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Introduction to the Bayesian optimization problem

• We have an expensive-to-evaluate objective function 


• Typically, assume that  is a continuous function, but otherwise no structure


• No gradients


• Evaluations can either be exact or noisy, i.e., 


• Goal: 


• , where  is usually not too complicated (box bounds)


• Small number of evaluations (think 20 to 60)


• When does this type of problem arise?

f : ℝd → ℝ

f

y = f(x) + ϵ

maxx∈𝕏 f(x) 𝕏 ⊂ ℝd

Resources: Frazier, 2008; Ax documentation




Optimizing ML algorithms (AutoML)

• Hyper-parameter tuning of ML models [1]


• Learning rates, momentum parameters


• Neural network architectures


• One of the primary applications of BO in industry

[1] Snoek et al., 2012




Online experimentation (A/B testing)

• Compare multiple versions of a system by running an experiment [2, 3]


• Despite the name “A/B-test,” usually need to search through many more than just 
two variants of the system


• E.g., value model tuning for ranking/recommendation algorithms [3]


• Experiments can run for days or even weeks (costly in terms of time)


• Testing a new feature can lead to loss of revenue (costly in terms of $$)

[2] Letham et al., 2019, [3] Letham & Bakshy, 2019, [4] optimizely.com


Figure from [4]Figure from [3]

http://optimizely.com


Expensive physics simulations

• Coverage and capacity optimization in 
cellular networks


• Decision is where to place cell towers 
such that coverage is maximized


• Expensive to simulate a particular 
configuration of cell tower placement

[5] Dreifuerst et al., 2021

Figure from [5]



Lab science experiments (chemistry, biology, materials)



Quick outline of Bayesian optimization (GP model)

Resources: Ax documentation (ax.dev)

• Step 1: Build a surrogate model (usually, a Gaussian process) that allows the 
experimenter to quantify uncertainty about their knowledge of the function  given 
the observed data so far. 

• By doing so, the experimenter can trade-off exploration (trying new points) 
and exploitation (focusing in around the optimal)

f



Quick outline of Bayesian optimization (GP model)

Resources: Ax documentation (ax.dev)



Quick outline of Bayesian optimization (acquisition)

Resources: Ax documentation (ax.dev)

• Step 2: Decide where to sample next by maximizing an acquisition function. There are 
many ways to explore; an acquisition function encodes this strategy


• The acquisition function places value on points and implies a sampling policy


• Expected improvement is one such possibility: , 
where  is the best observation so far

EI(x) = E[max( f(x) − fbest, 0)]
fbest



Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)
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Quick outline of Bayesian optimization (EI)

Resources: Ax documentation (ax.dev)



Outline

• Review of Bayesian optimization (BO)


• Bayesian optimization with a budget and costs


• Value-to-cost ratio methods


• Our new acquisition function


• Optimization of multi-step, differentiable trees


• Numerical results


• Open source code in BoTorch



What is the standard BO formulation missing?

• It assumes that evaluations of  take identical effort (or equally expensive), but…
evaluation costs are often heterogeneous!

f

In a sample-efficient setting, exploiting 8-10x 
cheaper training times is potentially very impactful. 

At the same time, we don’t necessarily know the 
cost function a priori.



Evaluation times from three open-source examples

Online latent Dirichlet 
allocation algorithm for 
topic modeling (2-10 hours!)

Random forest on the 
Boston housing dataset

Energy-aware robot pushing 
benchmark example



Real-world applications where cost is heterogeneous

• AutoML for large-scale recommender systems, which consume the majority of 
inference cycles in Meta’s production data centers [6]


• Sparse features are usually converted to dense features via an embeddings. 


• Tuning the embedding dimensionality affects the model’s training time

[6] Gupta et al., 2020 (https://arxiv.org/pdf/1906.03109.pdf)


https://arxiv.org/pdf/1906.03109.pdf


• In online experimentation, some variants may be more expensive (consider 
testing prices, coupons, or some other type of promotion)

Real-world applications where cost is heterogeneous



Our problem: Bayesian optimization with costs / budgets

• Consider the standard BO setting of , but an evaluation of  at a 
point  incurs a cost 


• The cost function  is also unknown and must be learned.


• Our observations after each step is .


