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Abstract. In this paper, we consider a finite-horizon Markov decision process (MDP) for
which the objective at each stage is to minimize a quantile-based risk measure (QBRM)
of the sequence of future costs; we call the overall objective a dynamic quantile-based
risk measure (DQBRM). In particular, we consider optimizing dynamic risk measures
where the one-step risk measures are QBRMs, a class of risk measures that includes
the popular value at risk (VaR) and the conditional value at risk (CVaR). Although there
is considerable theoretical development of risk-averse MDPs in the literature, the com-
putational challenges have not been explored as thoroughly. We propose data-driven
and simulation-based approximate dynamic programming (ADP) algorithms to solve
the risk-averse sequential decision problem. We address the issue of inefficient sampling
for risk applications in simulated settings and present a procedure, based on importance
sampling, to direct samples toward the “risky region” as the ADP algorithm progresses.
Finally, we show numerical results of our algorithms in the context of an application
involving risk-averse bidding for energy storage.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2017.0872.

Keywords: approximate dynamic programming • dynamic risk measures • energy trading • reinforcement learning • Q-learning

1. Introduction
Sequential decision problems, in the form of Markov decision processes (MDPs), are most often formulated with
the objective of minimizing an expected sum of costs or maximizing an expected sum of rewards (Puterman [51],
Bertsekas and Tsitsiklis [9], Powell [49]). However, it is becoming more and more evident that solely considering
the expectation is insufficient as risk-preferences can vary greatly from application to application. Broadly
speaking, the expected value can fail to be useful in settings containing either heavy-tailed distributions or rare,
but high-impact events. For example, heavy-tailed distributions arise frequently in finance (electricity prices
are well-known to possess this feature; see Byström [14], Kim and Powell [37]). In this case, the mean of the
distribution itself may not necessarily be a good representation of the randomness of the problem; instead, it is
likely useful to introduce a measure of risk on the tail of the distribution as well. The rare event situation is, in
a sense, the inverse case of the heavy-tail phenomenon, but it can also benefit from a risk measure other than
the expectation. To illustrate, certain problems in operations research can be complicated by critical events that
happen with small probability, such as guarding against stock-outs and large back-orders in inventory problems
(see Glasserman and Liu [29]) or managing the risk of the failure of a high-value asset (see Enders et al. [25]). In
these circumstances, the merit of a policy might be measured by the number of times that a bad event happens
over some time horizon.
One way to introduce risk-aversion into sequential problems is to formulate the objective using dynamic risk

measures (Ruszczyński [60]). A rough preview, without formal definitions, of our optimization problem is as
follows: We wish to find a policy that minimizes risk, as assessed by a certain type of dynamic risk measure.
The objective can be written as

min
π∈Π

ρα0
(
Cπ

1 + ρα1 (Cπ
2 + · · ·+ ραT−1(Cπ

T ) · · · )
)
,

where Π is a set of policies, {Cπ
t } are costs under policy π, and {ραt } are one-step risk measures (i.e., components

of the overall dynamic risk measure). Precise definitions are given in the subsequent sections. We focus on the
case where the objective at each stage is to optimize a quantile-based risk measure (QBRM) of future costs; we call
the overall objective a dynamic quantile-based risk measure (DQBRM).
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This paper makes the following contributions. First, we describe a new data-driven or simulation-based ADP
algorithm, called Dynamic-QBRM ADP, that is similar in spirit to established asynchronous algorithms like
Q-learning (see Watkins and Dayan [73]) and lookup table approximate value iteration (see, e.g., Bertsekas and
Tsitsiklis [9], Powell [49]), where one state is updated per iteration. The second contribution of the paper is
a companion sampling procedure to Dynamic-QBRM ADP, which we call risk-directed sampling (RDS). As we
describe above, when dealing with risk, there is a large class of problems in which we are inherently dealing
with rare, but very costly events. Broadly speaking, the evaluation of a QBRM that is focused on the tail of the
distribution (e.g., CVaR at, say, the 99% level) depends crucially on efficiently directing the algorithm toward
sampling these “risky” regions. In this part of the paper, we consider the question: is there a way to learn, as
the ADP algorithm progresses, the interesting values of the information process to sample?
The paper is organized as follows. We first provide a literature review in Section 2. In Section 3, we give our

problem formulation, a brief introduction to dynamic risk measures, and the definition of a class of quantile-
based risk measures. Next, we introduce the algorithm for solving risk-averse MDPs in Section 4 and give a
theoretical analysis in Section 5. In Section 6, we discuss sampling issues and describe the companion sampling
procedure. We show numerical results on an example energy trading application in Section 7 and conclude in
Section 8.

2. Literature Review
The theory of dynamic risk measures and the notion of time-consistency (see e.g. Riedel [53], Artzner et al. [4],
Cheridito et al. [17]) is extended to the setting of sequential optimization problems in Ruszczyński and
Shapiro [61] and Ruszczyński [60], in which it is proved that any time-consistent dynamic risk measure can be
written as compositions of one-step conditional risk measures (these are simply risk measures defined in a condi-
tional setting, analogous to the conditional expectation for the traditional case). From this, a Bellman recursion
is obtained, becoming a familiar way of characterizing optimal policies. Building on the theory of dynamic pro-
gramming, versions of exact value iteration and policy iteration are also developed in Ruszczyński [60]. Later,
in Çavus and Ruszczyński [15], these exact methods are analyzed in the more specific case of undiscounted
transient models.
Under the assumption that we use one-step coherent risk measures, as axiomatized in Artzner et al. [3], the

value functions of a risk-averse Markov decision process with a convex terminal value function can be easily
shown to satisfy convexity using the fact that coherent risk measures are convex and monotone. Therefore, the
traditional method of stochastic dual dynamic programming (SDDP) of Pereira and Pinto [44] for multistage,
risk-neutral problems, which relies on the convexity of value functions, can be adapted to the risk-averse case.
This idea is successfully explored in Philpott and de Matos [47], Shapiro et al. [69], and Philpott et al. [48],
with applications to the large-scale problem of hydro-thermal scheduling using one-step mean-CVaR (convex
combination of mean and CVaR) and one-step mean-upper semideviation risk measures. The main drawbacks
of risk-averse SDDP are: (1) the cost function must be linear in the state; (2) some popular risk measures, such
as value at risk (VaR), are excluded because they are not coherent and do not imply convex value functions; and
(3) the full risk measure (which can be recast as an expectation in certain instances) has to be computed at every
iteration. Since no convexity or linearity assumptions are made in this paper, we take an alternative approach
from the SDDP methods and instead assume the setting of finite state and action spaces, as in Q-learning. At
the same time, because the default implementation of our approach does not take advantage of structure, it is
limited to smaller problems. Extensions to the methods proposed in this paper for exploiting structure can be
made by following techniques such as those discussed in Powell et al. [50], Nascimento and Powell [42], and
Jiang and Powell [32].
Recursive stochastic approximation methods have been applied to estimating quantiles in static settings (see

Tierney [71], Bardou and Frikha [6], Kan [35]). Related to our work, a policy gradient method for optimizing
MDPs (with a risk-neutral objective) under a CVaR constraint is given in Chow and Ghavamzadeh [18]. All
of these methods are related to ours in the sense that the minimization formula Rockafellar and Uryasev [57,
Theorem 10] for CVaR is optimized with gradient techniques. In our multistage setting with dynamic risk
measures (which is also coupled with optimal control), there are some new interesting complexities, including
the fact that every new observation (or data point) is generated from an imperfect distribution of future costs
that is “bootstrapped” from the previous estimate of the value function. This means that not only are the
observations inherently biased, but the errors compound over time—this was not the case for the static setting
considered in earlier work. Under reasonable assumptions, we analyze both the almost sure convergence and
convergence rates for our proposed algorithms.
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Our risk-directed sampling procedure is inspired by adaptive importance sampling strategies from the lit-
erature, such as the celebrated cross-entropy method of Rubinstein [58]. See, e.g., Al-Qaq et al. [2], Bardou and
Frikha [6], Egloff and Leippold [24], and Ryu and Boyd [63] for other similar approaches. The critical difference
in our approach is that in an ADP setting, we have the added difficulty of not being able to assume perfect
knowledge of the objective function; rather, our observations are noisy and biased. To our knowledge, this is the
first time an adaptive sampling procedure has been combined with a value function approximation algorithm in
the risk-averse MDP literature. The closest paper is by Kozmík and Morton [39], which considers an importance
sampling approach for policy evaluation.

3. Problem Formulation
In this section, we establish the setting of the paper. In particular, we describe the risk-averse model, introduce
the concept of dynamic risk measures, and define a class of quantile-based risk measures.

3.1. Model
We consider an MDP with a finite time-horizon, t � 0, 1, 2, . . . ,T, where the last decision is made at time t �T−1,
so that the set of decision epochs is given by T � {0, 1, 2, . . . ,T−1}. Given a probability space (Ω,F ,P), we define
a discrete-time stochastic process {Wt}Tt�0, with Wt ∈W for all t, as the exogenous information process in the
sequential decision problem, where Wt is adapted to a filtration {F t}Tt�0, with {�,Ω} � F 0 ⊆ F 1 ⊆ · · · ⊆ F T ⊆ F .
We assume that all sources of randomness in the problem are encapsulated by the process {Wt} and that it is
independent across time. For computational tractability, we work in the setting of finite state and action spaces.
Let the state space be denoted S, and let the action space be A, where |S | <∞ and |A| <∞. The set of feasible
actions for each state s ∈ S , written As , is a subset of A. The set U � {(s , a) ∈ S ×A: a ∈ As} is the set of all
feasible state-action pairs. The stochastic process describing the states of the system is {St}Tt�0, where St is an
F t-measurable random variable taking values in S , and at is a feasible action determined by the decision maker
using St . Furthermore, let Zt denote the space of F t-measurable random variables and Zt ,T �Zt × · · · ×ZT .
We model the system using a transition function or system model SM : S ×A×W →S , which produces the next

state St+1 given a current state St , action at , and an outcome of the exogenous process Wt+1: St+1 �SM(St , at ,Wt+1).
The cost for time t is given by ct(St , at ,Wt+1), where ct : S ×A×W →� is the cost function. A policy is a sequence
of decision functions {Aπ

0 ,A
π
1 , . . . ,A

π
T−1} indexed by π ∈Π, where Π is the index set of all policies. Each decision

function Aπ
t : S →A is a mapping from a state to a feasible action, such that Aπ

t (s) ∈ As for any state s. Let the
sequence of costs under a policy π be represented by the process Cπ

t for t � 1, 2, . . . ,T, where

Cπ
t � ct−1(Sπt−1 ,A

π
t−1(Sπt−1),Wt) ∈Zt ,

where {Sπt } are the states visited while following policy π. Note that Cπ
t refers to the cost from time t − 1, but

the index of t refers to its measurability: Cπ
t depends on information only known at time t.

3.2. Review of Dynamic Risk Measures
In this subsection, we briefly introduce the notion of a dynamic risk measure; for a more detailed treatment, see,
e.g., Frittelli and Gianin [27], Riedel [53], Pflug and Ruszczyński [46], Boda and Filar [10], Cheridito et al. [17],
and Acciaio and Penner [1]. Our presentation closely follows that of Ruszczyński [60], which develops the theory
of dynamic risk measures in the context of MDPs. First, a conditional risk measure is a mapping ρt ,T : Zt ,T→Zt
that satisfies the following monotonicity requirement: for X,Y ∈ Zt ,T and X ≤ Y (componentwise and almost
surely), ρt ,T(X) ≤ ρt ,T(Y).

