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Hour-Ahead Bidding in the Real-
Time Market for Energy Arbitrage



Problem Overview

We consider the problem of using new energy storage technologies to profit off of the
real–time electricity market through energy arbitrage1 (Jiang and Powell 2015c).

• Trade (buy, store, and sell) physical energy to exploit electricity spot prices.
• One of several ways to pay for investments in energy storage on the grid.
• Understanding this problem has implications for the valuation of energy storage.

(a) Multiple 1MW, 6MWh Batteries
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1Collaboration with an energy startup in NYC
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Related Work

This application can be considered a inventory/storage control problem, similar to
the recent work:

• M. Thompson, M. Davison, and H. Rasmussen (2009). “Natural gas storage
valuation and optimization: A real options application”. In: Naval Research
Logistics 56.3, pp. 226–238

• R. Carmona and M. Ludkovski (2010). “Valuation of energy storage: An optimal
switching approach”. In: Quantitative Finance 10.4, pp. 359–374

• N. Secomandi (2010). “Optimal commodity trading with a capacitated storage
asset”. In: Management Science 56.3, pp. 449–467

• G. Lai et al. (2011). “Valuation of storage at a liquefied natural gas terminal”. In:
Operations Research 59.3, pp. 602–616

• J. H. Kim and W. B. Powell (2011). “Optimal energy commitments with storage and
intermittent supply”. In: Operations Research 59.6, pp. 1347–1360

• N. Löhndorf, D. Wozabal, and S. Minner (2013). “Optimizing trading decisions for
hydro storage systems using approximate dual dynamic programming”. In:
Operations Research 61.4, pp. 810–823

In our case, there is the additional complication that the ability to interact with the
market is uncertain.
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Problem Overview

There are inter–hour and intra–hour components in our problem.

Inter–Hour Behavior: At hour t, we place the bid bt into the market.

• A bid bt = (b−t , b+t ) is a pair of prices consisting buy bid b−t and a sell bid b+t .
• It is called an hour–ahead bid because it is active on the interval (t + 1, t + 2].
• bt is fixed for the whole hour (t + 1, t + 2] even though M settlements
(transactions) occur within the hour.

: buy bid

: sell bid

Hours

: bid placed
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Problem Overview

Intra–Hour Behavior: Within (t, t + 1], the spot price Pt fluctuates every ∆t = 5 min.
When the spot price Pt moves

• below the buy bid b−t−1 , we are obligated to buy or charge from the market;
• above the sell bid b+t−1 , we are obligated to sell or discharge to the market;
• otherwise, we are “out of the market” and remain idle.

Transactions in both directions occur at the spot price Pt .

∆t

t t+ 1

Pt

b�
t�1: buy bid

b+
t�1: sell bid

: buy (charge)

: sell (discharge)

: idle
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Markov Decision Process Formulation

State Variable: St = (Rt,Lt,Pt, bt−1) ∈ S .

• Rt is the resource state taking values between 0 and Rmax,
• Lt is the number of trades left (to consider loss of storage efficiency),
• Pt is the spot price,
• bt−1 is the previous bid (needed for transitioning from t → t + 1).

Decision: bt = (b−t , b+t ), the bid that is active during (t + 1, t + 2].

• bt ∈ B ⊆ {(b−, b+) : 0 ≤ b− ≤ b+},
• A bidding policy is {Xπ

0 ,Xπ
1 , . . . ,Xπ

T−1} where Xπ
t : S → B (π indexes the

policy).

Transitions: Rt+1 ≈ Rt +
∑M

m=1

[
1{b−t > Pm} − 1{b+t < Pm}

]
• For each settlement outcome, we add either 1, −1, or 0 to the previous 5-minute
resource state.

• Similar transition for Lt .
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Markov Decision Process Formulation

Contribution Function: ct(St, bt,P(t,t+2]) is the (random at time t) revenue made in
time interval (t + 1, t + 2].

• Cπ
t+2 = ct(Sπ

t ,Xπ
t (Sπ

t ),P(t,t+2]) is the revenue at time t using policy π.

Timeline of Notation:

t t+ 1 t+ 2

P(t,t+1]

bt

btbt�1

(Rt, Lt)

... ...

(�1, 0, 1, 1, 0, . . . , 0,�1)

(Rt+1, Lt+1)

M settlements

=

MX

m=1

discount factor · price · direction

P(t+1,t+2]

Revenue from (t+ 1, t+ 2] = ct
�
St, bt, P(t,t+2]

�

direction = 1{b+t < Pm} � 1{b�
t > Pm}

Sell Buy
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The Risk-Neutral Case



The Risk-Neutral Case

Objective Function: Let Π be the set of all admissible policies.

max
π∈Π

E
[ T∑

t=1
Cπ

t

]

Bellman Recursion: For s ∈ S , the optimal value function V∗ is given by

V∗
t (s) = max

bt∈B
E
[
ct
(
St, bt,P(t,t+2]

)
+ V∗

t+1(St+1) |St = s
]
for t < T,

V∗
T(s) = 0.

bt−1

E

bt

V ∗
t+1(St+1)

maxE

ct
�
St, bt, P(t,t+2]

�

t t+ 1 t+ 2 t+ 3

n

ct+1

�

St+1, P(t+1,t+3], bt+1

�

+ · · ·
o

Figure 2: “Two Steps Ahead”
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Intractable Dynamic Program

The following reasons make this dynamic program expensive to compute.

