaced  by 0)

𝒪(S2A) → 𝒪(XY2A)

x

U⋆



Frozen-state, upper-level problem

π̃1 π̃2 π̃3 ⋯μ̃ π̃1 π̃2 π̃3μ̃

Frozen-state upper-level MDP 

Let  be the optimal policy/value of the lower-level problem.





 [transitions according to ]

(π̃⋆, J⋆
1 )

R̃(s0, a, J⋆
1 ) = r(s0, a) + γ J⋆

1 (f(s0, a, w))
V⋆(s0, J⋆

1 , π̃⋆) = max
a

𝔼[R̃(s0, a, J⋆
1 )+γTV⋆(sT, J⋆

1 , π̃⋆)] π̃⋆

After solving both levels, let  be the solution of the frozen-state approximation.(μ̃⋆, π̃⋆)

x1 x1 x1x0 x4 x5 x5 x5

γT

In the exact reformulation, we were maximizing 
over policies, now it is just a single action.



Per-cycle reward approximation error

Proposition. The difference between true and approximate -horizon rewards: T

𝔼[R(s0, a, π⋆)]

True

−𝔼[R̃(s0, a, J⋆
1 )]

Frozen

≤ αd𝒴(Lr

T−2

∑
i=1

γi
i−1

∑
j=0

Lj
f )

error from freezing

+ γT−1LU[αd𝒴

T−2

∑
j=0

Lj
f + γd𝒴(α + 2)(T − 1)]

end of horizon error

Main ideas. 

1. 


where  [true Bellman operator]


2. 


where  [frozen Bellman operator]

𝔼[R(x0, y0, a, π*)] = 𝔼[r(x0, y0, a) + γ (HT−1U⋆)(x1, y1) − γT U⋆(xT, yT)]
(HU )(x, y) = max

a
r(x, y, a) + γ 𝔼[f(s, a, w))]

𝔼[R̃(x0, y0, a, J⋆
1 )] = r(x0, y0, a) + γ(H̃T−1 0)(x1, y1)

(H̃Jt+1)(x, y) = max
a

r(x, y, a) + γ 𝔼[Jt+1(x, f𝒴(x, y, a, w))]



Per-cycle reward approximation error

Initial increase due to 
error from freezing states

Eventual decrease due terminal 
value error being discounted 
more and more

Proposition. The difference between true and approximate -horizon rewards: T

𝔼[R(s0, a, π⋆)]

True

−𝔼[R̃(s0, a, J⋆
1 )]

Frozen

≤ αd𝒴(Lr

T−2

∑
i=1

γi
i−1

∑
j=0

Lj
f )

error from freezing

+ γT−1LU[αd𝒴

T−2

∑
j=0

Lj
f + γd𝒴(α + 2)(T − 1)]

end of horizon error



5. Frozen-state value iteration



Standard value iteration on the base model

Recall: Given an MDP and Bellman operator , where , the value iteration 

algorithm is 


• Convergence to optimal value function:  for any initial estimate 


•  where 

H (HU )(s) = max
a

r(s, a) + γ𝔼U( f (s, a, w))

Uk = HkU0

lim
t→∞

Ht U = U⋆ V

∥Uνk − U*∥∞ ≤
2rmaxγk+1

(1 − γ)2
, νk(s) = argmaxa r(s, a) + γ 𝔼[Uk( f (s, a, w))]

Depends on


• 


• 


•

∥Uk − U⋆∥∞ ≤ γk ∥U0 − U⋆∥∞

∥U0 − U⋆∥∞ ≤
rmax

1 − γ

∥Uνk − U⋆∥∞ ≤
2∥Uk − U⋆∥∞

1 − γ



Frozen-state value iteration (FSVI)

Pre-compute lower-level problem, a finite-
horizon DP: 

- To solve lower-level DP:  
- To compute multi-step transition: 

𝒪(XY2AT )
𝒪(S2T )

Upper-level problem (infinite-horizon VI on 
slow-timescale MDP with  discounting): 

- Per upper-level VI iteration: 

γT

𝒪(S2A)

 per iteration is the same as Base VI...but keep in 
mind that here the discount factor is  instead of !
𝒪(S2A)

γT γ

Solving the lower level 
incurs a one time fixed cost

Note: Freezing the state only happens “within” the 
algorithm to more efficiently compute  J⋆

1



Regret of a periodic policy (μ, π)

Definition. Suppose the optimal policy is . The regret is 

,


where we have used the equivalence between the base and hierarchical formulations.

