Bayesian Optimization with a Budget and Unknown Costs

Daniel Jiang
joint work with Raul Astudillo (former intern), Max Balandat, Eytan Bakshy, Peter Frazier

Introduction to the Bayesian optimization problem

We have an expensive-to-evaluate objective function f : R - R

Typically, assume that f'is a continuous function, but otherwise no structure

No gradients

Evaluations can either be exact or noisy, i.e., y = f(x) + €

Goal:
max .y f(x), where X C R% is usually not too complicated (box bounds)

Small number of evaluations (think 20 to 60)

When does this type of problem arise?

Resources: Frazier, 2008; Ax documentation

Optimizing ML algorithms (AutoML)

Hyper-parameter tuning of ML models [1]
Learning rates, momentum parameters
Neural network architectures

One of the primary applications of BO in industry

[1] Snoek et al., 2012

Online experimentation (A/B testing)

Compare multiple versions of a system by running an experiment [2, 3]

Despite the name “A/B-test,” usually need to search through many more than just
two variants of the system

E.g., value model tuning for ranking/recommendation algorithms [3]
Experiments can run for days or even weeks (costly in terms of time)

Testing a new feature can lead to loss of revenue (costly in terms of $3)

: | I A B
+ + : : 37%
2 17 + + : | 23%
: A ty, it —
= 97 } L | ¢ i
Tty 'y be | —r— ——r—+
0 5 10 15 2 25 ; 35 40
Iteration
Figure from [3] Figure from [4]

[2] Letham et al., 2019, [3] Letham & Bakshy, 2019, [4] optimizely.com

http://optimizely.com

Expensive physics simulations

Coverage and capacity optimization in
cellular networks

Decision is where to place cell towers
such that coverage is maximized

Expensive to simulate a particular
configuration of cell tower placement

[5] Dreifuerst et al., 2021

=200

—400

—a00

—-600 —-400 -200 O 200

X [m]

Figure from [5]

400

600

Received Power [dBm]

Lab science experiments (chemistry, biology, materials)

Article | Published: 03 February 2021

Bayesian reaction optimization as a tool for chemical
synthesis

Benjamin J. Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus |. Martinez
Alvarado, Jacob M. Janey, Ryan P. Adams & & Abigail G. Doyle

Nature 590, 89-96(2021) | Cite this article

Creating glasswing butterfly-inspired durable
antifogging superomniphobic supertransmissive,
superclear nanostructured glass through Bayesian
learning and optimizationf

C

Sajad Haghanifar, . Michael McCourt,” Bolong Cheng,® Jeffrey Wuenschell,
Paul Ohodnicki and Paul W. Leu () *29¢

Article | Open Access | Published: 07 December 2018

Discovering de novo peptide substrates for enzymes
using machine learning

Lorillee Tallorin, JiaLei Wang, Woojoo E. Kim, Swagat Sahu, Nicolas M. Kosa, Pu Yang, Matthew

Discovering high-performance broadband and broad
angle antireflection surfaces by machine learning

SAJAD HAGHANIFAR,' ® MicHAEL McCouRT,? BOLONG CHENG,? JEFFREY WUENSCHELL,®
PauL OHoDNicKl,® AND PAuL W. LEU'45*

'Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

28igOpt, San Francisco, California 94104, USA

3National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, Pennsylvania 15236, USA

“Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
°Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

*Corresponding author: pleu@pitt.edu

Received 10 January 2020; revised 10 May 2020; accepted 13 May 2020 (Doc. ID 387938); published 9 July 2020

Article | Published: 19 February 2020

Closed-loop optimization of fast-charging protocols
for batteries with machine learning

Peter M. Attia, Aditya Grover, Norman Jin, Kristen A. Severson, Todor M. Markov, Yang-Hung Liao,
Michael H. Chen, Bryan Cheong, Nicholas Perkins, Zi Yang, Patrick K. Herring, Muratahan Aykol,
Stephen J. Harris, Richard D. Braatz &, Stefano Ermon & & William C. Chueh

Nature 578, 397-402(2020) | Cite this article

High-throughputin vivo mapping of RNA accessible
interfaces to identify functional sSRNA binding sites

Mia K. Mihailovic, Jorge Vazquez-Anderson, Yan Li, Victoria Fry, Praveen Vimalathas, Daniel Herrera,

Thompson, Michael K. Gilson, Peter I. Frazier &, Michael D. Burkart & & Nathan C. Gianneschi Richard A. Lease, Warren B. Powell & Lydia M. Contreras

Nature Communications 9, Article number: 5253 (2018) | Cite this article Nature Communications 9, Article number: 4084 (2018) | Cite this article

Quick outline of Bayesian optimization (GP model)

Step 1: Build a surrogate model (usually, a Gaussian process) that allows the

experimenter to quantify uncertainty about their knowledge of the function f given
the observed data so far.