• Lack of convexity in the value function (optimization at each stage nonconvex as
well). Popular methods, such as stochastic dual dynamic programming for
convex problems (Pereira and Pinto, 1991), are not applicable.

• Large state space, due to the fact that bt−1 = (b−t−1, b
+
t−1) needs to be finely

discretized. This also leads to a large action space.
• If the support of Pt is finite, the E over P(t,t+2] is computable but
computationally challenging, even for M = 1.

Even for a simple versions of the bidding problem, naive dynamic programming takes
over a week to solve. What can we do to speed this up?
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Monotonicity Property

The following property is the motivation behind our ADP (approximate dynamic
programming) algorithm, Monotone–ADP.

Proposition

The optimal value functions V∗
t (Rt,Lt,Pt, b−t−1, b

+
t−1) are nondecreasing in Rt , Lt ,

b−t−1 , and b+t−1 . In other words, there exists a partial order ⪯ on the state space S .
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t at t = 12 for Rt = 3
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(b) V∗
t at t = 12 and Rt ∈ {0, . . . , 6}

Figure 3: Illustration of Monotonicity in b−
t−1 , b

+
t−1 , and Rt (computed using BDP)
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Intuition for Why More is Better

Clearly, higher values of Rt (more energy to sell) are preferable to lower values. Why
is it monotone in the previous bid, bt−1 = (b−t−1, b

+
t−1)?

• Let P be a sample from P(t,t+2] and consider the point of view starting at time t.
• Increasing b−t−1 ⇒ “easier to buy.” Increasing b+t−1 ⇒ “more difficult to sell.”
• Rt+1(P, bt−1) is increasing in bt−1 .
• The revenue during the period (t, t + 1] is not included in ct(St, bt,P).
• Therefore, ct(St, bt,P) is increasing in bt−1 .

bt−1

E

bt

V ∗
t+1(St+1)

maxE

ct
�
St, bt, P(t,t+2]

�

t t+ 1 t+ 2 t+ 3

n

ct+1

�

St+1, P(t+1,t+3], bt+1

�

+ · · ·
o

Rt+1
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Monotone–ADP Algorithm

Goal: Design a data–driven method that updates an approximate policy recursively
(e.g., as new prices are observed on the market) by taking advantage of the monotone
structure of the value function.

Overview of Monotone–ADP

Step 1. Set n = 1.
Step 2. For t = 0, 1, 2, . . . ,T − 1 do:

Step 2a. Visit a state Sn
t .

Step 2b. Sample/observe new spot price data.

Step 2c. Compute a noisy, biased observation of V∗
t (Sn

t ).

Step 2d. Update the approximate value function.

Step 2e. Project to (some) space of monotone functions.

Step 3. If n < N (stopping iteration), increment n and return to Step 2.

15



Adaptive Monotone Projection

Monotone–ADP employs an adaptive projection step, where the (monotone) space
onto which we project changes at every iteration.

• Let Vn
t ∈ Rd be the value function approximation to the optimal value function

V∗
t ∈ Rd in iteration n.

• Let zn
t (Sn

t ) be the observed value of V∗
t (Sn

t ).
• For s ∈ S and v ∈ R, let us define the following set of monotone value functions:

VM(s, z) =
{

V ∈ Rd : V(s) = z, V(s1) ≤ V(s2) ∀s1, s2 ∈ S where s1 ⪯ s2
}

which fixes the value at s to be z, while restricting to the set of monotone V.

Adaptive Projection Step

Vn
t ∈ arg min

{∥∥Vt − Vn−1
t

∥∥
2 : Vt ∈ VM

(
Sn

t , zn
t (Sn

t )
)}

.
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Adaptive Monotone Projection

Proposition
The solution to the minimization can be characterized using an operator ΠM .

ΠM
(
Sn

t , zn
t (Sn

t ),Vn−1
t

)
∈ arg min

{∥∥Vt − Vn−1
t

∥∥
2 : Vt ∈ VM

(
Sn

t , zn
t (Sn

t )
)}

.

0

10

5

= observations
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Adaptive Monotone Projection

For sr ∈ S and zr ∈ R, let (sr, zr) be a reference point to which other states are
compared. Let Vt ∈ Rd and define the projection operator ΠM : S × R× Rd → Rd ,
where the component of the vector ΠM(sr, zr,Vt) at s is given by

ΠM
(
sr, zr,Vt

)
(s) =



zr if s = sr,

zr ∨ Vt(s) if sr ⪯ s, s ̸= sr,

zr ∧ Vt(s) if sr ⪰ s, s ̸= sr,

Vt(s) otherwise.

