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Introduction to the Bayesian optimization problem

We have an expensive-to-evaluate objective function f : R - R

Typically, assume that f'is a continuous function, but otherwise no structure

No gradients

Evaluations can either be exact or noisy, i.e., y = f(x) + €

Goal:
max .y f(x), where X C R% is usually not too complicated (box bounds)

Small number of evaluations (think 20 to 60)

When does this type of problem arise?

Resources: Frazier, 2008; Ax documentation



Optimizing ML algorithms (AutoML)

Hyper-parameter tuning of ML models [1]
Learning rates, momentum parameters
Neural network architectures

One of the primary applications of BO in industry

[1] Snoek et al., 2012



Online experimentation (A/B testing)

Compare multiple versions of a system by running an experiment [2, 3]

Despite the name “A/B-test,” usually need to search through many more than just
two variants of the system

E.g., value model tuning for ranking/recommendation algorithms [3]
Experiments can run for days or even weeks (costly in terms of time)

Testing a new feature can lead to loss of revenue (costly in terms of $3)
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[2] Letham et al., 2019, [3] Letham & Bakshy, 2019, [4] optimizely.com



http://optimizely.com

Expensive physics simulations

Coverage and capacity optimization in
cellular networks

Decision is where to place cell towers
such that coverage is maximized

Expensive to simulate a particular
configuration of cell tower placement

[5] Dreifuerst et al., 2021

=200

—400

—a00

—-600 —-400 -200 O 200

X [m]

Figure from [5]

400

600

Received Power [dBm]




Lab science experiments (chemistry, biology, materials)
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Quick outline of Bayesian optimization (GP model)

Step 1: Build a surrogate model (usually, a Gaussian process) that allows the

experimenter to quantify uncertainty about their knowledge of the function f given
the observed data so far.

By doing so, the experimenter can trade-off exploration (trying new points)
and exploitation (focusing in around the optimal)
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Quick outline of Bayesian optimization (GP model)

Draws from the posterior GP
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Quick outline of Bayesian optimization (acquisition)

Step 2: Decide where to sample next by maximizing an acquisition function. There are
many ways to explore; an acquisition function encodes this strategy

The acquisition function places value on points and implies a sampling policy

Expected improvement is one such possibility: EI(x) = E[max( JX) = foestr O)],
where fi . is the best observation so far

Resources: Ax documentation (ax.dev)



Quick outline of Bayesian optimization (El)
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Quick outline of Bayesian optimization (El)

Online metric
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Quick outline of Bayesian optimization (El)

Online metric

— GPestimate GPuncertainty & & Data
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Quick outline of Bayesian optimization (El)

Online metric
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Quick outline of Bayesian optimization (El)

Online metric
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Outline

B esiowof Baves rnization (BO!

Bayesian optimization with a budget and costs
Value-to-cost ratio methods
Our new acquisition function
Optimization of multi-step, differentiable trees
Numerical results

Open source code in BoTorch



What is the standard BO formulation missing?

It assumes that evaluations of f take identical effort (or equally expensive), but...
evaluation costs are often heterogeneous!

Decision tree training times on breast cancer data
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In a sample-efficient setting, exploiting 8-10x
cheaper training times is potentially very impactful.

At the same time, we don’t necessarily know the
cost function a priori.



Evaluation times from three open-source examples
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topic modeling (2-10 hours!)



Real-world applications where cost is heterogeneous

AutoML for large-scale recommender systems, which consume the majority of
inference cycles in Meta’s production data centers [6]

Sparse features are usually converted to dense features via an embeddings.

Tuning the embedding dimensionality affects the model’s training time
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[6] Gupta et al., 2020 (https://arxiv.org/pdf/1906.03109.pdf)
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Real-world applications where cost is heterogeneous

In online experimentation, some variants may be more expensive (consider
testing prices, coupons, or some other type of promotion)

Starting at $6.99/month

RIDERCODE25

$2.50 credit per ride for 10 rides. ($25 Coupon Value)

RIDERCODE18

$3 credit per ride for 6 rides. ($18 Coupon Value)

RIDERCODE15

$5 credit per ride for 3 rides. ($15 Coupon Value)



Our problem: Bayesian optimization with costs / budgets

Consider the standard BO setting of max .y f(x), but an evaluation of f at a
point x incurs a cost c(x)

The cost function c(x) is also unknown and must be learned.

