
Bayesian Optimization with a Budget and Unknown Costs

Daniel Jiang
joint work with Raul Astudillo (former intern), Max Balandat, Eytan Bakshy, Peter Frazier

Introduction to the Bayesian optimization problem

• We have an expensive-to-evaluate objective function

• Typically, assume that is a continuous function, but otherwise no structure

• No gradients

• Evaluations can either be exact or noisy, i.e.,

• Goal:

• , where is usually not too complicated (box bounds)

• Small number of evaluations (think 20 to 60)

• When does this type of problem arise?

f : ℝd → ℝ

f

y = f(x) + ϵ

maxx∈𝕏 f(x) 𝕏 ⊂ ℝd

Resources: Frazier, 2008; Ax documentation

Optimizing ML algorithms (AutoML)

• Hyper-parameter tuning of ML models [1]

• Learning rates, momentum parameters

• Neural network architectures

• One of the primary applications of BO in industry

[1] Snoek et al., 2012

Online experimentation (A/B testing)

• Compare multiple versions of a system by running an experiment [2, 3]

• Despite the name “A/B-test,” usually need to search through many more than just
two variants of the system

• E.g., value model tuning for ranking/recommendation algorithms [3]

• Experiments can run for days or even weeks (costly in terms of time)

• Testing a new feature can lead to loss of revenue (costly in terms of $$)

[2] Letham et al., 2019, [3] Letham & Bakshy, 2019, [4] optimizely.com

Figure from [4]Figure from [3]

http://optimizely.com

Expensive physics simulations

• Coverage and capacity optimization in
cellular networks

• Decision is where to place cell towers
such that coverage is maximized

• Expensive to simulate a particular
configuration of cell tower placement

[5] Dreifuerst et al., 2021

Figure from [5]

Lab science experiments (chemistry, biology, materials)

Quick outline of Bayesian optimization (GP model)

Resources: Ax documentation (ax.dev)

• Step 1: Build a surrogate model (usually, a Gaussian process) that allows the
experimenter to quantify uncertainty about their knowledge of the function given
the observed data so far.

• By doing so, the experimenter can trade-off exploration (trying new points)
and exploitation (focusing in around the optimal)

f

Quick outline of Bayesian optimization (GP model)

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (acquisition)

Resources: Ax documentation (ax.dev)

• Step 2: Decide where to sample next by maximizing an acquisition function. There are
many ways to explore; an acquisition function encodes this strategy

• The acquisition function places value on points and implies a sampling policy

• Expected improvement is one such possibility: ,
where is the best observation so far

EI(x) = E[max(f(x) − fbest, 0)]
fbest

Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)

Outline

• Review of Bayesian optimization (BO)

• Bayesian optimization with a budget and costs

• Value-to-cost ratio methods

• Our new acquisition function

• Optimization of multi-step, differentiable trees

• Numerical results

• Open source code in BoTorch

What is the standard BO formulation missing?

• It assumes that evaluations of take identical effort (or equally expensive), but…
evaluation costs are often heterogeneous!

f

In a sample-efficient setting, exploiting 8-10x
cheaper training times is potentially very impactful.

At the same time, we don’t necessarily know the
cost function a priori.

Evaluation times from three open-source examples

Online latent Dirichlet
allocation algorithm for
topic modeling (2-10 hours!)

Random forest on the
Boston housing dataset

Energy-aware robot pushing
benchmark example

Real-world applications where cost is heterogeneous

• AutoML for large-scale recommender systems, which consume the majority of
inference cycles in Meta’s production data centers [6]

• Sparse features are usually converted to dense features via an embeddings.

• Tuning the embedding dimensionality affects the model’s training time

[6] Gupta et al., 2020 (https://arxiv.org/pdf/1906.03109.pdf)

https://arxiv.org/pdf/1906.03109.pdf

• In online experimentation, some variants may be more expensive (consider
testing prices, coupons, or some other type of promotion)

Real-world applications where cost is heterogeneous

Our problem: Bayesian optimization with costs / budgets

• Consider the standard BO setting of , but an evaluation of at a
point incurs a cost

• The cost function is also unknown and must be learned.

• Our observations after each step is .