18



Monotone–ADP Algorithm

Dynamic Programming Operator:(
HV

)
t(s) = max

bt∈B
E
[
ct
(
St, bt,P(t,t+2]

)
+ Vt+1(St+1) |St = s

]
Algorithm Description:

Step 0a. Initialize V0
t ∈ [0, Vmax] for each t.

Step 0b. Set Vn
T(s) = 0 for each s ∈ S and n ≤ N.

Step 0c. Set n = 1.
Step 1. Select an initial state Sn

0 .
Step 2. For t = 0, 1, . . . , (T − 1):

Step 2a. Sample a noisy observation:
v̂n

t =
(
HVn−1)

t + wn
t .

Step 2b. Smooth in the new observation with previous value:
zn

t (s) =
(
1 − αn

t (s)
)

Vn−1
t (s) + αn

t (s) v̂n
t (s).

Step 2c. Perform monotonicity projection operator:
Vn

t = ΠM
(
Sn

t , zn
t (S

n
t ),Vn−1

t
)
.

Step 2d. Choose the next state Sn
t+1 given Fn−1 .

Step 3. If n < N, increment n and return Step 1.

Here’s how it works in practice.
19



Animation of the ΠM Adaptive Monotone Projection
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Comparison between Monotone–ADP and Naive ADP
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(a) Naive ADP, N = 1000
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(b) Monotone–ADP, N = 1000

Figure 4: Visual Comparison of Value Function Approximations (other dimensions fixed)
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Data-Driven, Distribution-Free Approach

Dynamic Programming Operator:(
HV

)
t(s) = max

b∈B
E
[
ct
(
s, b,P(t,t+2]

)
+ Vt+1(St+1) |St = s

]
But what if we are in a setting where the E cannot be computed (e.g., we may only
have data, but no distribution)?

Another Dynamic Programming Operator2 (State–Action Value Function Qt):(
HQ

)
t(s, b) = E

[
ct
(
s, b,P(t,t+2]

)
+ max

bt+1∈B
Qt+1(St+1, bt+1) |St = s︸ ︷︷ ︸

This is an unbiased sample of (HQ)t w.r.t. to Qt+1 !

]

2See, e.g., J. N. Tsitsiklis (1994). “Asynchronous stochastic approximation and Q-learning”. In: Machine Learning
16.3, pp. 185–202
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Assumptions for Convergence Analysis

Some Assumptions
The following assumptions are necessary for the analysis of Monotone–ADP on a
finite state MDP.

A1.
∞∑

n=1
P(Sn

t = s | Fn−1) = ∞ a.s.

A2. The contribution at each time period is integrable.
A3. The noise sequence wn

t satisfies: E
[
wn+1

t (s) | Fn] = 0.
A4. For each t ≤ T and state s, suppose αn

t ∈ [0, 1] is Fn–measurable
and

1.
∞∑

n=0
αn

t (s) = ∞ a.s.,

2.
∞∑

n=0
αn

t (s)2 < ∞ a.s.
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Theorem

Theorem (Jiang and Powell, 2015)

Under some technical assumptions (e.g., exploration, unbiased noise conditional on
Fn−1 , bounded observations, a step–size condition), for each t ≤ T and s ∈ S ,

Vn
t (s) −→ V∗

t (s) a.s.

Uk
t (s)

Lk
t (s)

Lk+1
t (s)

Uk+1
t (s)

. . .

. . .

. . .

. . .

Uk+2
t (s)

Lk+2
t (s)

V̄ n
t (s) V �

t (s)

iter. n

Figure 5: Illustration of Proof Technique
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Benchmarking Results

On a test suite of 6 bidding problems with varying parameters, where the optimal
policy can be computed:

• Monotone–ADP achieves near–optimal (90%–96%) results,
• Uses up to an order of magnitude less computation than dynamic programming.
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Figure 6: Computation Times of M–ADP vs. DP
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Case Study

In our case study, we run the data-driven version of Monotone–ADP and compare it to
a bidding policy used in industry (given to us by an energy startup).

• No benchmark. No known distributions.
• Model contains (3.6 million states per time period) · (24 time periods) = 86.4
million states.

(a) 2011 Real–Time Prices (b) 2012 Real–Time Prices

Figure 7: NYISO Real–Time, 5–Minute Prices Used for Training and Testing of an ADP Policy
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Example of a Industry Bidding Policy

Analyze historical data to obtain an empirical distribution for prices in (t + 1, t + 2].
Place buy bid at the α− quantile and sell bid at the α+ quantile.