Given a sequence of future costs Ct , . . . ,CT , the intuitive meaning of ρt ,T(Ct , . . . ,CT) is a certainty equivalent
cost (i.e., at time t, one is indifferent between incurring ρt ,T(Ct , . . . ,CT) and the alternative of being subjected to
the stream of stochastic future costs). See Rudloff et al. [59] for an in-depth discussion regarding the certainty
equivalent interpretation in the context of multistage stochastic models. A dynamic risk measure {ρt ,T}Tt�0 is a
sequence of conditional risk measures ρt ,T : Zt ,T→Zt , which allows us to evaluate the future risk at any time t
using ρt ,T . Of paramount importance to the theory of dynamic risk measures is the notion of time-consistency,
which says that if from the perspective of some future time τ, one sequence of costs is riskier than another and
the two sequences of costs are identical from the present until τ, then the first sequence is also riskier from the
present perspective (see Ruszczyński [60] for the full technical definition).
Other definitions of time-consistency can be found in the literature, e.g., Boda and Filar [10], Cheridito and

Stadje [16], and Shapiro [68]. Though they may differ technically, these definitions share the same intuitive
spirit. Under the conditions:

ρt ,T(0, . . . , 0)� 0 and ρt ,T(Ct ,Ct+1 , . . . ,CT)� Ct + ρt ,T(0,Ct+1 , . . . ,CT),
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it is proven in Ruszczyński [60] that for some one-step conditional risk measures ρt : Zt+1→Zt , a time-consistent,
dynamic risk measure {ρt ,T}Tt�0 can be expressed using the following nested representation:

ρt ,T(Ct , . . . ,CT)� Ct + ρt

(
Ct+1 + ρt+1(Ct+2 + · · ·+ ρT−1(CT) · · · )

)
,

It is thus clear that we can take the reverse approach and define a time-consistent dynamic risk measure by
simply specifying a set of one-step conditional risk measures {ρt}Tt�0. This is a common method that has been
used in the literature when applying the theory of dynamic risk measures in practice (see, e.g., Philpott and
de Matos [47], Philpott et al. [48], Shapiro et al. [69], Kozmík and Morton [39], Rudloff et al. [59]).

3.3. Quantile-Based Risk Measures
In this paper, we focus on simulation techniques where the one-step conditional risk measure belongs to a
specific class of risk measures called quantile-based risk measures (QBRM). Although the term quantile-based risk
measure has been used in the literature to refer to risk measures that are similar in spirit to VaR and CVaR (see,
e.g., Dowd and Blake [22], Neise [43], Sereda et al. [67]), it has not been formally defined. First, let us describe
these two popular risk measures, which serve to motivate a more general definition for a QBRM.
Also known as the quantile risk measure, VaR is a staple of the financial industry (see, e.g., Duffie and Pan [23]).

Given a real-valued random variable X (representing a loss) and a risk level α ∈ (0, 1), the VaR or quantile of X
is defined to be

VaRα(X)� qα(X)� inf
u
{P(X ≤ u) ≥ α}.

To simplify our notation, we use qα(X) in the remainder of this paper. It is well known that VaR does not
satisfy coherency (Artzner et al. [3]), specifically the axiom of subadditivity, an appealing property that encourages
diversification. Despite this, several authors have given arguments in favor of VaR. For example, Danielsson
et al. [20] concludes that in practical situations, VaR typically exhibits subadditivity. Dhaene et al. [21] and
Ibragimov and Walden [30] give other points of view on why VaR should not be immediately dismissed as an
effective measure of risk. A nested version of VaR for use in a multistage setting is proposed in Cheridito and
Stadje [16], though practical implications have not been explored in the literature.
CVaR is a coherent alternative to VaR and has been both studied and applied extensively in the literature.

Although the precise definitions may slightly differ, CVaR is also known by names such as expected shortfall, aver-
age value at risk, or tail conditional expectation. Given a general random variable X, the following characterization
is given in Rockafellar and Uryasev [57]:

CVaRα(X)� inf
u

{
u +

1
1− αE[(X − u)+]

}
� qα(X)+ 1

1− αE[(X − qα(X))+].

Applications of risk-averse MDPs using dynamic risk measures have largely focused on combining CVaR with
expectation; once again, see Philpott and de Matos [47], Philpott et al. [48], Shapiro et al. [69], Kozmík and
Morton [39], and Rudloff et al. [59].
For the purposes of this paper, we offer the following general definition of a QBRM that allows dependence

on more than one quantile; the definition includes the above two examples as special cases.

Definition 1 (Quantile-Based Risk Measure (QBRM)). Let X be a real-valued random variable. A quantile-based risk
measure ρα can be written as the expectation of a function of X and finitely many of its quantiles. More precisely,
ρα takes the form

ρα(X)� E
[
Φ(X, qα1(X), qα2(X), . . . , qαm (X))

]
, (1)

where α ∈�m is a vector of m risk levels, α1, α2, . . . , αm , and a function Φ: �m+1→�, chosen so that ρα satisfies
monotonicity, translation invariance, and positive homogeneity (see Artzner et al. [3] for the precise definitions
and note that we interpret X as a random loss or a cost).

Our definition of QBRMs is largely motivated by practical considerations. First, the definition covers the two
most widely used risk measures, VaR and CVaR, as special cases under a single framework; in addition, the
flexibility allows for the specification of more sophisticated risk measures that may or may not be coherent.
As previously mentioned, there are situations where nonconvex (and thus, not coherent) risk measures are
appropriate (Dhaene et al. [21]). Another motivation for this definition of a QBRM is that it allows us to easily
construct a risk measure such that VaRα(X) ≤ ρα(X) ≤ CVaRα(X), because, as Belles-Sampera et al. [7] points
out, one issue with VaR is that it can underestimate large losses, but at the same time, some practitioners of the
financial and insurance industries find CVaR to be too conservative.
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We see that VaR is trivially a QBRM with Φ(X, q) � q. CVaR can also be easily written as a QBRM, using
the function Φ(X, q) � q + (1− α)−1(X − q)+. Although our approach can be applied to any risk measure of the
form (1), we use the CVaR risk measure in the empirical work of Section 7, due to its popularity in a variety of
application areas.

3.4. Dynamic Quantile-Based Risk Measures
Notice that, so far, we have developed QBRMs in a “static” setting (the value of the risk measure is in �)
for simplicity. Given a random variable X ∈ Zt+1 and a risk level α ∈ (0, 1), the conditional counterpart for the
quantile is

qαt (X)� inf
U∈Zt

{
P(X ≤U | F t) ≥ α

}
∈Zt .

Using this new definition, we can similarly extend the definition of a QBRM to the conditional setting by
replacing (1) with

ραt (X)� Ebi gl[Φ(X, qα1
t (X), q

α2
t (X), . . . , q

αm
t (X)) | F t

]
,

and replacing the required properties of monotonicity, translation invariance, and positive homogeneity in
Definition 1 with their conditional forms given in Ruszczyński [60] (denoted therein by A2, A3, and A4).
For the sake of notational simplicity, let us assume that all parameters, i.e., m, α1 , . . . , αm , Φ are static over
time, but we remark that an extension to time-dependent (and even state-dependent) versions of the one-step
conditional risk measure is possible. Let ρ̃αt be a (conditional) QBRM that measures tail risk. In applications, a
weighted combination of a tail risk measure with the traditional expectation ensures that the resulting policies
are not driven completely by the tail behavior of the cost distribution; we may use QBRMs of the form ραt (X)�
(1− λ)E[X | F t]+ λρ̃αt (X), where λ ∈ [0, 1].
Using one-step conditional risk measures as building blocks, we can define a dynamic risk measure to be
{ραt }Tt�0, which we refer to as a dynamic quantile-based risk measure (DQBRM). The dynamic risk measures obtained
when ραt �VaRαt and ραt �CVaRαt (the conditional forms of VaR and CVaR) are precisely the time-consistent risk
measures suggested in Cheridito and Stadje [16] under the names composed value at risk and composed conditional
value at risk.

3.5. Objective Function
We are interested in finding optimal risk-averse policies under objective functions specified using a DQBRM.
The problem is

min
π∈Π

ρα0
(
Cπ

1 + ρα1 (Cπ
2 + · · ·+ ραT−1(Cπ

T ) · · · )
)
. (2)

The upcoming theorem, proven in Ruszczyński [60], gives the Bellman-like optimality equations for a risk-averse
model. We state it under the assumption that the current period contribution is random, differing slightly from
the original statement. A point of clarification: the original theorem is proved within the setting where the
one-step risk measures satisfy conditional forms of the axioms of Artzner et al. [3] for coherent risk measures.
In our setting, however, the QBRM ραt is only assumed to satisfy (conditional forms of) monotonicity, positive
homogeneity, and translation invariance, but not necessarily convexity. The crucial step of the proof given in
Ruszczyński [60] relies only on monotonicity and an associated interchangeability property (see Ruszczyński and
Shapiro [62, Theorem 7.1], Ruszczyński [60, Theorem 2]). The assumption of convexity is therefore not necessary
for the following theorem.

Theorem 1 (Bellman Recursion for Dynamic Risk Measures, Ruszczyński [60]). The sequential decision problem (2) has
optimal value functions given by

V ∗t (s)� min
at∈As

ραt
(
ct(s , at ,Wt+1)+V ∗t+1(St+1)

)
, for all s ∈S , t ∈ T ,

V ∗T(s)� 0, for all s ∈S .

The decision functions of an optimal policy π∗ are given by

Aπ∗
t (s) ∈ arg min

at∈As

ραt
(
ct(s , at ,Wt+1)+V ∗t+1(St+1)

)
, for all s ∈S , t ∈ T ,

which map to a minimizing action of the optimality equation.
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For computational purposes, we are interested in interchanging the minimization operator and the risk mea-
sure ραt and thus appeal to the state-action value function or Q-factor formulation of the Bellman equation. Define
the state-action value function over the state-action pairs (s , a) ∈U to be Q∗t(s , a) � ραt (ct(s , a ,Wt+1)+V ∗t+1(St+1)),
for t ∈ T and let Q∗T(s , a)� 0. Thus, the counterpart to the recursion in Theorem 1 is

Q∗t(s , a)� ραt
(
ct(s , a ,Wt+1)+ min

a′∈ASt+1

Q∗t+1(St+1 , a
′)
)
, (3)

with the minimization occurring inside of the risk measure.

3.6. Some Remarks on Notation
For simplicity, we henceforth refer to Q∗ simply as the optimal value function. Let d � |U| and D � |U|(T + 1). We
consider Q∗ to be a vector in �D with components Q∗t(s , a). We also frequently use the notation Q∗t ∈�d for some
t ≤ T, by which we mean Q∗ restricted to the components Q∗t(s , a) for all (s , a) ∈U. We adopt this system for any
vector in �D (e.g., Q̄n , u i , ∗, and ū i , n to be defined later). The norms used in this paper are ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞,
the l1-norm, the Euclidean norm, and the maximum norm, respectively. Example usages of the latter two are

‖Q∗t ‖2 �
( ∑
(s , a)∈U

Q∗t(s , a)2
)1/2

and ‖Q∗t ‖∞ � max
(s , a)∈U

|Q∗t(s , a)|.