ν⋆

ℛ(s, μ, π) = Uν⋆(s) − Ūμ(s, π) = Ū⋆(s) − Ūμ(s, π) and ℛ(μ, π) = max
s

ℛ(s, μ, π)

Remarks: 

• We always measure regret with respect to the true MDP.


• Although  is computed with the help of frozen states, 
it is evaluated in the original MDP with true dynamics.


• Consider , notice that  does not directly 
enter the regret definition.


• It is the optimal value of the approximation, but doesn’t 
reflect the performance of  in the true model.

(μ, π)

ℛ(μ̃⋆, π̃⋆) V⋆(J⋆
1 , π̃⋆)

(μ̃⋆, π̃⋆)

True MDP

Frozen-state 
approximation

(μ̃⋆, π̃⋆)



Main idea behind regret analysis

Lemma (Approximation to FSVI).  

• Suppose we approximately solve the lower-level problem and obtain , instead of the optimal 
solutions .


• Suppose we approximately solve the upper-level problem and obtain  instead of , as 
we expected.


• Let  be greedy with respect to both  and :


• .


• Then,





π, J1
π⋆, U⋆

V V⋆(J1, π)

μ J1 V

μ(s0) = argmaxa∈𝒜 𝔼[R̃(s0, a, J1) + γTV(sT(a, π))]

ℛ(μ, π) ≤ ( 2γT

(1 − γT)2
+

2
1 − γT )ϵr(π⋆, J1)

+( 2γ2T

(1 − γT)2
+

2γT

1 − γT )LU d(α, d𝒴, T ) +
2γT

1 − γT
∥V⋆(J1, π) − V∥∞.

Reward error

End of horizon error V-approximation error



Regret of FSVI

Theorem. The regret of FSVI after  upper-level iterations is:





which replaces the V-approximation error term with the VI error.

k

ℛ(μ, π) ≤ ( 2γT

(1 − γT)2
+

2
1 − γT )ϵr(π⋆, J1)

+( 2γ2T

(1 − γT)2
+

2γT

1 − γT )LU d(α, d𝒴, T )+
2rmaxγ(k+1)T

(1 − γ)(1 − γT)
,



Comparison of FSVI versus Base VI sub-optimality



6. Nominal-state approximation for the lower level 



Nominal state version of FSVI for nearly factored MDPs

• In FSVI, one still has to solve the lower-level MDP for each .


• What if we solve it for a few slow states only?


• 


• Nominal FSVI:


• Reward function nearly factored: 


• 


• Solve lower level for a few nominal states:


• 


• Extrapolate to nearby states:


•



• Theoretical analysis requires analyzing the new reward error: 


•

x

𝒪(S2A) → 𝒪(XY2A) → 𝒪(XnomY2A)

|g(x) + h(y, a) − r(x, y, a) | ≤ ζ

Jt,nom(x⋆, y) = max
a

g(x⋆) + h(y, a) + γ 𝔼[Jt+1,nom(x⋆, y′ )]

Jt,nom(x, y) =
T−t−1

∑
i=0

γi(g(x) − g(x⋆)) + Jt,nom(x⋆, y) .

𝔼[R̃(s0, a, J⋆
1 )] − 𝔼[R̃(s0, a, J1,nom]

𝒳



7. Feature-based approximate value iteration



Scaling to larger state spaces using feature-based 
approximate value iteration

Architecture: 

• Consider  pre-selected states .