• We care about the best configuration found after some experimentation budget
 is exhausted:

• Find a policy that sequentially selects points such that the best
observation is as large as possible and is the last iteration where the
experimentation budget is satisfied: .

maxx∈𝕏 f(x) f
x c(x)

c(x)

(x, f(x), c(x))

B

{xi}
NB
i=1

NB n
∑n

i c(xi) ≤ B

Differences from standard BO

• There is a new dimension to the exploration-exploitation trade-off:

• Need to learn the cost function

• Need to reason about cost-learning through uncertainty estimates of the cost

• Interestingly aspect: learning about the cost incurs the cost itself

• Optimal behavior when the budget is high vs when the budget is low

Thought experiment

• Consider a point where, based on the surrogate:

• seems good and has significant upside

• is medium but with high uncertainty

• Should we evaluate?

• If the observed is high, we might exhaust our
budget.

• If the observed turns out to be low cost, we
might have just found a new region of cheap + high
performing points.

x

f(x)

c(x)

c(x)

c(x)

These complex features point to
a planning-based solution, but
first let’s take detour and look at
a simple class of heuristics.

The “value over cost” paradigm

• All existing work in this area uses a form of value to cost ratio.

• Typically, an existing acquisition function is divided by the cost function to determine
a point that gives the maximum “value” per unit cost:

• e.g., “EI / cost” samples the point

• Variants:

• ,

•

• Snoek et al., 2012; Swersky et al., 2013; Kandasamy et al., 2016; 2017; Poloczek et
al., 2017; Song et al.,2019; Wu et al., 2020; Lee et al., 2020b

• Decent performance in many practical settings, but not always

x* = argmaxx EI(x)/c(x)

x* = argmaxx EI(x)/E[c(x)]

x* = argmaxx EI(x)/c(x)α

EI / cost can be arbitrarily bad

• Theorem: The approximation ratio provided by the EI/cost policy is arbitrarily bad.

• Let be a set of initial observations (let’s suppose is known).

• Let be the value (expected best value of the function found within the budget) of the
optimal policy and let be the value of the “EI / cost” policy, .

• Then, for any (large) , there exists a BO problem instance (a prior probability distribution
over objective and cost functions, a budget, and a set of initial observations) where:

• What does this mean? Setting to be large, you can find problem instances where the
performance of EI/cost is less than times the optimal performance.

• Does this happen in practice? When there exist points with small / near-zero costs, this
phenomenon happens often (anecdotally).

𝒮 {(x, f(x))} c(x)

V*(𝒮) f
VEI/cost(𝒮) argmaxx EI(x)/c(x)

α > 0
𝒮

V*(𝒮) > αVEI/cost(𝒮) .

α
1/α

Proof via construction of bad instance

• Suppose we have a function with a finite domain and the following prior.

• All points are normally distributed and have mean 0.

• Two types of points: many low-variance, low-cost point and one high-variance,

high-cost point.

• low-variance, low-cost: variance is , cost of evaluation

• high-variance, high-cost: variance is 1, cost of evaluation is

• Suppose that the total evaluation budget is also .

f

ϵ2 c(x) = ϵ

c(x) = 1 + δ

1 + δ

Proof via construction of bad instance

• Two possible policies:

• Policy 1: “always measure the low-variance arms”

• Policy 2: “measure the high-variance arm once”

Proof via construction of bad instance

• Let . Acquisition values for the EI / cost policy:

• low-variance, low-cost:

• high-variance, high-cost:

• So, the EI / cost policy prefers the low cost points at the beginning.

• After measuring the first point, the high-cost point is no longer feasible, so EI / cost must
be the first type of policy (“always selects low-cost points”)

• With some calculations, we can show that:

• The “measure the high-variance arm once” has value

• The value is independent of

Z ∼ 𝒩(0,1)

EI(x)/c(x) = E[(f(x) − 0)+]/ϵ = E[ϵZ+]/ϵ = E[Z+]

EI(x)/c(x) = E[(f(x) − 0)+]/(1 + δ) = E[Z+]/(1 + δ)

limϵ→0 VEI/cost(𝒮) = 0

E[Z+] > 0

ϵ

Proof via construction of bad instance

Conclusion:
• Optimal policy: Policy 2 (“measure the high-variance arm once”)

• EI/cost policy: Policy 1 “repeatedly measure the low-variance arms”

• limϵ→0 VEI/cost(𝒮) = 0

Illustrative example (EI / cost)

• In this synthetic setting, EI / cost tends to measure the low cost points.