• Idea is to emphasize high value trades.
• After tuning, (α−, α+) ≈ (0.1, 0.9).
• With some additional logic to deal with capacity of storage, this quantile method
is the best performing heuristic policy.

t t+ 1 t+ 2 t+ 3

: buy bid

: sell bid

P(t+2,t+3]
P(t+4,t+5]

P(t+3,t+4]

P(t+1,t+2]

27



Comparison to Monotone–ADP Bidding Policy

Policies were trained using data from 2011 and tested on data from 2012. Trained on
the same data, the monotone policy produces significantly more value.
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Other Applications of Monotone–ADP

A brief aside...

Any problem where “more is better” can potentially benefit from Monotone–ADP.

• optimal stopping or optimal replacement* (Rust 1987),
• dynamic pricing in revenue management (Gallego and van Ryzin 1994),
• glycemic control for diabetes patients* (Hsih 2010),
• allocating energy between renewables, demand, and storage* (Salas and Powell
2013),

• consumption behavior in economics (Kaplan and Violante 2014).

*See the following paper for numerical work on these problems.
If monotonicity exists, then it is beneficial to exploit it.

D. R. Jiang and W. B. Powell (2015a). “An approximate dynamic programming algorithm
for monotone value functions”. In: Operations Research 63.6, pp. 1489–1511
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Benchmarking Results

Benchmarking results of Monotone–ADP on an optimal stopping problem ranging
from 3-7 dimensions with up to 487 million states.
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Figure 8: Empirical Convergence Rates of M–ADP vs. Other ADP Algorithms

Back to the bidding problem...
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The Risk-Averse Case



The Risk-Averse Case

What if the energy in storage could not be solely dedicated to energy arbitrage?

• The energy in storage has other sources of demand, e.g., backup, which are often
higher priority.

• There is the risk of a shortage penalty if storage level is too low to satisfy higher
priority demands — a “stockout event.”

Rt

: energy needed

: shortage

Risk!

Figure 9: Illustration of Shared Storage
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Review: Dynamic Risk Measures in MDPs

Let’s review the idea of using dynamic risk measures in the context of MDPs3.

Model Preliminaries (“Costs” — Smaller is Better)

• We consider a finite time–horizon, t = 0, 1, 2, . . . ,T, where the last decision is
made at time t = T − 1.

• Our information process is a discrete–time stochastic process (Wt)T
t=0 , where

Wt is adapted to {Ft}T
t=0 . Includes both prices and random demands.

• The state variable is St ∈ S and the action is at ∈ A (finite state/action spaces).
• Let Zt denote the space of Ft–measurable random variables and
Zt,T = Zt × · · · × ZT .

• For a policy π ∈ Π, let the sequence of costs be represented by the process Cπ
t

for t = 1, 2, . . . ,T, where Cπ
t = ct−1(Sπ

t−1,Aπ
t−1(Sπ

t−1),Wπ
t ) ∈ Zt .

3A. Ruszczynski (2010). “Risk-averse dynamic programming for Markov decision processes”. In: Mathematical
Programming 125.2, pp. 235–261
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Review: Dynamic Risk Measures in MDPs

Definition

A conditional risk measure4 ρt,T : Zt,T → Zt is a monotone mapping that takes a
sequence of future costs Ct, . . . ,CT to an amount ρt,T(Ct, . . . ,CT) ∈ Zt.

Intuition: related to the idea of a certainty equivalent cost (i.e., one is indifferent
between incurring ρt,T(Ct, . . . ,CT) versus the stream of stochastic future costs).

t t+ 1 T

n

Ct+1, Ct+2, . . . , CT

o

. . .

⇢t,T
�
Ct,

�

. . .

Definition

A dynamic risk measure {ρt,T}T
t=0 is a sequence of conditional risk measures, which

allows us to evaluate the future risk at any time t using ρt,T.

4A. Ruszczynski and A. Shapiro (2006). “Conditional risk mappings”. In: Mathematics of Operations Research 31.3,
pp. 544–561
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Review: The Notion of Time-Consistency

In the risk-neutral case, our objective was

min
π∈Π

E
[ T∑

t=1
Cπ

t

]
= min

π∈Π
E0

(
Cπ

1 + E1
(
Cπ

2 + · · ·+ ET−1(Cπ
T) · · ·

))
.

By the tower property, this means we are using

ρt,T
(
Cπ

t+1,Cπ
t+2, . . . ,Cπ

T
)
= Et

(
Cπ

t+1 + Cπ
t+2 + · · ·+ Cπ

T
)
.

Attempt at Risk-Averse Formulation
The first try at a risk-averse objective could be to simply take

ρt,T
(
Cπ

t+1,Cπ
t+2, . . . ,Cπ

T
)
= CVaRαt

(
Cπ

t+1 + Cπ
t+2 + · · ·+ Cπ

T
)
.

E
�
cost | cost � q�

t

�
=: CVaR�

t

q↵t
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Review: The Notion of Time-Consistency

Let’s take CVaR
1
2
t (average of 50% of the worst cases). “Costs” — smaller is better.