Our observations after each step is (x, f(x), c(x)).

We care about the best configuration found after some experimentation budget
B is exhausted:

Find a policy that sequentially selects points {xi}f.\fl such that the best

observation is as large as possible and Ny is the last iteration n where the
experimentation budget is satisfied: Z? c(x;) < B.



Differences from standard BO

There is a new dimension to the exploration-exploitation trade-off:
Need to learn the cost function

Need to reason about cost-learning through uncertainty estimates of the cost
Interestingly aspect: learning about the cost incurs the cost itself

Optimal behavior when the budget is high vs when the budget is low



Thought experiment

Consider a point x where, based on the surrogate:
- f(x) seems good and has significant upside

c(x) is but with high uncertainty
Should we evaluate?

If the observed c(x) is high, we might exhaust our
budget.

If the observed c(x) turns out to be low cost, we
might have just found a new region of cheap + high
performing points.

These complex features point to
a planning-based solution, but
first let’s take detour and look at
a simple class of heuristics.



The “value over cost” paradigm

- All existing work in this area uses a form of value to cost ratio.

- Typically, an existing acquisition function is divided by the cost function to determine
a point that gives the maximum “value” per unit cost:

e.g., “El / cost” samples the point x* = argmax, EIl(x)/c(x)
- Variants:

- x* = argmax, EI(x)/E[c(x)],

- x* = argmax, EI(x)/c(x)”

Snoek et al., 2012; Swersky et al., 2013; Kandasamy et al., 2016; 2017; Poloczek et
al., 2017; Song et al.,2019; Wu et al., 2020; Lee et al., 2020b

Decent performance in many practical settings, but not always



El / cost can be arbitrarily bad

- Theorem: The approximation ratio provided by the El/cost policy is arbitrarily bad.
Let & be a set of initial observations {(x, f(x))} (let’s suppose c(x) is known).

Let V*(&) be the value (expected best value of the function f found within the budget) of the
optimal policy and let VEVCOSY(§) pe the value of the “El / cost” policy, argmax, EI(x)/c(x).

- Then, for any (large) a > 0, there exists a BO problem instance (a prior probability distribution
over objective and cost functions, a budget, and a set of initial observations &) where:

VHS) > aVHN(S).

- What does this mean? Setting a to be large, you can find problem instances where the
performance of El/cost is less than 1/a times the optimal performance.

Does this happen in practice? When there exist points with small / near-zero costs, this
phenomenon happens often (anecdotally).



Proof via construction of bad instance

- Suppose we have a function f with a finite domain and the following prior.

- All points are normally distributed and have mean O.

- Two types of points: many low-variance, low-cost point and one high-variance,
high-cost point.

2 cost of evaluation c(x) = €

- low-variance, low-cost: variance is €
- high-variance, high-cost: variance is 1, cost of evaluationis c(x) = 1 + 0

Suppose that the total evaluation budget is also 1 + 6.
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Proof via construction of bad instance

- Two possible policies:
- Policy 1: “always measure the low-variance arms”

- Policy 2: “measure the high-variance arm once”
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Proof via construction of bad instance

Let Z ~ 4/(0,1). Acquisition values for the El / cost policy:

low-variance, low-cost: EI(x)/c(x) = E[(f(x) — 0)"]/e = E[eZ"]/e = E[Z"]
- high-variance, high-cost: EI(x)/c(x) = E[(f(x) = 0)*]/(1 + 6) = E[Z"]/(1 + )
So, the El / cost policy prefers the low cost points at the beginning.

- After measuring the first point, the high-cost point is no longer feasible, so El / cost must
be the first type of policy (“always selects low-cost points”)

. With some calculations, we can show that: lim__ , VEVCOS{( ) =

e—0

- The “measure the high-variance arm once” has value E[Z*] > 0

- The value is independent of €



Proof via construction of bad instance

Conclusion:
- Optimal policy: Policy 2 (“measure the high-variance arm once”)

- El/cost policy: Policy 1 “repeatedly measure the low-variance arms”
) lim€—>0 VEI/Cost(Csv) —0



lllustrative example (El /

cost)

In this synthetic setting, El / cost
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MDP formulation of the problem

In order to properly manage the various trade-offs, we need to plan ahead!