The following naming convention is used throughout the paper and appendix: stochastic processes denoted
using ε, i.e., εq , n

t+1, ε
i , n
t+1, and ε

h , n
t+1 , are conditionally unbiased noise sequences and represent Monte Carlo sampling

error. On the other hand, the processes denoted using ξ, i.e., ξq , n
t+1 , ξ

i , n
t+1, and ξ

h , n
t+1 , are biased noise and represent

approximation error from using a value function approximation. For a vector v, diag(v) is the diagonal matrix
whose entries are the components of v. Lastly, for a nonnegative function f : �→ �, its support is represented
by the notation supp( f )� {x ∈ �: f (x) > 0}.

4. Algorithm
In this section, we introduce the risk-averse ADP algorithm for dynamic quantile-based risk measures, which
aims to approximate the value function Q∗ in order to produce near-optimal policies.

4.1. Overview of the Main Idea
Like most ADP and reinforcement learning algorithms, the algorithm that we develop in this paper to solve (2)
is based on the recursive relationship of (3). The basic structure for the algorithm is a time-dependent version
of Q-learning or approximate value iteration (see Powell [49, Chapter 10] for a discussion). Recall the form of
the QBRM:

ραt (X)� E
[
Φ(X, qα1

t (X), q
α2
t (X), . . . , q

αm
t (X)) | F t

]
.

The main idea of our approach is to approximate the quantiles qαi
t (X) and then combine the approximations to

form an estimate of the risk measure. In essence, every observation of the exogenous information process (real
or simulated data) can be utilized to give an updated approximation of each of the m quantiles. A second step
then takes the observation and the quantile approximations to generate a refined approximation of the optimal
value function Q∗. This type of logic is implemented using many concurrent stochastic gradient (Robbins and
Monro [54], Kushner and Yin [40]) steps within a framework that walks through a single forward trajectory of
states and actions on each iteration.
It turns out that there is a convenient characterization of the quantile through the so-called CVaR minimization

formula. Given a real-valued, integrable random variable X, a risk level αi ∈ (0, 1), and u ∈ �, Rockafellar and
Uryasev [56] proves that

qαi (X) ∈ arg min
u∈�

E
[
u +

1
1− αi

(X − u)+
]
. (4)

Although the main result of Rockafellar and Uryasev [56] is that the optimal value of the optimization problem
gives the CVaRαi (X), the characterization of the quantile as the minimizer is particularly useful for our purposes.
It suggests the use of stochastic approximation or stochastic gradient descent algorithms (Robbins and Monro [54],
Kushner and Yin [40]) to iteratively optimize (4).
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With this intuition in mind, let us move back to the context of the MDP and define the auxiliary variables
u i , ∗ ∈ �D , for each i ∈ {1, 2, . . . ,m}, to be the αi-quantiles of the future costs (recall that the quantiles αi are
defined as an argument to our QBRM in Definition 1). The component at time t and state (s , a) is

u i , ∗
t (s , a)� qαi

(
ct(s , a ,Wt+1)+ min

a′∈ASt+1

Q∗t+1(St+1 , a
′)
)
, (5)

for each i ∈ {1, 2, . . . ,m}. Using (1), this allows us to take advantage of the equation

Q∗t(s , a)� E
[
Φ(ct(s , a ,Wt+1)+ min

a′∈ASt+1

Q∗t+1(St+1 , a
′), u1, ∗

t (s , a), . . . , u
m , ∗
t (s , a))

]
. (6)

The relationship between Q∗ and u i , ∗ is fundamental to our algorithmic approach, which keeps track of mutually
dependent approximations {ū i , n} and {Q̄n} to the optimal values u i , ∗ and Q∗, respectively.

4.2. The Dynamic-QBRM ADP Algorithm
Before discussing the details, we need some additional notation. Clearly, at each time t, the random quantity
with which we are primarily concerned (and attempt to approximate) is the future cost given the optimal value
function Q∗. Thus, we explicitly define its distribution function for every (s , a):

Ft(x | s , a)� P
[
ct(s , a ,Wt+1)+ min

a′∈ASt+1

Q∗t+1(St+1 , a
′) ≤ x

]
.

Recall that d is the cardinality of the state-action space. Next, suppose ū i
t ∈�d is an approximation of u i , ∗

t and for
each t and i ∈ {1, 2, . . . ,m}, define the stochastic gradient mapping ψi

t : �
d ×�d ×W →�d to perform the stochastic

gradient computation:

ψi
t(ū i

t , Q̄t+1 ,Wt+1)(s , a)� 1− 1
1− αi

1
{
ct(s , a ,Wt+1)+ min

a′∈ASt+1

Q̄t+1(St+1 , a
′) ≥ ū i

t(s , a)
}
. (7)

To avoid confusion, we note that this is the stochastic gradient associated with the minimization formula (4) for
CVaR, but this step is necessary for any QBRM, even if we are not utilizing CVaR.
The second piece of notation we need is a specialized, stochastic version of the Bellman operator to the risk-

averse case: for each t, we define the mapping Ht : �d × · · · × �d ×W → �d , with m + 1 arguments in �d , to
represent an approximation of the term within the expectation of (6):

Ht(ū1
t , . . . , ū

m
t , Q̄t+1 ,Wt+1)(s , a)�Φ

(
ct(s , a ,Wt+1)+ min

a′∈ASt+1

Q̄t+1(St+1 , a
′), ū1

t (s , a), . . . , ūm
t (s , a)

)
.

Therefore, (6) can be rewritten using the stochastic Bellman operator Ht by replacing all approximate quantities
with their true values:

Q∗t(s , a)� E
[
Ht(u1, ∗

t , . . . , um , ∗
t ,Q∗t+1 ,Wt+1)(s , a)

]
. (8)

The Dynamic-QBRM ADP algorithm that we describe in the next section consists of both outer and inner iter-
ations: for each outer iteration n, we step through the entire time horizon of the problem t ∈ T . At time t,
iteration n, the relevant quantities for our algorithms are a state-action pair (Sn

t , a
n
t ) ∈ U and two samples

W u , n
t+1 ,W

q , n
t+1 ∈W from the distribution of Wt+1 corresponding to the “two steps” of our algorithm, one for approx-

imating the auxiliary variables u i , ∗ and the second for approximating the value function Q∗. Figure 1 illustrates
the main idea behind the algorithm: we merge the results of m adaptive minimizations of (4), corresponding to
estimates of the m quantiles, into an estimate of the optimal value function, Q̄n

t . The estimate Q̄n
t is then used

to produce estimates of the relevant quantities for the previous time period. Note that the m objective functions
shown in the figure differ only in their risk levels αi . The arrows on the curves indicate that the minimizations
are achieved via gradient descent steps.
Now that we are in an algorithmic setting, we consider a new probability space (Ω,G,P), where G� σ{(Sn

t , a
n
t ,

W u , n
t ,W q , n

t ), n ≥ 0, t ≤ T}. In order to describe the history of the algorithms, we define:

Gn
t � σ

{
{(Sk

τ , a
k
τ ,W

u , k
τ ,W q , k

τ ), k < n , τ ≤ T} ∪ {(Sn
τ , a

n
τ ,W

u , n
τ ,W q , n

τ ), τ ≤ t}
}
,

for t ∈ T and n ≥ 1, with G0
t � {�,Ω} for all t ≤ T. We therefore have a filtration that obeys Gn

t ⊆ Gn
t+1 for t ∈ T

and Gn
T ⊆ Gn+1

0 , coinciding precisely with the progression of the algorithm. The random variables (Sn
t , a

n
t ) are
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Figure 1. (Color online) Main algorithm idea.
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…

…

generated according to some sampling policy (to be discussed later) while W u , n
t+1 and W q , n

t+1 are generated from
the distribution of the exogenous process Wt+1.

Crucial to many ADP algorithms is the stepsize (or learning rate). In our case, we use {γn
t } and {ηn

t } for
smoothing new observations with previous estimates, where γn

t , η
n
t ∈�d for each t and n and are Gn

t -measurable.
The stepsize γn

t is used to update our approximation of u i , ∗
t while the stepsize ηn

t is used to update Q∗t ; see
Algorithm 1. We articulate the asynchronous nature of our algorithm by imposing the following condition on
the stepsizes (included in Assumption 1 of Section 5):

(s , a), (Sn
t , a

n
t ) �⇒ γn

t (s , a)� ηn
t (s , a)� 0,

which causes updates to only happen for states that we actually visit.

Algorithm 1 (Dynamic-QBRM ADP)
Input: Initial estimates of the value function Q̄0 ∈ �D and quantiles ū i , 0 ∈ �D for i ∈ {1, 2, . . . ,m}.

Stepsize rules γn
t and ηn

t for all n, t.
Output: Approximations {Q̄n} and {ū i , n}.
1 Set Q̄n

T � 0 for all n.
for n � 1, 2, . . . do

2 Choose an initial state (Sn
0 , a

n
0 ).

for t � 0, 1, . . . ,T − 1 do
3 Draw samples of the information process W u , n

t+1 ,W
q , n
t+1 ∈W .

4 Update auxiliary variable approximations for i � 1, . . . ,m:
ū i , n

t �ΠXu
t
{ū i , n−1

t −diag(γn
t )ψi

t(ū
i , n−1
t , Q̄n−1

t+1 ,W
u , n
t+1 )}.

5 Compute an estimate of the future cost based on the current approximations:
q̂n

t � Ht(ū1, n−1
t , . . . , ūm , n−1

t , Q̄n−1
t+1 ,W

q , n
t+1 ).

6 Update approximation of value function:
Q̄n

t �ΠX
q
t
{Q̄n−1

t −diag(ηn
t )(Q̄n−1

t − q̂n
t )}.

7 Choose next state (Sn
t+1 , a

n
t+1).

end
end.

Stochastic approximation theory often requires a projection step onto a compact set (giving bounded iterates)
to ensure convergence (Kushner and Yin [40]). Hence, for each t and (s , a), let X u

t (s , a) ⊆ � and X
q
t (s , a) ⊆ � be

compact intervals and let

X u
t � {x ∈ �d : x(s , a) ∈X u

t (s , a)} and X
q
t � {x ∈ �d : x(s , a) ∈X q

t (s , a)},

be our projection sets at time t. The Euclidean projection operator to a set X is given by the usual definition:

ΠX (y)� arg min
x∈X

‖y − x‖22 .

These sets may be chosen arbitrarily large in practice and our first theoretical result (almost sure convergence)
will continue to hold. However, there is a tradeoff: If, in addition, we want our convergence rate results to hold,
then these sets also cannot be too large (see Assumption 3).
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The precise steps of Dynamic-QBRM ADP are given in Algorithm 1. A main characteristic of the algorithm
is that sequences {ū i , n} and {Q̄n} are intertwined (i.e., they depend on each other). Consequently, there are
multiple levels of approximation being used throughout the steps of the algorithm. The theoretical results of
the subsequent sections shed light onto these issues.

5. Analysis of Convergence
In this section, we state and prove convergence theorems for Algorithm 1. First, we give an overview of our
analysis and the relationship to existing work.