Red or Blue?

t = 0 t = 1 t = 2

X0 = 0

X1 = 0

X2 = �10

X2 = �10

X2 = +10

X2 = +10

Y0 = 0

Y1 = 0

X1 = 0
Y1 = 0

Y2 = �15

Y2 = �5

Y2 = �5

Y2 = +15
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1
2
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X1 = 0
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Y0 = 0

Y1 = 0

X1 = 0
Y1 = 0
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Y2 = �5
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1
2
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1
2
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Review: The Notion of Time-Consistency

Let’s take CVaR
1
2
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Red or Blue?
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X0 = 0
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1
2
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Y0 = 0

Y1 = 0

X1 = 0
Y1 = 0

Y2 = �15

Y2 = �5

Y2 = �5

Y2 = +15

CVaR
1
2
0 (Y1 + Y2) = +5

CVaR
1
2
1 (X2) = �10

CVaR
1
2
1 (Y2) = �5

CVaR
1
2
1 (X2) = +10

CVaR
1
2
1 (Y2) = +15
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Review: The Notion of Time-Consistency

Theorem (Ruszczynski, 2010)

Suppose a dynamic risk measure {ρt,T}T
t=0 satisfies for all t

ρt,T(0) = 0 and ρt,T(Ct,Ct+1, . . . ,CT) = Ct + ρt,T(0,Ct+1, . . . ,CT).

Then, “time–consistency” means that {ρt,T}T
t=0 has the following nested represen-

tation:

ρt,T(Ct, . . . ,CT) = Ct + ρt
(
Ct+1 + ρt+1(Ct+2 + · · ·+ ρT−1(CT) · · · )

)
,

for some one–step conditional risk measures ρt : Zt+1 → Zt .
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Review: The Notion of Time-Consistency

Recall our risk–neutral objective function: minπ∈Π E
[∑T

t=0 Cπ
t

]
. Expanding, we

have
min
π∈Π

E0
(

Cπ
1 + E1

(
Cπ

2 + · · ·+ ET−1(Cπ
T) · · ·

))
.

Given a time-consistent, dynamic risk measure {ρt,T}T
t=0 , a risk–averse version of the

objective is
min
π∈Π

ρ0
(

Cπ
1 + ρ1

(
Cπ

2 + · · ·+ ρT−1(Cπ
T) · · ·

))
.

In applications 567 , dynamic risk measures are built “bottom up” by choosing ρt .

5A. B. Philpott and V. L. de Matos (2012). “Dynamic sampling algorithms for multi-stage stochastic programs with
risk aversion”. In: European Journal of Operational Research 218.2, pp. 470–483
6A. B. Philpott, V. L. de Matos, and E. Finardi (2013). “On solving multistage stochastic programs with coherent risk
measures”. In: Operations Research 61.4, pp. 957–970
7A. Shapiro et al. (2013). “Risk neutral and risk averse stochastic dual dynamic programming method”. In:
European Journal of Operational Research 224.2, pp. 375–391
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Review: Risk-Averse Dynamic Programming/Bellman Equations

The State-Action Value Function Formulation
The Bellman recursion is analogous to that of the risk-neutral case. For each state-
action pair (s, a) ∈ S ×A,

Q∗
t (s, a) = ρt

(
ct(s, a,Wt+1) + min

at+1
Q∗

t+1(St+1, at+1)
)
for t = 0, 1, . . . ,T − 1,

Q∗
T(s, a) = 0.

We choose ρt to be of the form

ρt(X) = (1 − λ)E
[
X | Ft

]
+ λ ραt (X),

where ραt is from a particular class called quantile–based risk measures (QBRM).

We now consider the following questions.

• Can we develop data-driven approximate dynamic programming (ADP)
algorithms to approximate Q∗ and make risk-averse decisions?

• Risk inherently deals with rare, but very costly events; in a simulated setting, can
we learn to sample these “risky” events?
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A Class of Quantile-Based Risk Measures (QBRMs)

Definition

The (conditional) quantile or value at risk (VaR) of an Ft+1–measurable random
variable X is given by

qαt (X) = inf
U∈Zt

{
P
(
X ≤ U | Ft

)
≥ α

}
.

for a risk-level α ∈ (0, 1).

Definition
Given a finite set of risk-levels α = (αi)i∈I , a parameter λ ∈ (0, 1), and a risk
aversion function Φ, we define the following class of QBRMs:

ραt (X) = E
[
Φ
(
X, qα1

t (X), qα2
t (X), . . . , qαm

t (X)
) ∣∣Ft

]
,
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) ∣∣Ft

]
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42



A Class of Quantile-Based Risk Measures (QBRMs)

Conditional Value at Risk (Our Focus)

One of the most commonly used risk measures, conditional value at risk (CVaR)8, is
a QBRM with

Φ(X, qα) = qα +
1

1 − α

[
X − qα

]+
.

A popular form of ρt is thus

ρt(X) = (1 − λ)E
[
X | Ft

]
+ λ CVaRαt (X),

which we use numerical experiments.