Dynamic programming equation, considers both objective & cost-learning:
Let &', = {(x;, y; = f(x;), 7; = c(x;)) } denote the set of data up to step n
The decision at step is the point to measure: x, = 7,(5,,_;)

Objective: V¥(&) = sup,ep E% [u(Sy ) — u(S)|, where:
u(sd,) = max, , »es Y (We care about the best observed point)

Ny = sup{k ; Z;zl i < B} (budget is still available)

Expectation is over the sequences of random observation sets { &', }



Challenges of the MDP

State space is highly intractable:
Continuous
Grows with the number of observed points so far
High-dimensional, but even worse, the state is a set
Ordering of observations don’t matter

Traditional ADP / RL approaches to solve this problem will be challenging because they
often require approximating a function of the state (whether value / policy)

Attempts at non-myopic BO have largely focused on
Heuristic approximations: Gonzalez et al, 2016
Horizon of two: Wu & Frazier, 2019, Zhang et al., 2021
Rollout policies: Lam et al., 2016, Lee et al., 2020, Yue & Kontar, 2020, Lee et al, 2021



Our approach: decision trees

“simulated futures”

real system

We avoid the complexities of commonly-used, value-function-based ADP/RL by:
* using a discrete representation of the future

* re-optimizing after each period



Optimizing via differentiable trees

At each period, we optimize a differentiable decision tree [7]

Based on the notion of fantasizing from the GP:

Draws from the posterior GP

Suppose we want to know the effect on our knowledge
of measuring at x ]

ctive

Obje

Sample a “fantasy observation” y ~ f(x) from GP

Add (x, y) to GP training data
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Condition on the full data to get fantasy GPf

Full, optimizable model that comes with uncertainty (,*“
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[7] Jiang*, J.*, Balandat*, Karrer, Gardner, Garnett, 2020



Optimizing via differentiable trees

Using the “reparameterization trick” we can write y = u(x) + L(x) z, where
u(x) is the posterior mean of the GP,
L(x)L(x)" = X(x), the posterior covariance of the GP,
and z ~ N(O, I) — no dependence on x!

We can (auto-) differentiate through the tree wrt X for fixed z, using BoTorch [8] / PyTorch
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Visualization of one such tree

Original MDP formulation has a random
horizon (ends when no budget left)

Zero subsequent value along paths in the
tree where the budget is exhausted
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Recall the previous example (El / cost)

In this synthetic setting, El / cost

—-=-= objective function
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lllustrative example (our new acquisition function)

- But our method will try to learn the cost function and find the optimum.
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Empirical results and industry collaborations
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Results from Meta collaborations:

- 5Bx reduction in cost to achieve
the same objective quality

- Made available in company-
wide AutoML platform



Other computational notes

Based on open-source code in BoTorch [8]

)

Bolorch

Batched (vectorized) computations involving fantasy GP models in PyTorch

A 3 layer tree with n, n,, n; nodes is represented by a ny X n, X n; X 1 GP model

Batched linear algebra tensor operations that exploit parallelization and hardware
acceleration

[8] Balandat, Karrer, J., Daulton, Letham, Wilson, Bakshy, 2020



Drawbacks of the approach and future work

Could we allow for cheaper proxies to also be used?
Future work: extension to the multi-fidelity setting
Decision trees do not scale with horizon

Our methodology only allows us to look ahead 4-6 steps (still a major improvement upon
existing non-myopic BO methods)

- Acquisition optimization times range from 42sec - 7min, compared to less than 30sec for
baseline acquisitions.

Future work: improved multi-step methodologies?

Heuristic budget pacing rules to solve shorter-horizon problems
Future work: long / unknown horizons?

Requires at each step re-optimization due to discretized decision tree

Future work: policy reuse?



Thank you! Questions?

Please feel free to email me (danielrjiang@gmail.com) for additional comments / discussion!