• We care about the best configuration found after some experimentation budget 
 is exhausted:


• Find a policy that sequentially selects points  such that the best 
observation is as large as possible and  is the last iteration  where the 
experimentation budget is satisfied: .

maxx∈𝕏 f(x) f
x c(x)

c(x)

(x, f(x), c(x))

B

{xi}
NB
i=1

NB n
∑n

i c(xi) ≤ B



Differences from standard BO

• There is a new dimension to the exploration-exploitation trade-off:


• Need to learn the cost function


• Need to reason about cost-learning through uncertainty estimates of the cost 

• Interestingly aspect: learning about the cost incurs the cost itself


• Optimal behavior when the budget is high vs when the budget is low



Thought experiment

• Consider a point  where, based on the surrogate:


•  seems good and has significant upside


•  is medium but with high uncertainty


• Should we evaluate?


• If the observed  is high, we might exhaust our 
budget.


• If the observed  turns out to be low cost, we 
might have just found a new region of cheap + high 
performing points.

x

f(x)

c(x)

c(x)

c(x)

These complex features point to 
a planning-based solution, but 
first let’s take detour and look at 
a simple class of heuristics.



The “value over cost” paradigm

• All existing work in this area uses a form of value to cost ratio. 

• Typically, an existing acquisition function is divided by the cost function to determine 
a point that gives the maximum “value” per unit cost:


• e.g., “EI / cost” samples the point 


• Variants: 


• , 


• 


• Snoek et al., 2012; Swersky et al., 2013; Kandasamy et al., 2016; 2017; Poloczek et 
al., 2017; Song et al.,2019; Wu et al., 2020; Lee et al., 2020b


• Decent performance in many practical settings, but not always

x* = argmaxx EI(x)/c(x)

x* = argmaxx EI(x)/E[c(x)]

x* = argmaxx EI(x)/c(x)α



EI / cost can be arbitrarily bad

• Theorem: The approximation ratio provided by the EI/cost policy is arbitrarily bad. 

• Let  be a set of initial observations  (let’s suppose  is known).


• Let  be the value (expected best value of the function  found within the budget) of the 
optimal policy and let  be the value of the “EI / cost” policy, .


• Then, for any (large) , there exists a BO problem instance (a prior probability distribution 
over objective and cost functions, a budget, and a set of initial observations ) where: 





• What does this mean? Setting  to be large, you can find problem instances where the 
performance of EI/cost is less than  times the optimal performance.


• Does this happen in practice? When there exist points with small / near-zero costs, this 
phenomenon happens often (anecdotally).


𝒮 {(x, f(x))} c(x)

V*(𝒮) f
VEI/cost(𝒮) argmaxx EI(x)/c(x)

α > 0
𝒮

V*(𝒮) > αVEI/cost(𝒮) .

α
1/α



Proof via construction of bad instance

• Suppose we have a function  with a finite domain and the following prior.

• All points are normally distributed and have mean 0.

• Two types of points: many low-variance, low-cost point and one high-variance, 

high-cost point.


• low-variance, low-cost: variance is , cost of evaluation 


• high-variance, high-cost: variance is 1, cost of evaluation is 


• Suppose that the total evaluation budget is also .

f

ϵ2 c(x) = ϵ

c(x) = 1 + δ

1 + δ



Proof via construction of bad instance

• Two possible policies:


• Policy 1: “always measure the low-variance arms”


• Policy 2: “measure the high-variance arm once”




Proof via construction of bad instance

• Let . Acquisition values for the EI / cost policy:


• low-variance, low-cost: 


• high-variance, high-cost: 


•  So, the EI / cost policy prefers the low cost points at the beginning. 

• After measuring the first point, the high-cost point is no longer feasible, so EI / cost must 
be the first type of policy (“always selects low-cost points”) 

• With some calculations, we can show that: 


• The “measure the high-variance arm once” has value 


• The value is independent of 


Z ∼ 𝒩(0,1)

EI(x)/c(x) = E[( f(x) − 0)+]/ϵ = E[ϵZ+]/ϵ = E[Z+]

EI(x)/c(x) = E[( f(x) − 0)+]/(1 + δ) = E[Z+]/(1 + δ)

limϵ→0 VEI/cost(𝒮) = 0

E[Z+] > 0

ϵ



Proof via construction of bad instance

Conclusion: 
• Optimal policy: Policy 2 (“measure the high-variance arm once”)

• EI/cost policy: Policy 1 “repeatedly measure the low-variance arms”


• limϵ→0 VEI/cost(𝒮) = 0



Illustrative example (EI / cost)

• In this synthetic setting, EI / cost tends to measure the low cost points.