E
�
cost | cost � q�

t

�
=: CVaR�

t

q↵t

Other examples: VaR, piecewise constant distortion risk measures, GlueVaR, etc.
8R. T. Rockafellar and S. Uryasev (2000). “Optimization of conditional value-at-risk”. In: Journal of Risk 2, pp. 21–41
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Algorithm Preliminaries

The algorithm is based on the following relationships. For t = 0, 1, . . . ,T − 1, along
with the Bellman recursion, we also define an auxiliary variable u∗ to refer to the
α-quantiles:

Q∗
t (s, a) = ρt

(
ct(s, a,Wt+1) + min

at+1
Q∗

t+1(St+1, at+1)
)
,

u∗
t (s, a) = qα

(
ct(s, a,Wt+1) + min

at+1
Q∗

t+1(St+1, at+1)
)
.

Important Relationship
Substituting the definition of the risk-measure, we have

Q∗
t (s, a) =E

[
(1 − λ)

[
ct(s, a, Wt+1) + min

at+1
Q∗

t+1(St+1, at+1)
]

+ λΦ
(
ct(s, a, Wt+1) + min

at+1
Q∗

t+1(St+1, at+1), u∗
t (s, a)

) ∣∣ St = s, at = a
]
.
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Outline of the Dynamic-QBRM ADP Algorithm

Algorithm Idea
We employ forward simulation algorithm with two update steps using one sample
path of data for each iteration.

• Use “intertwined” approximations ūn and Q̄n to track u∗ and Q∗ .
• Q̄ can be updated using the estimate ū.
• At the same time, ū can be updated using the estimate Q̄.

Let (Sn
t , an

t ) be the state visited at time t, iteration n, and Wn
t+1 be a sample of the

information process in iteration n. The structure of the algorithm is as follows.

Step 1. Set n = 1.
Step 2. For t = 0, 1, 2, . . . ,T − 1 do:

Step 2a. Visit a state (Sn
t , an

t ).

Step 2b. Sample information process Wn
t+1 .

Step 2c. Update auxiliary variable ūn
t .

Step 2d. Update value function Q̄n
t .

Step 3. If n < N (stopping iteration), increment n and return to Step 2.
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Update Steps for the Dynamic-QBRM ADP Algorithm

Let γn
t (s, a) and ηn

t (s, a) be stepsizes and define

v̂n
t (s, a) = ct(s, a,Wn

t+1) + min
at+1

Q̄n−1
t+1 (St+1, at+1)

to be an observation of the cost-to-go.

First Approximation Step
The update to the auxiliary variable ū is given by

ūn
t (s, a) = ūn−1

t (s, a)− γn
t (s, a)

[
1 −

1
1 − α

1
{

v̂n
t (s, a) ≥ ūn−1

t (s, a)
}]

.

Second Approximation Step

The update to the value function approximation Q̄ is given by

Q̄n
t (s, a) =

(
1 − ηn

t (s, a)
)

Q̄n−1
t (s, a)

+ ηn
t (s, a)

[
(1 − λ) v̂n

t (s, a) + λΦ
(
v̂n

t (s, a), ūn−1
t (s, a)

)]
.
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Update Steps for the Dynamic-QBRM ADP Algorithm
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1
1 − α

1
{

v̂n
t (s, a) ≥ ūn−1

t (s, a)
}]

.

Second Approximation Step

The update to the value function approximation Q̄ is given by

Q̄n
t (s, a) =

(
1 − ηn

t (s, a)
)

Q̄n−1
t (s, a)

+ ηn
t (s, a)

[
(1 − λ) v̂n

t (s, a) + λΦ
(
v̂n

t (s, a), ūn−1
t (s, a)

)]
.
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Convergence Results

Theorem (Jiang and Powell, 2015)

Under several assumptions (the typical stepsize conditions, states sampled infinitely
often, Lipschitz distribution functions), Dynamic-QBRM ADP generates a sequence of
iterates Q̄n such that

ūn
t (s, a) → u∗

t (s, a), Q̄n
t (s, a) → Q∗

t (s, a) a.s.

Theorem (Jiang and Powell, 2015)
Under similar assumptions, Dynamic-QBRM ADP generates a sequence of iterates
Q̄n that satisfies

E
[
∥Q̄n−Q∗∥2] ≤ O (1/n) .
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Under several assumptions (the typical stepsize conditions, states sampled infinitely
often, Lipschitz distribution functions), Dynamic-QBRM ADP generates a sequence of
iterates Q̄n such that

ūn
t (s, a) → u∗

t (s, a), Q̄n
t (s, a) → Q∗

t (s, a) a.s.