By doing so, the experimenter can trade-off exploration (trying new points)
and exploitation (focusing in around the optimal)

J]
15 : r
, U W W
1
=2 S P L
£ -
L}
E 0
Q. QLT T SO i Rt RN A
= '
P U S e Y e
o ’ 1
ac....................i. . resesnesnesnesssesseesee
' .
0 : — GPestimate GPuncertainty & & Data
]
4 6 8
Parameter

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (GP model)

Draws from the posterior GP

5 -

Qo
2
A d

(&)
2
Q
o

O -
0.00 0.25 0.50 0.75 1.00
Parameter
GP mean and prediction interval
5 -

Qo

2

Al

(&)

2

Q

o

0 -
0.00 0.25 0.50 0.75 1.00

Parameter

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (acquisition)

Step 2: Decide where to sample next by maximizing an acquisition function. There are
many ways to explore; an acquisition function encodes this strategy

The acquisition function places value on points and implies a sampling policy

Expected improvement is one such possibility: EI(x) = E[max(JX) = foestr O)],
where fi . is the best observation so far

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (El)

.
15 :
10 l
i .
L 1
= N
o 1
E '
Q 1
c - '
€ -10 '
O [
28 '
1

50) R { |

: GP estimate GPuncertainty & & Data

2.5 1
8 10

b
vy

Expected Improvement

Parameter

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (El)

Online metric

— GPestimate GPuncertainty & & Data

1
8

Expected Improvement

0.05 \ /\/\
0.00

" .

0 2 4

Parameter

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (El)

Online metric

— GPestimate GPuncertainty & & Data

8 10

[
vy

Expected Improvement

/_—_/—\

Parameter

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (El)

Online metric

-.-.-‘----- -:--

— GPestimate GP uncertainty ¢ Data

8

Expected Improvement

0.00 \ /\/_\

Parameter

Resources: Ax documentation (ax.dev)

Quick outline of Bayesian optimization (El)

Online metric

— GPestimate GPuncertainty & & Data

8 10

[
vy

Expected Improvement

|
|
|
|
:
|
|
|
|
|
:
|
|
|
1
I
|
|
:
I
I
|
|
|
|
|
\
0.00 : — —/-\ — e — M

Parameter

Resources: Ax documentation (ax.dev)

Outline

B esiowof Baves rnization (BO!

Bayesian optimization with a budget and costs
Value-to-cost ratio methods
Our new acquisition function
Optimization of multi-step, differentiable trees
Numerical results

Open source code in BoTorch

What is the standard BO formulation missing?

It assumes that evaluations of f take identical effort (or equally expensive), but...
evaluation costs are often heterogeneous!

Decision tree training times on breast cancer data

0.12

L= < =
o o -
o (&) (=]

Frequency

b
o
>

0.02

0.00
0.0 0.1 0.2 0.3 0.4 0.5

Cost

In a sample-efficient setting, exploiting 8-10x
cheaper training times is potentially very impactful.

At the same time, we don’t necessarily know the
cost function a priori.

Evaluation times from three open-source examples

0.08
0.30
0.20
0.06
Fy Foy 2
2 20.04 7 0-20
L0.10 L g
sillimi l i .. INiNEER
2 4 6 8 10 0 5 10 15 20 25 2 4 6 8 10
cost (evaluation time) cost (evaluation time) cost (energy)
Online latent Dirichlet Random forest on the Energy-aware robot pushing
allocation algorithm for Boston housing dataset benchmark example

topic modeling (2-10 hours!)

Real-world applications where cost is heterogeneous

AutoML for large-scale recommender systems, which consume the majority of
inference cycles in Meta’s production data centers [6]

Sparse features are usually converted to dense features via an embeddings.