5.1. A Preview of Results
The two main results of this section are: (1) the almost sure convergence of Dynamic-QBRM ADP, and (2) a
convergence rate result under a particular sampling policy called ε-greedy. The proof of almost sure convergence
uses techniques from the stochastic approximation literature (Kushner and Yin [40]), which were applied to
the field of reinforcement learning and Q-learning in Tsitsiklis [72], Jaakkola et al. [31] and Bertsekas and
Tsitsiklis [9]. However, our algorithm differs from risk-neutral Q-learning in that it tracks multiple quantities,
ū1, n

t , ū2, n
t , . . . , ūm , n

t , Q̄n
t , over a horizon 1, 2, . . . ,T. The intuition behind the proof is that multiple “stochastic

approximation instances” are pasted together in order to obtain overall convergence of all relevant quantities.
Accordingly, the interdependence of various approximations means that in several parts of the proof, we require
careful analysis of biased noise terms (or approximation error) in addition to unbiased statistical error. See, e.g.,
Kearns and Singh [36], Even-Dar and Mansour [26] and Azar et al. [5], for convergence rate results for standard
Q-learning. The proof technique used to analyze the high probability convergence rate of risk-neutral Q-learning
in Even-Dar and Mansour [26] is based on the same types of stochastic approximation results that we utilize in
this paper.
Let us now make a few remarks regarding some simplifying assumptions made in this paper. As proven in

Rockafellar and Uryasev [57, Theorem 10], the set of minimizers arg minu∈� E[u+(1−αi)−1(X−u)+] is a nonempty,
closed, and bounded interval for a general X. We shall for ease of presentation, however, make assumptions
(strictly increasing and continuous cdf, Assumption 2(iii)) to guarantee that u i , ∗

t (s , a) is the unique minimizer
when X is the optimal future cost ct(s , a ,Wt+1) + mina′∈ASt+1

Q∗t+1(St+1 , a′) and that gradient computations to
remain valid. This assumption is sufficient for almost sure convergence (Theorem 2). To further examine the
convergence rate of the algorithm (Theorem 3), we must additionally have Assumption 3, which states that the
density of the future cost exists and is positive within the constraint sets X u

t —this provides us the technical
condition of strong convexity (discussed more in Section 5.3 below).
Since mina′∈ASt+1

Q∗t+1(St+1 , a′) has a discrete distribution, the assumptions hold only in certain situations: an
obvious case is when the current stage cost has a density and is independent of St+1. For example, such a
property holds when Wt+1 can be written as two independent components (W1

t+1 ,W
2
t+1) where the current stage

cost depends on W1
t+1 and the downstream state depends on W2

t+1. This model is relevant in a number of
applications; notable examples include multi-armed bandits (Whittle [74]), shortest path problems with random
edge costs (Ryzhov and Powell [64]), trade execution with temporary (and temporally independent) price impact
(Bertimas and Lo [8]), and energy trading in two-settlement markets (Löhndorf et al. [41]). Small algorithmic
extensions (requiring more complex notation) to handle the general case are possible, but the fundamental
concepts would remain unchanged. Hence, we will assume the cleaner setting for the purposes of this paper.

5.2. Almost Sure Convergence
First, we discuss the necessary algorithmic assumptions, many of which are standard to the field of stochastic
approximation.

Assumption 1. For all (s , a) ∈U and t ∈ T , suppose the following are satisfied:
(i) γn

t (s , a)� γ̃n−1
t 1{(s , a)�(Sn

t , a
n
t )}, for some γ̃n−1

t ∈ � that is Gn−1
t -measurable,

(ii) ηn
t (s , a)� η̃n−1

t 1{(s , a)�(Sn
t , a

n
t )}, for some η̃n−1

t ∈ � that is Gn−1
t -measurable,

(iii) ∑∞
n�1 γ

n
t (s , a)�∞, ∑∞n�1 η

n
t (s , a)�∞ a.s.,

(iv) ∑∞
n�1 γ

n
t (s , a)2 <∞, ∑∞n�1 η

n
t (s , a)2 <∞ a.s.,

(v) ∃ ε > 0, such that state sampling policy satisfies

P((Sn
t , a

n
t )� (s , a) | Gn

t−1) ≥ ε and P((Sn
0 , a

n
0 )� (s , a) | Gn−1

T ) ≥ ε,

(vi) the projection sets are chosen large enough so that u i , ∗
t ∈X u

t for each i ∈ {1, 2, . . . ,m} and Q∗t ∈X
q
t .
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Assumption 1(i) and 1(ii) represent the asynchronous nature of the algorithm, sending the stepsize to zero
whenever a state is not visited, while 1(iii) and 1(iv) are standard conditions on the stepsize. Assumption 1(v) is
an exploration requirement; by the Extended Borel-Cantelli Lemma (see Breiman [12]), sampling with this explo-
ration requirement guarantees that we will visit every state infinitely often with probability one. In particular,
for the case with an ε-greedy sampling policy (i.e., explore with probability ε, follow current policy otherwise),
this assumption holds. We discuss this policy in greater detail in Section 5. Part (vi) is a technical assumption.
The second group of assumptions that we present are related to the problem parameters.

Assumption 2. The following hold:
(i) the risk-aversion function Φ: �m+1 → � (from the QBRM within the one-step conditional risk measure ραt ) is

Lipschitz continuous with constant LΦ > 0, i.e., for all v ,w ∈ �m+1, |Φ(v) −Φ(w)| ≤ LΦ‖v −w‖1,
(ii) ∃Cmax > 0 such that E[ct(s , a ,Wt+1)2] ≤ Cmax for all (s , a) ∈U and t ∈ T ,
(iii) the distribution function Ft(x | s , a) is strictly increasing and Lipschitz continuous with constant LF > 0, i.e.,��Ft(x | s , a) − Ft(y | s , a)

�� ≤ LF |x − y |,

for all x , y ∈ �, (s , a) ∈U, and t ∈ T .

As an example for Assumption 2(i), in the case of the QBRM being CVaR, where Φ(X, q)� q+ (1−α)−1(X− q)+,
it is easy to see that we can take LΦ � 1+ 1/(1− α). Assumption 2(ii) states that the second moment of the cost
function is bounded. Assumptions 2(iii) and 1(vi) together imply that u i , ∗

t (s , a) is the unique u ∈ X u
t (s , a) such

that Ft(u | s , a)� αi .

Lemma 1. Under Assumptions 1 and 2, if Q̄n
t+1→ Q∗t+1 almost surely, then the sequences of iterates ū i , n

t generated in
Step 4 of Algorithm 1 satisfy ū i , n

t → u i , ∗
t almost surely for each i ∈ {1, 2, . . . ,m}.

We distinguish between two types of noise sequences (in n) for each t ∈ T , the statistical error and the approx-
imation error, denoted by εi , n

t+1 ∈ �d and ξ i , n
t+1 ∈ �d , respectively. The definitions are

εi , n
t+1 � ψ

i
t(ū i , n−1

t ,Q∗t+1 ,W
u , n
t+1 ) −E[ψi

t(ū i , n−1
t ,Q∗t+1 ,Wt+1)],

ξ i , n
t+1 � ψ

i
t(ū i , n−1

t , Q̄n−1
t+1 ,W

u , n
t+1 ) −ψi

t(ū i , n−1
t ,Q∗t+1 ,W

u , n
t+1 ),

and we see that the random variable εi , n
t+1 represents the error that the sample gradient deviates from its mean,

computed using the true future cost distribution (i.e., assuming we have Q∗t+1). On the other hand, ξ i , n
t+1 is the

error between the two evaluations of ψi
t given the same sample W u , n

t+1 , due only to the difference between Q̄n−1
t+1

and Q∗t+1. Rearranging, we have

ψi
t(ū i , n−1

t , Q̄n−1
t+1 ,W

u , n
t+1 )� E

[
ψi

t(ū i , n−1
t ,Q∗t+1 ,Wt+1)

]
+ εi , n

t+1 + ξ
i , n
t+1 ,

which implies that the update given in Step 4 of Algorithm 1 can be rewritten as

ū i , n
t �ΠXu

t

{
ū i , n−1

t −diag(γn
t )

[
E[ψi

t(ū i , n−1
t ,Q∗t+1 ,Wt+1)]+ εi , n

t+1 + ξ
i , n
t+1

]}
.

Note that the term in the square brackets is a biased stochastic gradient and observe that it is bounded (since ψi
t

only takes two finite values). For the present inductive step at time t, let us fix a state (s , a). It now becomes
convenient for us to view ū i , n

t (s , a) as a stochastic process in n, adapted to the filtration {Gn
t+1}n≥0 (since Gn

t+1 ⊆
Gn+1

t+1 ⊆ Gn+2
t+1 · · · ). It is clear that by the definition of εi , n

t+1(s , a):

E[εi , n
t+1(s , a) | Gn−1

t+1 ]� 0 a.s . (9)

Therefore, εn
t+1(s , a) are unbiased increments that can be referred to as martingale difference noise. Before contin-

uing, notice the following useful fact:

min
a∈As

Q∗t+1(s , a) −min
a∈As

Q̄n−1
t+1 (s , a) ≤ ‖Q̄n−1

t+1 −Q∗t+1‖∞. (10)

The proof follows from min v �−max(−v) and max v−max w ≤max |v−w |, where the minimum and maximum
are taken over the components of some vectors v and w. Now, let Sn

t+1 � SM(s , a ,W u , n
t+1 ). Expanding the definition

of ξ i , n
t+1(s , a) and using (10), we obtain
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ξ i , n
t+1(s , a)�

1
1− αi

[
1
{
ct(s , a ,W u , n

t+1 )+ min
a′∈ASn

t+1

Q∗t+1(Sn
t+1 , a

′) ≥ ū i , n−1
t (s , a)

}
− 1

{
ct(s , a ,W u , n

t+1 )+ min
a′∈ASn

t+1

Q̄n−1
t+1 (Sn

t+1 , a
′) ≥ ū i , n−1

t (s , a)
}]

≤ 1
1− αi

[
1
{
ct(s , a ,W u , n

t+1 )+ min
a′∈ASn

t+1

Q∗t+1(Sn
t+1 , a

′) ≥ ū i , n−1
t (s , a)

}
− 1

{
ct(s , a ,W u , n

t+1 )+ min
a′∈ASn

t+1

Q∗t+1(Sn
t+1 , a

′) ≥ ū i , n−1
t (s , a)+ ‖Q̄n−1

t+1 −Q∗t+1‖∞
}]
.

Using the shorthand Ft( · ) � Ft(· | s , a) and taking the conditional expectation of both sides, we get (almost
surely)��E[

ξ i , n
t+1(s , a) | Gn−1

t+1
] �� ≤ 1

1− αi

��Ft

(
ū i , n−1

t (s , a)+ ‖Q̄n−1
t+1 −Q∗t+1‖∞

)
− Ft

(
ū i , n−1

t (s , a)
) �� ≤ LF

1− αi
‖Q̄n−1

t+1 −Q∗t+1‖∞ , (11)

where the second inequality follows by Assumption 2(iii). Since we assumed in the statement of the lemma that
Q̄n

t+1→Q∗t+1 almost surely, it must be the case that

E[ξ i , n
t+1(s , a) | Gn−1

t+1 ]→ 0 a.s ., (12)

and hence the noise “vanishes asymptotically” in expectation. Now, given the boundedness of ψi
t (and hence, finite

secondmoment of ψi
t), the unbiasedness property (9), the vanishing noise property (12), the stepsize and sampling

properties of Assumption 1, and the uniqueness of u∗t(s , a) from Assumption 2(iii), we can apply a classical theo-
rem of stochastic approximation, Kushner and Yin [40, Theorem 2.4], to conclude that ū i , n

t (s , a)→ u i , ∗
t (s , a) almost

surely for each i. Because we chose an arbitrary (s , a), this convergence holds for all (s , a) ∈U. �

Theorem 2 (Almost Sure Convergence). Choose initial approximations Q̄0 ∈�D and ū i , 0 ∈�D for each i ∈ {1, 2, . . . ,m}
so that Q̄0

t ∈ X
q
t and ū i , 0

t ∈ X u
t for all t ∈ T . Under Assumptions 1–2, Algorithm 1 generates a sequence of iterates Q̄n

that converge almost surely to the optimal value function Q∗.