Theorem (Jiang and Powell, 2015)
Under similar assumptions, Dynamic-QBRM ADP generates a sequence of iterates
Q̄n that satisfies

E
[
∥Q̄n−Q∗∥2] ≤ O (1/n) .
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Some Sample Paths of Dynamic-QBRM ADP

Empirical Behavior for a problem using ραt = CVaRαt with λ = 0.5 and α = 0.99.
Results are for a fixed state in the energy arbitrage problem. The actual limit points
are given by:

u∗ ≈ −555 and Q∗ ≈ −387.
Volatile approximations like these are not conducive to ADP.
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Figure 10: Sample Paths of Dynamic-QBRM ADP 48



Risk-Directed Sampling

Reasons for Poor Behavior

• By definition, when α is close to 1, the “risky events” are very rarely sampled.
• Combined with the fact that when α → 1, 1

1−α
→ ∞, we are generating very

volatile observations.

However, assume we are in a simulated setting and know the distribution of Wt. Then
we can design a method to move our sampling towards to “risky” region.

Recall:

Q∗
t (s, a) =E

[
(1 − λ)

[
ct(s, a,Wt+1) + min

at+1
Q∗

t+1(St+1, at+1)
]

+ λΦ
(
ct(s, a,Wt+1) + min

at+1
Q∗

t+1(St+1, at+1), u∗
t (s, a)

) ∣∣St = s, at = a
]
.

Let (Wt+1 |St = s, at = a) ∼ pt(w | s, a), a density that we assume is known. Notice

that
Q∗

t (s, a) =
∫

g∗t
(
w |s, a) pt(w |s, a) dw,

where g∗t depends on ct , u∗
t , and Q∗

t+1 .
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Risk-Directed Sampling

By the principle of importance sampling, we should sample from a distribution that
matches the shape of the (absolute value of) integrand

|g∗t
(
w |s, a)| pt(w |s, a).
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Figure 11: Examples of Integrands of under Normal and Lognormal Distributions

Problem: we do not know g∗t
(
w |s, a) (as most IS procedures assume).

Solution: run an adaptive procedure in conjunction with Dynamic-QBRM ADP, using
gn

t
(
w |s, a), an approximation derived from ūn and Q̄n , instead of g∗t

(
w |s, a).
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Risk-Directed Sampling

Our Approach is Adaptive and Makes Use of Biased Observations of Integrand
We propose the following technique, based on importance sampling.

• Specify a set of “basis densities” ϕ = (ϕk
t )

K
k=1 . Sampling distribution at iteration

n, time t, and state (s, a) is taken to be proportional to∑
k

θ̄k,n
t (s, a)ϕk

t (w) ≈
∣∣g∗t (w|s, a)

∣∣ pt(w |s, a).

Motivation: Easy in practice to place several unimodal densities in the domain
to approximate multiple risky regions.

• Observe a noisy, biased sample of the integrand, |g∗t
(
w |s, a)| pt(w |s, a), using

approximations ūn
t and Q̄n

t+1 .

• Update θ̄k,n
t (s, a) iteratively to minimize mean square error to the target density

using stochastic approximation.
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New Update Steps for the Dynamic-QBRM ADP Algorithm

Now, let βn
t (s, a) be another stepsize.

First Approximation Step
The update to the auxiliary variable ū is given by

ūn
t (s, a) = ūn−1

t (s, a) − γ
n
t (s, a)

[
1 −

1
1 − α

1
{

v̂n
t (s, a) ≥ ūn−1

t (s, a)
}]

.

Second Approximation Step

The update to the value function approximation Q̄ is given by

Q̄n
t (s, a) =

(
1 − η

n
t (s, a)

)
Q̄n−1

t (s, a)

+ η
n
t (s, a)

[
(1 − λ) v̂n

t (s, a) + λΦ
α
(v̂n

t (s, a), ūn
t (s, a))

]
.

Update Step for the Sampling Distribution
The update step for the weights is given by

θ̄
n
t (s, a) =

[
θ̄

n−1
t + β

n
t (s, a)

(
approximate direction to better represent “risky” regions

)]+

.
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New Update Steps for the Dynamic-QBRM ADP Algorithm

Now, let βn
t (s, a) be another stepsize.

First Approximation Step
The update to the auxiliary variable ū is given by

ūn
t (s, a) = ūn−1

t (s, a) − γ
n
t (s, a)

[
1 −

1
1 − α

1
{

v̂n
t (s, a) ≥ ūn−1

t (s, a)
}]

.

Second Approximation Step

The update to the value function approximation Q̄ is given by

Q̄n
t (s, a) =

(
1 − η

n
t (s, a)

)
Q̄n−1

t (s, a)

+ η
n
t (s, a)

[
(1 − λ) v̂n

t (s, a) + λΦ
α
(v̂n

t (s, a), ūn
t (s, a))

]
.

Update Step for the Sampling Distribution
The update step for the weights is given by

θ̄
n
t (s, a) =

[
θ̄

n−1
t + β

n
t (s, a)

(
approximate direction to better represent “risky” regions

)]+

.
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New Update Steps for the Dynamic-QBRM ADP Algorithm

Update Step for the Sampling Distribution
The update step for the weights is given by

θ
n
t (s, a) =

[
θ

n−1
t + β

n
t (s, a)

(
approximate direction to better represent “risky” regions

)]+

.