• Consider an -dimensional feature vector , where  are 
linearly independent. 


• Assume there exists  s.t. for any , there exists , where


•   and .


• Lower level: .


• Upper level: 


• Update procedure:


1. Compute Bellman update at pre-selected states only: .


2. Compute next parameter vector (  or ) such that the 
updated value function evaluated at the pre-selected states 
is equal: e.g., .

M �̃� = {s1, s2, …, sM}

M ϕ(s) ϕ(sm)

γ′ ∈ [γ,1) s θm(s)

∑
m

|θm(s) | ≤ 1 ϕ(s) =
γ′ 

γ

M

∑
m=1

θm(s) ϕ(sm)

̂J(s, ωt) = ϕ⊺(s)ωt

̂V(s, βk) = ϕ⊺(s) βk .

y(sm)

ωt−1 βk+1

̂J(sm, ωt−1) = y(sm)

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 1996.

∥(ΦΦ†)(J ) − (ΦΦ†)(J′ )∥∞ ≤ κ ∥J − J′ ∥∞ (κ = γ′ /γ)

Limited “expansion” after going to parameter space 
and back:



Scaling to larger state spaces using feature-based 
approximate value iteration



Regret of FSAVI

Theorem. The regret of FSAVI after  upper-level iterations is:





which  .

k

ℛ(μ, π) ≤ ( 2γT

(1 − γT)2
+

2
1 − γT )ϵr(π⋆, ̂J1(ω⋆

1 ))

+( 2γ2T

(1 − γT)2
+

2γT

1 − γT )LU d(α, d𝒴, T )+( 1 + κ
1 − κγT ) εup

∥V ⋆
ω⋆− ̂V(β⋆)∥∞

+ (κγT)k( κ2 − κ2(κγ)T+1

(1 − κγT)(1 − κγ) )rmax

∥ ̂V(β*)− ̂V(βk)∥∞

,

ϵr(π⋆, ̂J1(ω⋆
1 )) = ϵr(π⋆, J⋆

1 )+( 1 + κ
1 − κγ

−
(κγ)T(1 + γ)

γ − κγ2 )εlow

∥J⋆
t − ̂Jt(ω⋆

t )∥∞

Upper-level feature 
approximation error

Lower-level feature approximation error



8. Numerical results



Baseline algorithms

• Base model + VI / AVI


• Slow-agnostic VI / AVI


• Q-learning (QL)


• Deep Q-networks (DQN)


• Ours: FSVI / Nominal FSVI 

• Ours: FSAVI / Nominal FSAVI



Overall performance comparison



Service allocation in multi-class queues

• 2 queues, 1 server


• Stochastic holding cost (linear in queue length)


• Actions: serve 1 or serve 2


• Slow state: holding cost


• Fast state: queue lengths



Restless bandits for machine maintenance

• 2 machines, either operating or not ( )


• Actions: maintain or not maintain ( )


• State of machine  influenced by current state, 
whether it is maintained, and overall condition of 
the system 


• Slow state: system condition


• Fast state: operating status of each machine

yt,i ∈ {0,1}

at,i ∈ {0,1}

i

xt



Energy demand response (AVI)

• Energy aggregator bids a quantity 


• Also, sets a compensation  
for each of 2 large customers


• Slow state: day-ahead price 


• Fast state: real-time price 

at

αt = (αt,1, αt,2)

xt

y−
t , y+

t

r(xt, y+
t , y−

t , at, αt) = xtat −
2

∑
m=1

qt,m 𝔼[dm(xt, αt,m)]

+𝔼[xty+
t (

2

∑
m=1

dm(xt, αt,m) − at)+ − xty−
t (at −

2

∑
m=1

dm(xt, αt,m))+] .

Shortage penaltyOverage penalty

Compensation paid to 
customers

Payment from forward 
contract (day-ahead price)



Conclusion

Thank you! 


Please feel free to email me at drjiang@pitt.edu for additional comments and discussion.

mailto:drjiang@pitt.edu