Sketch of Proof. The idea of the proof is to induct backwards on t and repeatedly apply Lemma 1. At each step,
the induction hypothesis is that Q̄n

t+1→Q∗t+1 from which we obtain convergence of ū i , n
t → u i , ∗

t from Lemma 1.
After making sure certain technical details are satisfied, stochastic approximation theory allows us to show that
Q̄n

t →Q∗t . The full details are given in Appendix A. �

5.3. Convergence Rate
In this section, we discuss the convergence rate (in terms of the expected deviation to Q∗) of the procedure
described in Algorithm 1. Because we are working with an asynchronous algorithm where only one state per
time period is visited every iteration, it is necessary for us to specify the assumed state sampling policy for
visiting states before deriving convergence rate results. Due to Assumption 1(i)–1(ii), we naturally must consider
the sampling policy and the stepsize sequences jointly, as is done in the upcoming proposition. We employ
the ε-greedy policy, a popular choice that balances exploitation and exploration using a tunable parameter ε;
it is defined as follows. For any iteration n > 0, choose (Sn

0 , a
n
0 ) independently and uniformly at random. At

iteration n, time t > 0, let

sn
t+1 � SM(Sn

t , a
n
t ,W

n
t+1) and an

t+1 � arg min
a∈A

Q̄n−1
t+1 (sn

t+1 , a)

and define a Bernoulli random variable Xn
t+1 with parameter 1− εd that is independent from Gn

t (i.e., the rest
of the system). The next state to visit is selected by the rule

(Sn
t+1 , a

n
t+1)�

{
(sn

t+1 , a
n
t+1), if Xn

t+1 � 1,
choose uniformly over U, otherwise.

(13)

Note that Assumption 1(v) is clearly satisfied as each state is visited with probability at least ε. We also choose
our stepsize sequences with γ̃n−1

t and η̃n−1
t as deterministic harmonic sequences (for ease of analysis) so that

γn
t (s , a)�

γt

n
1{(s , a)�(Sn

t , a
n
t )} and ηn

t (s , a)�
ηt

n
1{(s , a)�(Sn

t , a
n
t )} , (14)
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where γt > 0 and ηt > 0 are deterministic, time-dependent constants. Since neither γ̃n−1
t � γn

t /n nor η̃n
t �

ηn
t /n depend on the history of visited states, they are known as centralized learning rates (see Szepesvari and

Littman [70] for a discussion). The main difficulty for the centralized stepsizes of (14) is that when the frequency
of visits to a state decays quickly enough, then Assumption 1(iii) and 11(iv) may not hold (for example, consider
when a state is only visited on iteration numbers that are powers of two). In fact, it is often not immediately
obvious when Assumption 1(iii) and 1(iv) are satisfied. The next proposition shows that under the ε-greedy
sampling policy, the states are visited often enough that the assumption remains satisfied.

Proposition 1. Under the ε-greedy sampling policy given in (13) and the deterministic harmonic stepsizes given in (14),
Assumption 1(iii)–1(iv) is satisfied.

Proof. See Appendix A. �

For a technical reason needed to prove the convergence rate results, we need to constrain the iterates of the
algorithm to a region within the support of the distribution of future costs (stated formally in Assumption 3
below). We shall see that when this assumption is satisfied, we get a notion of strong convexity. To be more
precise, observe that ∂2E[u+(X−u)+/(1−αi)]/∂u2 � fX(u)/(1−α), where fX is the density of X. If u is constrained
to be within the support of the distribution of X (i.e., where fX > 0), then we are able to lower bound the second
derivative by some constant (that depends on the constraint set), thereby attaining strong convexity within the
region. This is useful for deriving the convergence rate results (see Lemma 2); unfortunately, this condition is
in general difficult to check in practice.

Assumption 3. The density ft(x | s , a)� dFt(x | s , a)/dx exists and the stochastic approximation projection set is within
the support of the density: X u

t (s , a) ⊆ supp( ft(· | s , a)) for all (s , a) ∈U and t ∈ T . Let

l f � min
(s , a , t)

min{x ∈X u
t (s , a): ft(x | s , a)}

be a positive real number that lower bounds the density function over all t and (s , a) ∈U.

We now provide a few lemmas that will be useful in establishing the final result. The first lemma relates the
error of ū i , n

t to the error in the last iteration (i.e., of ū i , n−1
t ) and the error of the value function in the next time

period (i.e., of Q̄n−1
t+1 ).

Lemma 2. Under Assumptions 1(vi)–3, the ε-greedy sampling policy of (13), and the deterministic harmonic stepsizes
given in (14), the sequence of approximations ū i , n

t generated by Algorithm 1 satisfies, for any κ > 0,

E[‖ū i , n
t − u i , ∗

t ‖22] ≤
[
1−

γt

n
(2εCl f

− κCLF
)
]
E[‖ū i , n−1

t − u i , ∗
t ‖22]+

γt

nκ
E[‖Q̄n−1

t+1 −Q∗t+1‖22]+Cαi

γ2
t

n2 ,

where Cl f
� l f /(1− αi), CLF

� L2
F/(1− αt)2, and Cαi

� [max(1, αi/(1− αi))]2.
Proof. Fix an i. Recall the update equation given in Step 5 of Algorithm 1:

ū i , n
t �ΠXu

t

{
ū i , n−1

t −diag(γn
t )ψi

t(ū i , n−1
t , Q̄n−1

t+1 ,W
u , n
t+1 )

}
.

Using the non-expansive property of the projection operator, we have

‖ū i , n
t − u i , ∗

t ‖22 �
ΠXu

t

{
ū i , n−1

t −diag(γn
t )ψi

t(ū i , n−1
t , Q̄n−1

t+1 ,W
u , n
t+1 )

}
−ΠXu

t
{u i , ∗

t }
2

2

≤
ū i , n−1

t − u i , ∗
t −diag(γn

t )ψi
t

(
ū i , n−1

t , Q̄n−1
t+1 ,W

u , n
t+1

)2
2

≤ ‖ū i , n−1
t − u i , ∗

t ‖22 +Cαi

γ2
t

n2 − 2(ū i , n−1
t − u i , ∗

t )T diag(γn
t )ψi

t(ū i , n−1
t , Q̄n−1

t+1 ,W
u , n
t+1 ). (15)

Recall from the proof of Lemma 1 that we can write

ψi
t(ū i , n−1

t , Q̄n−1
t+1 ,W

u , n
t+1 )� E[ψi

t(ū i , n−1
t ,Q∗t+1 ,Wt+1)]+ εi , n

t+1 + ξ
i , n
t+1 ,

from which we see that the cross-term (ū i , n−1
t − u i , ∗

t )T diag(γn
t )ψi

t(ū
i , n−1
t , Q̄n−1

t+1 ,W
u , n
t+1 ) in the chain of inequali-

ties (15) can be expanded into three terms. These terms can now be analyzed separately. By (7) and Assump-
tion 2(iv), we see that the derivative of E[ψi

t(u ,Q∗t+1 ,Wt+1)] in u(s , a) can be expressed as

∂

∂u(s , a)E[ψ
i
t(u ,Q∗t+1 ,Wt+1)](s , a)�

ft(u(s , a) | s , a)
1− αi

≥
l f

1− αi
. (16)
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Since every state is visited with probability larger than ε, we know that E[γn
t (s , a) | Gn−1

t+1 ] ≥ εγt/n. Combining
this with (16) and E[ψi

t(u∗t ,Q∗t+1 ,Wt+1)]� 0, it follows that (almost surely)

E
[
(ū i , n−1

t − u i , ∗
t )T diag(γn

t )E[ψi
t(ū i , n−1

t ,Q∗t+1 ,Wt+1)] | Gn−1
t+1

]
≥
εγt

n
(ū i , n−1

t − u i , ∗
t )T

[
E[ψi

t(ū i , n−1
t ,Q∗t+1 ,Wt+1)] −E[ψi

t(u∗t ,Q∗t+1 ,Wt+1)]
]
≥
εγt

n

l f

1− αi
‖ū i , n−1

t − u i , ∗
t ‖22 . (17)

Note that γn
t (s , a) depends on (Sn

t , a
n
t ) and εi , n

t+1(s , a) depends on W u , n
t+1 . By independence of (Sn

t , a
n
t ) and W u , n

t+1
and the unbiased property of εi , n

t+1(s , a) of (9),

E
[
(ū i , n−1

t − u i , ∗
t )T diag(γn

t )εi , n
t+1 | Gn−1

t+1
]
� 0. (18)

Moving on to the third term, using (11), the fact that γn
t has exactly one nonzero component, and the mono-

tonicity of lp norms, we can deduce

E
[
−(ū i , n−1

t − u i , ∗
t )T diag(γn

t )ξ i , n
t+1 | Gn−1

t+1
]
≤
γt

n
‖ū i , n−1

t − u i , ∗
t ‖∞

LF

1− αi
‖Q̄n−1

t+1 −Q∗t+1‖∞

≤
γt

n
LF

1− αi
‖ū i , n−1

t − u i , ∗
t ‖2‖Q̄n−1

t+1 −Q∗t+1‖2.

Using the inequality 2ab ≤ a2κ+ b2/κ for κ > 0 on the above, we arrive at

E
[
−2(ū i , n−1

t − u i , ∗
t )T diag(γn

t )ξ i , n
t+1 | Gn−1

t+1
]
≤

γt L2
Fκ

n(1− αi)2
‖ū i , n−1

t − u i , ∗
t ‖22 +

γt

nκ
‖Q̄n−1

t+1 −Q∗t+1‖22 . (19)

Finally, the statement of the lemma follows by taking expectations of the inequalities (15), (17)–(19) and
combining. �

Similarly, the next lemma relates the error of the approximate value function Q̄n
t to the error in the last

iteration (i.e., of Q̄n−1
t ), the error of the value function in the next time period (i.e., of Q̄n−1

t+1 ), and the error of all
of the approximate quantiles ū i , n

t . Because the analysis is similar to that of Lemma 2, we relegate the proof to
Appendix A.

Lemma 3. Under the same conditions as Lemma 2, the sequence of approximations Q̄n
t generated by Algorithm 1 satisfies,

for any κ0 , κ1 , . . . , κm > 0,

E[‖Q̄n
t −Q∗t ‖22] ≤

[
1−

ηt

n

(
2 ε− LΦκ0 − LΦ

m∑
i�1
κi

)]
E[‖Q̄n−1

t −Q∗t ‖22]

+
ηt LΦ
nκ0

E[‖Q̄n−1
t+1 −Q∗t+1‖22]+

ηt

n

m∑
i�1

LΦ
κi

E[‖ū i , n−1
t − u i , ∗

t ‖22]+CH
η2

t

n2 ,

where CH bounds the term

E
[
Q̄n−1

t (s , a) −Ht(ū1, n−1
t , . . . , ūm , n−1

t , Q̄n−1
t+1 ,Wt+1)(s , a)

]2 ≤ CH ,

for all (s , a) ∈U.