Tuning the embedding dimensionality affects the model’s training time

CTR Output
4
2 LF2
& :
O
anw -+ |
L FC RN BN m
£ 5 = 3
ol FC =} g
a Emb. 0 Emb.N (& &
Sttt th S
S o iy: il Doedy dped] @
Dense Inputs LSparse Inputs—T

[6] Gupta et al., 2020 (https://arxiv.org/pdf/1906.03109.pdf)

https://arxiv.org/pdf/1906.03109.pdf

Real-world applications where cost is heterogeneous

In online experimentation, some variants may be more expensive (consider
testing prices, coupons, or some other type of promotion)

Starting at $6.99/month

RIDERCODE25

$2.50 credit per ride for 10 rides. ($25 Coupon Value)

RIDERCODE18

$3 credit per ride for 6 rides. ($18 Coupon Value)

RIDERCODE15

$5 credit per ride for 3 rides. ($15 Coupon Value)

Our problem: Bayesian optimization with costs / budgets

Consider the standard BO setting of max .y f(x), but an evaluation of f at a
point x incurs a cost c(x)

The cost function c(x) is also unknown and must be learned.

Our observations after each step is (x, f(x), c(x)).

We care about the best configuration found after some experimentation budget
B is exhausted:

Find a policy that sequentially selects points {xi}f.\fl such that the best

observation is as large as possible and Ny is the last iteration n where the
experimentation budget is satisfied: Z? c(x;) < B.

Differences from standard BO

There is a new dimension to the exploration-exploitation trade-off:
Need to learn the cost function

Need to reason about cost-learning through uncertainty estimates of the cost
Interestingly aspect: learning about the cost incurs the cost itself

Optimal behavior when the budget is high vs when the budget is low

Thought experiment

Consider a point x where, based on the surrogate:
- f(x) seems good and has significant upside

c(x) is but with high uncertainty
Should we evaluate?

If the observed c(x) is high, we might exhaust our
budget.

If the observed c(x) turns out to be low cost, we
might have just found a new region of cheap + high
performing points.

These complex features point to
a planning-based solution, but
first let’s take detour and look at
a simple class of heuristics.

The “value over cost” paradigm

- All existing work in this area uses a form of value to cost ratio.

- Typically, an existing acquisition function is divided by the cost function to determine
a point that gives the maximum “value” per unit cost:

e.g., “El / cost” samples the point x* = argmax, EIl(x)/c(x)
- Variants:

- x* = argmax, EI(x)/E[c(x)],

- x* = argmax, EI(x)/c(x)”

Snoek et al., 2012; Swersky et al., 2013; Kandasamy et al., 2016; 2017; Poloczek et
al., 2017; Song et al.,2019; Wu et al., 2020; Lee et al., 2020b

Decent performance in many practical settings, but not always

El / cost can be arbitrarily bad

- Theorem: The approximation ratio provided by the El/cost policy is arbitrarily bad.
Let & be a set of initial observations {(x, f(x))} (let’s suppose c(x) is known).

Let V*(&) be the value (expected best value of the function f found within the budget) of the
optimal policy and let VEVCOSY(§) pe the value of the “El / cost” policy, argmax, EI(x)/c(x).

- Then, for any (large) a > 0, there exists a BO problem instance (a prior probability distribution
over objective and cost functions, a budget, and a set of initial observations &) where:

VHS) > aVHN(S).

- What does this mean? Setting a to be large, you can find problem instances where the
performance of El/cost is less than 1/a times the optimal performance.

Does this happen in practice? When there exist points with small / near-zero costs, this
phenomenon happens often (anecdotally).

Proof via construction of bad instance

- Suppose we have a function f with a finite domain and the following prior.

- All points are normally distributed and have mean O.

- Two types of points: many low-variance, low-cost point and one high-variance,
high-cost point.

2 cost of evaluation c(x) = €

- low-variance, low-cost: variance is €
- high-variance, high-cost: variance is 1, cost of evaluationis c(x) = 1 + 0

Suppose that the total evaluation budget is also 1 + 6.
T

Ll 11T 4

c b\ R R ‘ -

Proof via construction of bad instance

- Two possible policies:
- Policy 1: “always measure the low-variance arms”

- Policy 2: “measure the high-variance arm once”

T

l 111+

a—

,\&0
- e ™ PP =P T m P e owm P e, -— e o
‘ /x

Cb(\,g_ o 2 * ¢

Proof via construction of bad instance

Let Z ~ 4/(0,1). Acquisition values for the El / cost policy:

low-variance, low-cost: EI(x)/c(x) = E[(f(x) — 0)"]/e = E[eZ"]/e = E[Z"]
- high-variance, high-cost: EI(x)/c(x) = E[(f(x) = 0)*]/(1 + 6) = E[Z"]/(1 +)
So, the El / cost policy prefers the low cost points at the beginning.