Objective

Cost

Acquisition

MDP formulation of the problem

• In order to properly manage the various trade-offs, we need to plan ahead!

• Dynamic programming equation, considers both objective & cost-learning:

• Let denote the set of data up to step

• The decision at step is the point to measure:

• Objective: , where:

• (we care about the best observed point)

• (budget is still available)

• Expectation is over the sequences of random observation sets

𝒮n = {(xi, yi = f(xi), zi = c(xi))} n

xn = πn(𝒮n−1)

V*(𝒮) = supπ∈Π Eπ
𝒮[u(𝒮NB

) − u(𝒮0)]
u(𝒮n) = max(x,y,z)∈𝒮n

y

NB = sup{k : ∑i
j=1 zj ≤ B}

{𝒮k}

Challenges of the MDP

• State space is highly intractable:

• Continuous

• Grows with the number of observed points so far

• High-dimensional, but even worse, the state is a set

• Ordering of observations don’t matter

• Traditional ADP / RL approaches to solve this problem will be challenging because they

often require approximating a function of the state (whether value / policy)

• Attempts at non-myopic BO have largely focused on

• Heuristic approximations: Gonzalez et al, 2016

• Horizon of two: Wu & Frazier, 2019, Zhang et al., 2021

• Rollout policies: Lam et al., 2016, Lee et al., 2020, Yue & Kontar, 2020, Lee et al, 2021

Our approach: decision trees

1

t = 0

1 1

t = 1 t = 2

“simulated futures”

real system

We avoid the complexities of commonly-used, value-function-based ADP/RL by:

• using a discrete representation of the future

• re-optimizing after each period

Optimizing via differentiable trees

• At each period, we optimize a differentiable decision tree [7]

• Based on the notion of fantasizing from the GP:

• Suppose we want to know the effect on our knowledge
of measuring at

• Sample a “fantasy observation” from GP

• Add to GP training data

• Condition on the full data to get fantasy GP

• Full, optimizable model that comes with uncertainty
estimates!

• Suppose we want to consider the value of a policy

• Repeatedly fantasize and apply to each fantasy GP to
get an estimated value of the policy

x

ỹ ∼ f(x)

(x, ỹ)

f̃

π

π

[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020

Optimizing via differentiable trees

[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020

[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020

• Using the “reparameterization trick” we can write , where

• is the posterior mean of the GP,

• , the posterior covariance of the GP,

• and — no dependence on !

• We can (auto-) differentiate through the tree wrt for fixed , using BoTorch [8] / PyTorch

ỹ = μ(x) + L(x) z

μ(x)

L(x)L(x)T = Σ(x)

z ∼ N(0, I) x

x z

Visualization of one such tree

• Original MDP formulation has a random
horizon (ends when no budget left)

• Zero subsequent value along paths in the
tree where the budget is exhausted

• Partial rewards generated along those paths

Recall the previous example (EI / cost)

• In this synthetic setting, EI / cost tends to measure the low cost points.

Objective

Cost

Acquisition

Illustrative example (our new acquisition function)

• But our method will try to learn the cost function and find the optimum.

Empirical results and industry collaborations

• Results from Meta collaborations:

• 5x reduction in cost to achieve
the same objective quality

• Made available in company-
wide AutoML platform

Other computational notes

• Based on open-source code in BoTorch [8]

• Batched (vectorized) computations involving fantasy GP models in PyTorch

• A 3 layer tree with nodes is represented by a GP model

• Batched linear algebra tensor operations that exploit parallelization and hardware
acceleration

n1, n2, n3 n3 × n2 × n1 × 1

[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020

Drawbacks of the approach and future work

• Could we allow for cheaper proxies to also be used?

• Future work: extension to the multi-fidelity setting

• Decision trees do not scale with horizon

• Our methodology only allows us to look ahead 4-6 steps (still a major improvement upon
existing non-myopic BO methods)

• Acquisition optimization times range from 42sec - 7min, compared to less than 30sec for
baseline acquisitions.

• Future work: improved multi-step methodologies?

• Heuristic budget pacing rules to solve shorter-horizon problems

• Future work: long / unknown horizons?

• Requires at each step re-optimization due to discretized decision tree

• Future work: policy reuse?

Thank you! Questions?

Please feel free to email me (danielrjiang@gmail.com) for additional comments / discussion!