Proof. See Appendix A. �

With these preliminary results in mind, we move on to the theorem that states our O(1/n) convergence rate
and provide a sketch of the proof.

Theorem 3 (Convergence Rate). Choose initial approximations Q̄0 ∈�D and ū i , 0 ∈�D for each i ∈ {1, 2, . . . ,m} so that
Q̄0

t ∈X
q
t and ū i , 0

t ∈X u
t for all t ∈T . Under Assumptions 1(vi)–3, the ε-greedy sampling policy of (13), and the deterministic

harmonic stepsizes given in (14), the sequences of iterates ū i , n for i ∈ {1, . . . ,m} and Q̄n generated by Algorithm 1 satisfy
convergence rates of the form E[‖ū i , n − u i , ∗‖22] ≤ O(1/n) for i ∈ {1, . . . ,m} and E[‖Q̄n −Q∗‖22] ≤ O(1/n).
Sketch of Proof. The proof is also by backwards induction on t, where the induction hypothesis at each step is
that Q̄n

t+1 converges at a rate of O(1/n). Applying Lemma 2 along with some additional analysis, it is possible
to show that ū i , n

t also converges at a rate of O(1/n). Lemma 3 then completes the proof by showing the desired
rate for Q̄n

t . The details are given in Appendix A. �
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Figure 2. Sample paths of Dynamic-QBRM ADP.
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Although both ū i , n and Q̄n converge at a rate of O(1/n), the slower sequence is Q̄n . To see why this step is
slower, one can compare Lemmas 2 and 3. From Lemma 2, we see that the error of the quantity ū i , n

t depends
only on the “last iteration error” (the error of ū i , n−1

t ) and the error of the next stage value function Q̄n−1
t+1 . In

contrast, Lemma 3 shows that the error of Q̄n
t also depends on the error of the current stage quantile ū i , n−1, in

addition to its own “last iteration error” and the error of the next stage value function. The interpretation of
these bounds is that accuracy of ū i , n−1 is needed before we obtain an accurate approximation of Q̄n

t , exactly as
our intuition would suggest, given Figure 1. Indeed, this is observed in empirical experiments (see Section 7),
motivating the second contribution of this paper, a procedure aimed toward speeding up the slow step of the
ADP algorithm.

6. Efficient Sampling of the “Risky” Region
Arguably, the biggest practical issue with a Monte Carlo-based algorithm in the setting of risk-averse decision
making is the question of sampling. To illustrate, suppose the one-step conditional risk measure is CVaR at a
level of α � 0.99. Because α is close to 1, the iterates of the Dynamic-QBRM ADP algorithm are volatile and
exhibit poor empirical convergence rates, as shown in Figure 2. In this section, we discuss a method to address
this issue.

6.1. Overview of the Main Idea
As we have mentioned, Dynamic-QBRM ADP can be applied in situations where the distribution of the infor-
mation process {Wt} is unknown, a common assumption for ADP algorithms. An example of when such a
paradigm can be useful is when one has access to real data, but no stochastic model from which to simulate.
Another example is a black-box simulator where the user has little to no control of its parameters. In these
scenarios, a good remedy to any sampling issue is to implement an adaptive stepsize rule, similar to the likes
of George and Powell [28], Schaul et al. [66], and Ryzhov et al. [65] (the third reference develops a stepsize
rule specifically in the context of ADP), that can adjust based on previously observed data points. However,
if the distribution of the stochastic process {Wt}Tt�0 is known, then we can propose a new companion proce-
dure to control the sampling process as our ADP algorithm progresses. The procedure takes advantage of the
idea of importance sampling (see, e.g., Bucklew [13]) and is inspired by adaptive sampling approaches like the
cross-entropy method of Rubinstein [58].

Recall from the results of the previous section that the convergence of Q̄n
t , the approximation of the value

function, is expected to be slower than that of ū i , n
t , the auxiliary variable. In this section, we propose a procedure

called risk-directed sampling (RDS) to improve the sampling efficiency for the step of Dynamic-QBRM ADP
where Q̄n

t is updated, i.e., Step 6 of Algorithm 1. The main idea, as illustrated in Figure 3, is to use the
ADP approximations to drive the learning of the sampling distribution and simultaneously use the sampling
distribution to generate the samples for updating the ADP approximations. As the figure shows, the hope is
that our procedure updates the distribution in such a way that we dedicate samples to the regions of high risk
(from where we may otherwise not see many samples).

6.2. Risk-Directed Sampling
Suppose the distribution of the exogenous information Wt+1 has a density pt(w). Notice that by (6), we have for
any (s , a) and t,

Q∗t(s , a)�
∫

Ht(u1, ∗
t , u2,∗

t , . . . , u
m , ∗
t ,Q∗t+1 ,w)(s , a)pt(w) dw. (20)
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Figure 3. RDS algorithm idea.
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For convenience, we use the shorthand notation

H∗t (w | s , a)� Ht

(
u1, ∗

t , u2,∗
t , . . . , u

m , ∗
t ,Q∗t+1 ,w

)
(s , a),

to emphasize the variable of integration, w. From the principle of importance sampling (see, e.g., Bucklew [13]),
it is known that to produce a low-variance estimate of Q∗t(s , a) using Monte Carlo sampling, one should sample
from a distribution whose density is nearly proportional to the absolute value of the integrand of (20).
Our approach takes advantage of this proportionality property of the optimal density and directly constructs

an approximation to the absolute value of the integrand of (20) by minimizing a mean squared error. The idea
is to capture the “risky regions,” i.e., the parts of the outcome space where the integrand is large. When
the parametric class of sampling distributions is chosen to be a mixture class (as we do), this introduces a
simplification by allowing us to effectively remove the constraint ‖θ‖1 � 1 from the optimization problem. In
addition, we prove that our method converges without exact knowledge of the function H∗t (w | s , a). Instead, the
algorithm works in conjunction with Dynamic-QBRM ADP by using approximations defined by

Hn
t (w | s , a)� Ht

(
ū1, n−1

t , ū2, n−1
t , . . . , ūm , n−1

t , Q̄n−1
t+1 ,w

)
(s , a),

where ū1, n−1
t , ū2, n−1

t , . . . , ūm , n−1
t , Q̄n−1

t+1 are outputs from Dynamic-QBRM ADP. Like the main ADP method, the
procedure is fully adaptive and updates to the sampling distribution are made at every iteration. To our knowl-
edge, an adaptive importance sampling approach for constructing risk-averse policies has not been considered
in the literature. However, Kozmík and Morton [39] employs importance sampling from a different perspective:
for the evaluation of risk-averse policies in stochastic programming.
Let {φk

t }Kk�1 be the set of densities for K prespecified basis distributions (we also refer to these as basis functions)
for time t, from which we create a mixture distribution used for sampling. Note that it is often sufficient to
specify one set of distributions for all t, as we do in Section 7. Our goal is to take the traditional regression
approach and develop an approximation of the form ∑

k θ̄
k , n
t (s , a)φk

t (w) ≈ |H∗t (w | s , a)|pt(w), where θ̄k , n
t (s , a) is

the weight of the k-th basis density at iteration n and state (s , a). For convenience, we also use the notation
θ̄n

t (s , a) to be a vector in �K with components θ̄k , n
t (s , a) for k � 1 to K. Choose a (large) compact subset W̄ ⊆W

and define a random variable W u that is uniformly distributed over W̄ ; i.e., assume that its density is given
by the function pu(w) � CW̄ 1{w∈W̄ } for some constant CW̄ . In what follows, we measure the mean squared error
using this distribution, though of course, other reasonable choices may exist and the algorithm can be adapted
accordingly. For a function F: W →� and φ � (φ1 , φ2 , . . . , φK)T, define the projection operator

ΠφF � arg min
θ≥0

E[[θTφ(W u) − F(W u)]2], (21)

which maps F to a nonnegative coefficient vector θ corresponding to the best, i.e., minimum mean squared
error, approximation under φ.

Proposition 2. Under the condition that E[φ(W u)φ(W u)T] is positive definite, the optimization problem of (21) has a
unique solution.

Proof. If the positive definiteness condition holds, then the problem is a strictly convex quadratic program (see,
e.g., Boyd and Vandenberghe [11]). �

Exactly in the spirit of importance sampling, we define the optimal sampling density (within the mixture
class) to be the probability density function corresponding to the best fit of the integrand using the given basis
functions, i.e., [Πφ[ |H∗t (· | s , a)|pt( · )]]Tφ(w), which is computed by normalizing the weight vector so that it has
unit norm. The sampling density we use at time t, iteration n, and state (s , a) and the corresponding likelihood
ratio are given by

p̄n−1
t (w | s , a) ∝ [θ̄n−1

t (s , a)]Tφ(w) and Ln
t+1(s , a)� pt(W

q , n
t+1 )p̄n−1

t (W
q , n
t+1 | s , a)−1 ,
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where Ln
t+1 ∈ �d is defined for each t and n and W q ,n

t+1 ∈W is the random sample generated by from p̄n−1
t (w | s , a).

Assume that if θ̄n−1
t (s , a) � 0 (the zero vector), then we set p̄n−1

t (w | s , a) ∝
∑

k φ
k(w). Finally, to update our

coefficients θ̄n
t (s , a) from one iteration to the next, we need to introduce another Gn

t -measurable stepsize se-
quence {βn

t } with βn
t ∈ �d for each t. The description of the new algorithm is given in Algorithm 2 below.

Besides the additional input parameters, there are three points of departure from Algorithm 1. In Step 3, the
information process sample W q , n

t+1 is drawn according to p̄n−1
t (w | s , a) rather than the true distribution, pt(w). In

Step 5, we include an additional factor corresponding to the likelihood ratio Ln
t+1 in order to apply importance

sampling. Step 7 is new and represents the updating step for the sampling coefficients θ̄n
t (s , a) using a stochastic

approximation step. Before moving on to the convergence result, we need another stepsize assumption and an
assumption on the basis functions. In addition, Lemma 5 verifies a technical condition that we need for the
convergence result of Theorem 5.

Algorithm 2 (Dynamic-QBRM ADP with Risk-Directed Sampling)
Input: Initial estimates of the value function Q̄0 ∈ �D and quantiles ū i , 0 ∈ �D for i ∈ {1, 2, . . . ,m}.

Basis distributions φk and initial sampling coefficients θ̄0(s , a) ∈ �K .
Stepsize rules γn

t , ηn
t , and βn

t for all n, t.
Output: Approximations {Q̄n} and {ū i , n}.
1 Set Q̄n

T � 0 for all n.
for n � 1, 2, . . . do

2 Choose an initial state (Sn
0 , a

n
0 ).

for t � 0, 1, . . . ,T − 1 do
3 Draw a sample of the information process W u , n

t+1 from the distribution of Wt+1.
Draw an IS sample W q , n

t+1 so that W q , n
t+1 (s , a) ∼ p̄n−1

t (w | s , a).
4 Update auxiliary variable approximations for i � 1, . . .m:

ū i , n
t �ΠXu

t
{ū i , n−1

t −diag(γn
t )ψi

t(ū
i , n−1
t , Q̄n−1

t+1 ,W
u , n
t+1 )}.