- After measuring the first point, the high-cost point is no longer feasible, so El / cost must
be the first type of policy (“always selects low-cost points”)

. With some calculations, we can show that: lim__ , VEVCOS{() =

e—0

- The “measure the high-variance arm once” has value E[Z*] > 0

- The value is independent of €

Proof via construction of bad instance

Conclusion:
- Optimal policy: Policy 2 (“measure the high-variance arm once”)

- El/cost policy: Policy 1 “repeatedly measure the low-variance arms”
) lim€—>0 VEI/Cost(Csv) —0

lllustrative example (El /

cost)

In this synthetic setting, El / cost

—-=-= objective function

X optimum
posterior mean
1.5 e observed values 15
Ob -t E 95% ClI S
jeClive = 1.0 = 1.0
0.5 0.5
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0
X
A e O S I Gt O T R U EEEEEELl SEEEEELeLel (ELLELLELERLEEE: e
6 ppzm: remaining budget 6
posterior mean
® observed values
<4 95% Cl <4
COSt © C
2 2
0 0
0.0 0.2 0.4 0.6 0.8 1.0
X
0.10 0.10
— EI-PUC
0.08 | * optimum 0.08
X 0.06 / X 0.06
@] o
isiti = 3
Acquisition 204 T 0.04
0.02 0.02
0.00 0.00
0.0 0.2 0.4 0.6 0.8 1.0
X

L

tends to measure the low cost points.

+ latest observed value 2.0 + latest observed value
1.5
x
/’X\\ = 1.0 ,’X\\
-~ -—‘” \\‘—;/. ”’ S
St % 0.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
----- remaining budget ----=- remaining budget
latest observed value =TT 6 % latest observed value

0.10
—— EI-PUC — EI-PUC
* optimum 0.08 * optimum
X 0.06
O
)
o
- 0.04
w
0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

MDP formulation of the problem

In order to properly manage the various trade-offs, we need to plan ahead!

Dynamic programming equation, considers both objective & cost-learning:
Let &', = {(x;, y; = f(x;), 7; = c(x;)) } denote the set of data up to step n
The decision at step is the point to measure: x, = 7,(5,,_;)

Objective: V¥(&) = sup,ep E% [u(Sy) — u(S)|, where:
u(sd,) = max, , »es Y (We care about the best observed point)

Ny = sup{k ; Z;zl i < B} (budget is still available)

Expectation is over the sequences of random observation sets { &', }

Challenges of the MDP

State space is highly intractable:
Continuous
Grows with the number of observed points so far
High-dimensional, but even worse, the state is a set
Ordering of observations don’t matter

Traditional ADP / RL approaches to solve this problem will be challenging because they
often require approximating a function of the state (whether value / policy)

Attempts at non-myopic BO have largely focused on
Heuristic approximations: Gonzalez et al, 2016
Horizon of two: Wu & Frazier, 2019, Zhang et al., 2021
Rollout policies: Lam et al., 2016, Lee et al., 2020, Yue & Kontar, 2020, Lee et al, 2021

Our approach: decision trees

“simulated futures”

real system

We avoid the complexities of commonly-used, value-function-based ADP/RL by:
* using a discrete representation of the future

* re-optimizing after each period

Optimizing via differentiable trees

At each period, we optimize a differentiable decision tree [7]

Based on the notion of fantasizing from the GP:

Draws from the posterior GP

Suppose we want to know the effect on our knowledge
of measuring at x]

ctive

Obje

Sample a “fantasy observation” y ~ f(x) from GP

Add (x, y) to GP training data

0.00 0.25 0.50 0.75 1.00

GP mean and prediction interval

Condition on the full data to get fantasy GPf

Full, optimizable model that comes with uncertainty (,*“
estimates! £ =
\“""-""‘-’.x'x
Suppose we want to consider the value of a policy]‘
Repeatedly fantasize and apply 7 to each fantasy GP to / ol &
get an estimated value of the policy 16"“‘)"('00

[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020

Optimizing via differentiable trees

Using the “reparameterization trick” we can write y = u(x) + L(x) z, where
u(x) is the posterior mean of the GP,
L(x)L(x)" = X(x), the posterior covariance of the GP,
and z ~ N(O, I) — no dependence on x!

We can (auto-) differentiate through the tree wrt X for fixed z, using BoTorch [8] / PyTorch

vints
| tosy poY exive ‘F‘W“s) P

.‘;5\) / ‘).\

/ 2 5 -

bl . 2,1 2,1
% Zl 22 333
/}t / ><
3 ... 2,3 2,3 e
zl o Zz x3 \

[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020
[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020

Visualization of one such tree

Original MDP formulation has a random
horizon (ends when no budget left)

Zero subsequent value along paths in the
tree where the budget is exhausted

xT

. W n=N
Partial rewards generated along those paths R ®: n<Ng
AT S SR TR . N
‘e 6 e @ O

P J1I2 ¥ ' ’.-' " .