Objective

Cost

Acquisition



MDP formulation of the problem

• In order to properly manage the various trade-offs, we need to plan ahead! 

• Dynamic programming equation, considers both objective & cost-learning:


• Let  denote the set of data up to step 


• The decision at step is the point to measure: 


• Objective: , where:


•  (we care about the best observed point)


•  (budget is still available)


• Expectation is over the sequences of random observation sets 

𝒮n = {(xi, yi = f(xi), zi = c(xi))} n

xn = πn(𝒮n−1)

V*(𝒮) = supπ∈Π Eπ
𝒮[u(𝒮NB

) − u(𝒮0)]
u(𝒮n) = max(x,y,z)∈𝒮n

y

NB = sup{k : ∑i
j=1 zj ≤ B}

{𝒮k}



Challenges of the MDP

• State space is highly intractable:

• Continuous

• Grows with the number of observed points so far

• High-dimensional, but even worse, the state is a set 


• Ordering of observations don’t matter

• Traditional ADP / RL approaches to solve this problem will be challenging because they 

often require approximating a function of the state (whether value / policy)

• Attempts at non-myopic BO have largely focused on


• Heuristic approximations: Gonzalez et al, 2016

• Horizon of two: Wu & Frazier, 2019, Zhang et al., 2021

• Rollout policies: Lam et al., 2016, Lee et al., 2020, Yue & Kontar, 2020, Lee et al, 2021



Our approach: decision trees

1

t = 0

1 1

t = 1 t = 2

“simulated futures”

real system

We avoid the complexities of commonly-used, value-function-based ADP/RL by:

• using a discrete representation of the future

• re-optimizing after each period



Optimizing via differentiable trees

• At each period, we optimize a differentiable decision tree [7]


• Based on the notion of fantasizing from the GP: 

• Suppose we want to know the effect on our knowledge 
of measuring at 


• Sample a “fantasy observation”  from GP


• Add  to GP training data


• Condition on the full data to get fantasy GP   

• Full, optimizable model that comes with uncertainty 
estimates!


• Suppose we want to consider the value of a policy 


• Repeatedly fantasize and apply  to each fantasy GP to 
get an estimated value of the policy

x

ỹ ∼ f(x)

(x, ỹ)

f̃

π

π

[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020



Optimizing via differentiable trees

[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020

[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020

• Using the “reparameterization trick” we can write , where 


•  is the posterior mean of the GP, 


• , the posterior covariance of the GP,


• and  — no dependence on !


• We can (auto-) differentiate through the tree wrt  for fixed , using BoTorch [8] / PyTorch

ỹ = μ(x) + L(x) z

μ(x)

L(x)L(x)T = Σ(x)

z ∼ N(0, I ) x

x z



Visualization of one such tree

• Original MDP formulation has a random 
horizon (ends when no budget left)


• Zero subsequent value along paths in the 
tree where the budget is exhausted


• Partial rewards generated along those paths



Recall the previous example (EI / cost)

• In this synthetic setting, EI / cost tends to measure the low cost points.


Objective

Cost

Acquisition



Illustrative example (our new acquisition function)

• But our method will try to learn the cost function and find the optimum.




Empirical results and industry collaborations

• Results from Meta collaborations:


• 5x reduction in cost to achieve 
the same objective quality


• Made available in company-
wide AutoML platform



Other computational notes

• Based on open-source code in BoTorch [8]


• Batched (vectorized) computations involving fantasy GP models in PyTorch


• A 3 layer tree with  nodes is represented by a  GP model


• Batched linear algebra tensor operations that exploit parallelization and hardware 
acceleration

n1, n2, n3 n3 × n2 × n1 × 1

[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020



Drawbacks of the approach and future work

• Could we allow for cheaper proxies to also be used?


• Future work: extension to the multi-fidelity setting


• Decision trees do not scale with horizon


• Our methodology only allows us to look ahead 4-6 steps (still a major improvement upon 
existing non-myopic BO methods)


• Acquisition optimization times range from 42sec - 7min, compared to less than 30sec for 
baseline acquisitions.


• Future work: improved multi-step methodologies?


• Heuristic budget pacing rules to solve shorter-horizon problems


• Future work: long / unknown horizons?


• Requires at each step re-optimization due to discretized decision tree


• Future work: policy reuse?



Thank you! Questions?

Please feel free to email me (danielrjiang@gmail.com) for additional comments / discussion!