5 Compute an estimate of the future cost based on the current approximations:
q̂n

t � diag(Ln
t+1)[Ht(ū1, n−1

t , . . . , ūm , n−1
t , Q̄n−1

t+1 ,W
q , n
t+1 )].

6 Update approximation of value function:
Q̄n

t �ΠX
q
t
{Q̄n−1

t −diag(ηn
t )(Q̄n−1

t − q̂n
t )}.

7 Update the sampling coefficients for each state. Let w � W q , n
t+1 (s , a) and

θ̄n
t (s , a)� [θ̄n−1

t (s , a) − βn
t (s , a)[(θ̄n−1

t (s , a))Tφ(w)
− |Hn

t (w | s , a)|pt(w)]φ(w)pu(w)p̄n−1
t (w | s , a)−1]+,

where [ · ]+ is taken componentwise.
8 Choose next state (Sn

t+1 , a
n
t+1).

end
end.

Assumption 4. For all (s , a) ∈U and t ∈ T , suppose βn
t is Gn

t -measurable and
(i) βn

t (s , a)� β̃n−1
t 1{(s , a)�(Sn

t , a
n
t )}, for some β̃n−1

t ∈ � that is Gn−1
t -measurable.

(ii) ∑∞
n�1 β

n
t (s , a)�∞, ∑∞n�1 β

n
t (s , a)2 <∞ a.s.

(iii) E[(β̃n−1
t )2] ≤ O(n−1−ε) for some ε > 0.

Assumption 5. With regard to the basis distributions φk , k ∈ {1, 2, . . . ,K}, the following hold:
(i) E[φ(W u)φ(W u)T] is a positive definite matrix (so that we may apply Proposition 2),
(ii) Let q̂n

t ∈ �d be defined as in Step 5 of Algorithm 2. There exists a constant Cφ such that the following holds for
any t and (s , a): given θ ≥ 0 and ‖θ‖1 � 1, the tails of the distribution ∑

k θ
kφk are “heavy” enough to guarantee that if

W q , n
t+1 ∼

∑
k θ

kφk , then E[q̂n
t (s , a)2] ≤ Cφ.

We remark that due to the compactness of the sets X u
t and X

q
t , many of the terms in the definition of q̂n

t are
bounded; therefore, the crucial terms that affect Assumption 5(ii) are Ln

t+1 and the cost function ct . The condition
that E[βn

t (s , a)2] ≤O(n−1−ε) is not particularly difficult to satisfy; for example, our deterministic harmonic stepsizes
satisfy the condition with ε � 1. In addition, polynomial rules of the form βn

t (s , a) � n−1/2−ε/2 1{(s , a)�(Sn
t , a

n
t )} work

as well. We state the convergence result for Algorithm 2 in Theorem 5. Since Step 7 of Algorithm 2 does not
project to a compact set, we cannot make use of Kushner and Yin [40, Theorem 2.4] as we did before. Instead,
our convergence result is derived from a theorem of Pflug [45] for stochastic approximation, which requires the
result of Lemma 5. The rest of the proof is mostly standard and is thus deferred to Appendix A.
Because the importance sampled stochastic processes are corrected for in expectation using the likelihood

ratio Ln
t+1, we should not expect the rate of convergence to change. Indeed, we have the following theorem.
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Theorem 4 (Convergence Rate). Choose initial approximations Q̄0 ∈�D and ū i , 0 ∈�D for each i ∈ {1, 2, . . . ,m} so that
Q̄0

t ∈X
q
t and ū i , 0

t ∈X u
t for all t ∈T . Under Assumptions 1(vi)–5, the ε-greedy sampling policy of (13), and the deterministic

harmonic stepsizes given in (14), the sequences of iterates ū i , n for i ∈ {1, . . . ,m} and Q̄n generated by Algorithm 1 satisfy
convergence rates of the form E[‖ū i , n − u i , ∗‖22] ≤ O(1/n) for i ∈ {1, . . . ,m} and E[‖Q̄n −Q∗‖22] ≤ O(1/n).
Proof. The proof is analogous to that of Theorem 3. We need versions of Lemmas 2 and 3 for Algorithm 2. The
difference is that we need to deal with the term Ln

t+1(s , a), which has expectation equal to 1. �

Theorem 5 (Convergence of Risk-Directed Sampling Procedure). Choose initial approximations Q̄0 ∈ �D and ū i , 0 ∈ �D

for each i ∈ {1, 2, . . . ,m} so that Q̄0
t ∈X

q
t and ū i , 0

t ∈X u
t for all t ∈ T . Under Assumptions 1(vi)–5, the ε-greedy sampling

policy of (13), and the deterministic harmonic stepsizes given in (14), Algorithm 2 generates a sequence of iterates Q̄n

that converge almost surely to the optimal value function Q∗. Moreover, the sampling coefficients θ̄n
t (s , a) converge to the

optimal sampling coefficients under φ:

θ̄n
t (s , a) −→Πφ[|H∗t (· | s , a)|pt( · )] a.s .

for each t and (s , a) ∈U.

Proof. See Appendix A. �

Not surprisingly, the new algorithm retains the same theoretical properties of the standard Dynamic-QBRM
ADP without RDS. In addition, we now have a sampling density that converges to the optimal sampling density
as the algorithm progresses (Theorem 5). What remains for us to explore are the empirical convergence rates of
the two approaches.

7. Numerical Results
The recent surge of interest in energy and sustainability has shown that when pertaining to the question of risk,
the problem of optimal control of energy storage assets is an especially rich application domain. In this section,
we illustrate our proposed ADP algorithm by way of a stylized energy trading and bidding problem in which
both heavy tails and extreme events play a prominent role.

7.1. Model
We consider the problem of using energy storage to trade in the electricity market, i.e., energy arbitrage, with
the caveat that there is the possibility of some financial penalty when the amount of stored energy is low. For
example, since storage for backup purposes is rarely in use, one might consider using it to generate a stream
of revenue by interacting with the market. However, this immediately introduces a source of risk: in the rare
event when backup is needed, it is crucial that there is enough energy to cover demand. Failure to do can cause
complications, so it is useful to consider a risk-averse policy to this problem. See Xi et al. [75] for a detailed
model of the shared storage situation, but solved with a risk-neutral objective. When no penalty is assessed, we
assume that there is a modest reward. Finally, we introduce a bidding aspect to the problem where one must
place bids prior to the desired transaction time (see Jiang and Powell [33] for a detailed model of hour-ahead
bidding).
For t � 0 to t �T, let St ∈S � {0, 1, . . . , Smax} be the amount of energy in storage and let Pt ∼ logN (µP(t), σP(t)2)

be the (heavy-tailed) spot price of electricity. Also, let Ut ∼ N (0, σ2
U) be independent of Pt , and suppose our

simple model of storage-based penalties is as follows. Given two constants 0 < a < b, where a represents the
“rate of reward” and b represents the “rate of penalty,” assume that the reward/penalty assessed at time t + 1
is given by

Ft+1 � |µS(St)+Ut+1 |
[
b · 1{µS(St )+Ut+1<0} − a · 1{µS(St )+Ut+1≥0}

]
,

where µS: S→� is a nondecreasing function, signifying that as St increases, the possibility of penalty decreases
(rare event). Our two-dimensional action at each time t is given by

at � (b−t , b+

t ) ∈A ⊆
{
(b− , b+): 0 ≤ b− ≤ b+ ≤ bmax

}
,

where |A| <∞. There are no constraints, so As �A for all s ∈ S . We call b−t the buy bid and b+

t the sell bid: if Pt
fluctuates below the buy bid, we are obligated to buy from the market, and if Pt rises above the sell bid, we are
obligated to sell to the market. In addition, we are penalized the amount of the spot price if we are to sell but
the storage device is empty, i.e., St � 0. In this problem, our information process Wt is given by the pair (Pt ,Ut)
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Figure 4. (Color online) Example illustration of risk-directed sampling (λ � 0.5).
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and is independent of the past. We find it most natural to model this problem in the sense of maximizing
revenues (or “contributions”) rather than minimizing costs; hence, the contribution function is

ct(St , at ,Wt+1)�−Ft+1 +Pt+1
[
1{b+t <Pt+1} − 1{b−t >Pt+1} − 1{St�0} 1{b+t <Pt+1}

]
,

and the transition function is given by St+1 � [min{St + 1{b−t >Pt+1} − 1{b+t <Pt+1} , Smax}]+. The objective is to optimize
the risk-averse model given in (2) with the “min” operator replaced by a “max” and taking the QBRM to be
mean-CVaR at α � 0.99 (this refers to the lower 0.01 tail of the distribution since we are now in the setting of
rewards, not costs). Various values of λ are considered.

7.2. Parameter Choices
We let T � 12 and the size of the storage device be Smax � 6. Next, suppose the values of µS are chosen so that
P(µS(St)+Ut+1 < 0) are 0.1, 0.05, 0.02, 0.01, 0.01, 0.001, and 0.001 for St � 0, 1, . . . , Smax (representing increasingly
rare penalties) with σ2

U � 1. The penalty parameters are set to be a � 5 and b � 500, making the penalty events
relatively severe. We denote the (seasonal) mean of the spot price process by m(t)� E(Pt)� 50 sin(4πt/T)+ 100,
with a constant variance v � Var(Pt) � 3,000. By the properties of the lognormal distribution, this leads to the
parameters µP(t) � log(m(t)(1 + v/m(t)2)−1/2) and σP(t) �

√
log(1+ v/m(t)2). The maximum bid is chosen to be

bmax � 500 and each dimension (the range from 0 to 500) is discretized into increments of 50, resulting in an
MDP with approximately 7,000 states.
Finally, we discuss our choice of parameters for the risk-directed sampling (RDS) procedure. For φ1, we simply

take the true distribution of Wt+1 and for the remaining φk , we select a set of bivariate normal distributions
placed in a grid, with mean of the first component taking values in {50, 175, 300} and the mean of the second
component taking values in {−3,−1, 1}. The standard deviations are chosen to be 750 and 0.25 for the respective
components. This is a fairly general choice of basis functions that uses very little problem specific information
and/or tuning. Figure 4(b) shows an example of the shape of the sampling density after 500 iterations of RDS
for a fixed state of (St , b−t , b

+

t ) � (0, 150, 300) at t � T − 1 with λ � 0.5 (note: the z-axis is not normalized here
and the range of the Pt axis has been decreased to focus on the nonzero areas). As we would expect, the
algorithm has chosen to allocate a relatively large sampling effort toward small values of Ut , presumably due
to the fact that these events are very costly with b � 500 and thus critical to the estimation of CVaR. The last
few observations are shown as red points.