(a) Basis distributions ϕk (equally weighted) (b) Sampling density after 500 iterations

Figure 12: Example Illustration of Risk Directed Sampling (λ = 0.5)
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Convergence Result

For a function h, let the projection operator Πϕ be given by

Πϕh = arg min
θ≥0

E
[(
θ⊤ϕ(X)− h(X)

)2
]
,

where X is some distribution against which we measure error.

Theorem (Convergence of the Sampling Density, Jiang and Powell, 2015)
For each t and (s, a), our approximations converge to the optimal sampling density
(in the sense of closest shape under ϕ) as if the unknown integrand g∗t (·|s, a) were
known.

θ̄n
t (s, a) −→ Πϕ

[ ∣∣g∗t (·|s, a)∣∣ pt(·|s, a)
]

a.s.

Here’s how it works in practice.
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An Animation of Risk-Directed Sampling

Recall that our energy arbitrage problem contained two random variables: Pt (the
spot prices of electricity) and Ut (the amount of energy left after “sharing”).
In this example, we employ a grid of bivariate normal distributions whose
contribution to the sampling density is determined by the learned weights.
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Some Sample Paths of Dynamic-QBRM ADP with Risk-Directed Sampling

Empirical Behavior for the exact same problem as before, using risk-directed
sampling. The actual limit points are given by:

u∗ ≈ −555 and Q∗ ≈ −387.
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ūn
t

Visits
0 1000 2000 3000 4000 5000

-700

-600

-500

-400

-300

-200

-100

0
Q̄n

t

ūn
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Figure 13: Sample Paths of Dynamic-QBRM ADP with Risk-Directed Sampling
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Before Risk-Directed Sampling

This is a drastic improvement over what we had previously, reproduced here.
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Figure 14: Sample Paths of Dynamic-QBRM ADP
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Surface Plots of Risk-Averse Value Functions
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Figure 15: Sample Paths of Approximations Generated by Dynamic–QBRM ADP (λ = 0.5)
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Figure 16: Surface Plots of Value Function Approximations at t = 0 (λ = 0.5)
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Optimality Plots

Here we compute an optimality percentage of approximate policies via

Vπ
t (s) = ρt

(
ct(s,Aπ

t (s),Wt+1) + Vπ
t+1(Sπ

t+1)
)
for all s ∈ S, t ∈ T ,

Vπ
T(s) = 0 for all s ∈ S.
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Figure 17: Comparison of Dynamic–QBRM ADP with and without RDS
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Qualitative Behavior of a Near Optimal Policy: Risk-Reward Frontier

Recall that ρt(X) = (1 − λ)E
[
X | Ft

]
+ λ CVaRαt (X).

We examine the risk vs. reward tradeoff of risk-averse policies on the energy arbitrage
problem by solving it for λ = 0, 0.05, 0.1, . . . , 0.5 and α = 0.99.

Let Bπ
t = {stockout events under π} and

Risk(π) = E
[

1
T

T−1∑
t=0

1Bπ
t

]
and Reward(π) = E

[
−

T−1∑
t=0

Cπ
t

]
.
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Figure 18: Risk–Reward Frontier from Dynamic–QBRM ADP with RDS for N = 5,000,000
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Future Research Questions

Relationships between Parameterized Risk-Neutral Policies to Corresponding
Risk-Averse Policies

• Under what conditions (properties of the risk measure, properties of the
problem) is it true that

optimal risk-averse policy = f
(
optimal risk-neutral policy, risk parameters

)
where f is a simple, implementable relationship?

• Simple Example: if order-up-to policy is optimal with a risk-neutral objective, is
the risk-averse optimal policy another order-up-to policy with a “relaxed”
threshold?
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Future Research Questions

Forecasts in Dynamic Programming

• Without re-optimization, forecasts of quantities that influence energy prices
(e.g., temperature, gas prices) can be difficult to fully and rigorously incorporate
into sequential problems (curse of dimensionality).

• Can we develop theory and a set of conditions to understand how optimal
policies (or optimal value functions) behave as a function of changing forecasts?

Exploration in Dynamic Programming

• In the bidding problem, the decision space is very large. Without convexity, we
need to search a large part of it to find an optimal decision, even in the training
phase.

• Can we use perfect foresight upper bounds to make exploration-exploitation
decisions for approximate dynamic programming?
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Future Research Questions

Applications in Energy and Sustainability

• Policymakers and utilities are interested in an accurate economic valuation of
solar that takes into account 1) the role of solar in conjunction with conventional
generation, 2) the economics of co-located storage, and 3) forecasting issues.

• A risk-based analysis of strategies for a quickly growing industry, demand
response. For example, what is the optimal notification time to give customers
ahead of demand response events?
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Questions?

Thank you!
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