“e e00 t0 0 @
N 3
£i1J2J3 4 “ ‘V ‘ ‘ 1. ‘ ‘

',L,_él.]2.13.14 . . .

Recall the previous example (El / cost)

In this synthetic setting, El / cost

—-=-= objective function

X optimum
posterior mean
1.5 e observed values 15
Ob -t E 95% ClI S
jeClive = 1.0 = 1.0
0.5 0.5
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0
X
A e O S I Gt O T R U EEEEEELl SEEEEELeLel (ELLELLELERLEEE: e
6 ppzm: remaining budget 6
posterior mean
® observed values
<4 95% Cl <4
COSt © C
2 2
0 0
0.0 0.2 0.4 0.6 0.8 1.0
X
0.10 0.10
— EI-PUC
0.08 | * optimum 0.08
X 0.06 / X 0.06
@] o
isiti = 3
Acquisition 204 T 0.04
0.02 0.02
0.00 0.00
0.0 0.2 0.4 0.6 0.8 1.0
X

L

tends to measure the low cost points.

+ latest observed value 2.0 + latest observed value
1.5
x
/’X\\ = 1.0 ,’X\\
-~ -—‘” \\‘—;/. ”’ S
St % 0.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
----- remaining budget ----=- remaining budget
latest observed value =TT 6 % latest observed value

0.10
—— EI-PUC — EI-PUC
* optimum 0.08 * optimum
X 0.06
O
)
o
- 0.04
w
0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

lllustrative example (our new acquisition function)

- But our method will try to learn the cost function and find the optimum.

—-—=- objective function %+ l|atest observed value %+ latest observed value
X optimum
—— posterior mean

1.5 e observed values 1.5 1.5
= 95% CI = =
10 = =
0.5
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X X
B (SO SIS N[(=11 I RRSNERUCECCECETE SECECEECEEC T CUCECEEEEEEEEEEl S remaining budget ______ remaining budget
6 ... remaining budget 6 % |atest observed value 6 % latest observed value
posterior mean
e observed values
<4 95% Cl
T
2
0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X X
0.30 0.30 0.30
— B-MS-EI — B-MS-EI — B-MS-EI
0.25 * optimum 0.25 * optimum 0.25 * optimum
0.20 0.20 0.20
2015 20.15 20.15
o o o
0.10 0.10 0.10
0.05 0.05 0.05
0.00 0.00 0.00 *~——
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Empirical results and industry collaborations

dropwave

El
—— EIPUC

—— EI-PUC-CC
—— 4-B-MS-El,
—— 4-B-MS-El

logip(regret)

| | | | | | | I
P O O © © © o ©
o O [0} ~ (o)} w BN w

10 20 30
cumulative cost

ackley

logio(regret)

20 40
cumulative cost

40

[

60

0.00
—0.25
—0.50
—0.75
—-1.00

logio(regret)

-1.25
—-1.50
-1.75

0.8

0.6

0.4

0.2

logip(regret)

0.0

-0.2

alpinel

—

20 40 60
cumulative cost

shekel5

20 40 60 80
cumulative cost

robotpush3d

|
it
©

|
=
o

logip(regret)

I
=
N

|
=
o

50 100 150 200
cumulative cost

Results from Meta collaborations:

- 5Bx reduction in cost to achieve
the same objective quality

- Made available in company-
wide AutoML platform

Other computational notes

Based on open-source code in BoTorch [8]

)

Bolorch

Batched (vectorized) computations involving fantasy GP models in PyTorch

A 3 layer tree with n, n,, n; nodes is represented by a ny X n, X n; X 1 GP model

Batched linear algebra tensor operations that exploit parallelization and hardware
acceleration

[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020

Drawbacks of the approach and future work

Could we allow for cheaper proxies to also be used?
Future work: extension to the multi-fidelity setting
Decision trees do not scale with horizon

Our methodology only allows us to look ahead 4-6 steps (still a major improvement upon
existing non-myopic BO methods)

- Acquisition optimization times range from 42sec - 7min, compared to less than 30sec for
baseline acquisitions.

Future work: improved multi-step methodologies?

Heuristic budget pacing rules to solve shorter-horizon problems
Future work: long / unknown horizons?

Requires at each step re-optimization due to discretized decision tree

Future work: policy reuse?

Thank you! Questions?

Please feel free to email me (danielrjiang@gmail.com) for additional comments / discussion!