7.3. Evaluating Policies
Here, we describe the procedure for evaluating policies under the objective (2). Let {Aπ

0 ,A
π
1 , . . . ,A

π
T−1} be a

policy; to compute (2), let Sπt+1 � SM(s ,Aπ
t (s),Wt+1) and we solve the recursive equations given by

Vπ
t (s) � ραt

(
ct(s ,Aπ

t (s),Wt+1)+Vπ
t+1(Sπt+1)

)
, for all s ∈S , t ∈ T , Vπ

T (s)� 0, for all s ∈S . (22)

The value of the policy is then given by Vπ
0 (S0), but since Wt is continuously distributed, we cannot, in general,

solve these equations exactly. For this reason, we select a large, finite sample Ω̂ ⊆ Ω, and apply the standard
sample average approximation (SAA) technique of Kleywegt et al. [38] to the Bellman recursion (22) along with
the standard linear programming method suggested in Rockafellar and Uryasev [56] for computing conditional
value at risk. Next, in order to have an optimality benchmark against which ADP policies can be compared,
we also apply the SAA technique to the Bellman recursion for the optimal policy specified in Theorem 1 (with
ρt � ρ

α
t and the “min” replaced by “max”).

We use 50,000 realizations of Wt � (Pt ,Ut) for each t � 1, 2, . . . ,T in our simulations below. For the purposes
of our numerical work and Figure 7, we refer to the SAA optimal policy (which has value function V ∗0, β(S0))
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as our benchmark for “100% optimal” and a corresponding SAA myopic policy, denoted by πm, (i.e., the policy
which takes the action to maximize ραt (ct(s , a ,Wt+1)) with zero continuation value to be “0% optimal.” More
precisely, we have

% optimality of policy π (with respect to myopic policy πm)�
Vπ

0 (S0) −Vπm
0 (S0)

V ∗0 (S0) −Vπm
0 (S0)

.

Recall that larger Vπ
0 (S0) is better, as we have switched to the maximization setting for the numerical application.

7.4. Results
Let us first show a few plots that illustrate the effectiveness of the RDS procedure. Once again, we fix the state to
be (St , b−t , b

+

t )� (0, 150, 300) at t �T−1 and set λ� 0.5, but now we focus on the evolution of the approximations
Q̄n

t and ūn
t ; representative sample paths are shown in Figure 5 (the first plot is from Figure 2, repeated for

comparison purposes).
To make the comparison as fair as possible, the random number generator seed is set so that the sequence of

observations used to update ūn
t is the same in both cases (i.e., the gray lines are identical). The true limit points

are approximately u∗t(St , at) ≈ −555 and Q∗t(St , at) ≈ −387, and we notice that in the case of Figure 5(b), a decent
approximation of Q∗t is obtained around visit 2,500, while the approximation in Figure 5(a) does not settle until
the end. This drastic difference in empirical convergence rate can have a significant impact on the performance
of Dynamic-QBRM ADP as the large errors shown in Figure 5(a) are propagated backwards in time.
In fact, we can illustrate this impact by examining the value function approximations back at time t � 0,

with and without RDS, compared to the SAA optimal value function. Figure 6 compares the two methods after
N � 5,000,000 iterations by varying the bid dimensions of a fixed state S0 � 0. Notice that in Figure 6(b), the
approximation from the RDS procedure very closely resembles the optimal value function of Figure 6(c) even
after errors are propagated through T � 12 steps. The same cannot be said of the approximation in Figure 6(a).

Lastly, we illustrate that in addition to the improved empirical convergence rates observed in Figures 5 and 6,
running Dynamic-QBRM ADP with RDS has a noticeable effect on the resulting policies as well. Using the
backward recursive SAA evaluation procedure described above, we plot optimality percentages of risk-averse
policies produced by the two variants of the algorithm for λ ∈ {0.6, 0.55, 0.5, 0.45, 0.4} in Figure 7. We see that
RDS has the advantage in all cases, especially during the early iterations. Figure 7 uses a log-scale to display
the early progress of the algorithms every 50,000 iterations from N � 0 to N � 1,000,000 and also the asymptotic
progress every 1,000,000 iterations from N � 1,000,000 to N � 5,000,000. Our simulations also suggest that as λ
decreases, the advantage of using RDS diminishes; this is not surprising because decreasing λ corresponds to
deemphasizing the “risky” events that RDS seeks to sample. In fact, we find that in this particular example

Figure 5. Sample paths of approximations generated by Dynamic-QBRM ADP (λ � 0.5).
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Figure 6. (Color online) Surface plots of value function approximations at t � 0 (λ � 0.5).
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Figure 7. Comparison of Dynamic-QBRM ADP with and without RDS.

Number of iterations
(log scale)

105 106

Number of iterations
(log scale)

105 106

Number of iterations
(log scale)

105 106

Number of iterations
(log scale)

105 106

Number of iterations
(log scale)

105 106

%
 o

pt
im

al
it

y 
  

30
40
50
60
70
80
90

100

%
 o

pt
im

al
it

y 
  

30
40
50
60
70
80
90

100

%
 o

pt
im

al
it

y 
  

30
40
50
60
70
80
90

100

%
 o

pt
im

al
it

y 
  

30
40
50
60
70
80
90

100

%
 o

pt
im

al
it

y 
  

30
40
50
60
70
80
90

100

RDS
No RDS

(a) � = 0.6 (b) � = 0.55

(d) � = 0.45 (e) � = 0.4

(c) � = 0.5

Table 1. CPU times for N � 5,000,000 iterations of ADP and SAA optimal solution
(minutes).

Method λ � 0.6 λ � 0.55 λ � 0.5 λ � 0.45 λ � 0.4

Dynamic-QBRM ADP 810.24 819.40 816.40 830.69 811.45
Dynamic-QBRM ADP with RDS 926.25 983.33 989.87 926.85 973.50
SAA Backward Recursion 2,119.74 2,058.36 2,163.91 2,118.84 2,072.79

problem, the algorithms are practically indistinguishable for λ ≤ 0.3. Computation times for the three methods
are given in Table 1; notice that we are able to run the ADP methods for five million iterations in roughly half
of the time it takes to compute the SAA optimal solution (the large number of scenarios presents a challenge
for the optimization routine implemented in CPLEX). The online companion contains additional numerical
results of evaluating our policies on more “practical” metrics of risk and reward, rather than the dynamic risk
measure objective function. We observe that the policies generated by our algorithms behave in an intuitively
appealing way.

8. Conclusion
In this paper, we propose a new ADP algorithm for solving risk-averse MDPs (Ruszczyński [60]) under a class
of quantile-based risk measures. The algorithm uses a two-step updating procedure to approximate the optimal
value function and we prove that it converges almost surely with a rate of O(1/n). We also show a companion
sampling procedure to more efficiently sample the “risky” region of the outcome space and then prove that the
sampling distribution converges to one that is, in a sense, the best within a parametric class. Next, we describe
an energy storage and bidding application, on which we demonstrate that the RDS sampling approach provides
significant benefits in terms of the empirical convergence rate. Moreover, we illustrate that the approximate
policies produced by Dynamic-QBRM ADP behave in an intuitive and appealing way in terms of the tradeoff
between risk and reward (see online companion), suggesting that it can be readily applied to a variety of
problem settings.
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Appendix A. Proofs
Theorem 2 (Almost Sure Convergence). Choose initial approximations Q̄0 ∈ �D and ū i , 0 ∈ �D for each i ∈ {1, 2, . . . ,m} so that
Q̄0

t ∈ X
q
t and ū i , 0

t ∈ X u
t for all t ∈ T . Under Assumptions 1–2, Algorithm 1 generates a sequence of iterates Q̄n that converge almost

surely to the optimal value function Q∗.

Proof. We induct backwards on t, starting with the base case t � T. Since Qn
T(s , a) � Q∗T(s , a) � 0 for all n and all (s , a),

convergence trivially holds. The induction hypothesis is that Q̄n
t+1(s , a) → Q∗t+1(s , a) almost surely, and we aim to show

the same statement with t replacing t + 1. As we did before, we analyze the statistical error and approximation error,
ε

q , n
t+1 , ξ

q , n
t+1 ∈ �d , except they are now with respect to the stochastic Bellman operator Ht :

ε
q , n
t+1 � Q∗t −Ht(u1, ∗

t , . . . , um , ∗
t ,Q∗t+1 ,W

q , n
t+1 ),

ξ
q , n
t+1 � Ht(u1, ∗

t , . . . , um , ∗
t ,Q∗t+1 ,W

q , n
t+1 ) −Ht(ū1, n−1

t , . . . , ūm , n−1
t , Q̄n−1

t+1 ,W
q , n
t+1 ).

Therefore, the update of Step 6 of Algorithm 1 is equivalent to

Q̄n
t �ΠX

q
t

{
Q̄n−1

t −diag(ηn
t )[Q̄n−1

t −Q∗t + ε
q , n
t+1 + ξ

q , n
t+1]

}
. (A.1)

It is once again clear that E[εq , n
t+1(s , a) | G

n−1
t+1 ] � 0 almost surely. Furthermore, we can easily argue that for some positive

constant CH ,
E
[
Q̄n−1

t (s , a) −Ht(ū1, n−1
t , . . . , ūm , n−1

t , Q̄n−1
t+1 ,W

q , n
t+1 )(s , a)

]2 ≤ CH , (A.2)

using Assumption 2(i), Assumption 2(ii), the fact that ραt (0) � Φ(0, . . . , 0) � 0, and the boundedness of the iterates Q̄n−1
t+1

and ūn
t .

Now, fix an (s , a) and let Sn
t+1 � SM(s , a ,W q , n

t+1 ). Expanding and using Assumption 2(i) and the property (10) we see that

|ξq , n
t+1(s , a)| ≤ LΦ

��� min
a′∈ASn

t+1

Q∗t+1(Sn
t+1 , a

′) − min
a′∈An

St+1

Q̄n−1
t+1 (Sn

t+1 , a
′)
���+ LΦ

∑
i

��ū i , n−1
t (s , a) − u i , ∗

t (s , a)
��

≤ LΦ

[
‖Q̄n−1

t+1 −Q∗t+1‖∞ +
∑

i
‖ū i , n−1

t − u i , ∗
t ‖∞

]
. (A.3)

Taking conditional expectation, applying Lemma 1, and using the induction hypothesis (which tells us that ū i , n
t → u i , ∗

t and
Q̄n

t+1→Q∗t+1 almost surely), we conclude
E[ξq , n

t+1(s , a) | G
n−1
t+1 ]→ 0 a.s.,

satisfying one of the conditions of Kushner and Yin [40, Theorem 2.4]. In addition, note the bounded second moment con-
dition of (A.2), the conditional unbiasedness of εq , n

t+1(s , a), the stepsize, sampling, and truncation properties of Assumption 1.
We once again have the ingredients to apply the stochastic approximation convergence theorem Kushner and Yin [40, The-
orem 2.4] (the objective function for applying the theorem is q 7→ ‖q − Q∗t ‖22 ) to the update equation of (A.1) in order to
conclude

Q̄n
t (s , a)→Q∗t(s , a), a.s.,

for every (s , a) ∈U, completing both the inductive step and the proof. �

Proposition 1. Under the ε-greedy sampling policy given in (13) and the deterministic harmonic stepsizes given in (14), Assump-
tion 1(iii)–1(iv) is satisfied.

Proof. Let us consider, for a fixed t and (s , a), the stepsize sequence

γn
t (s , a)�

γt

n
1{(s , a)�(Sn

t , a
n
t )} .

The argument for the case of ηn
t (s , a) is, of course, exactly the same and is omitted. First, notice that the second part,

i.e., ∑∞
n�1 γ

n
t (s , a)2 < ∞ almost surely, is trivial. We thus focus on proving that the second part of the assumption, that∑∞

n�1 γ
n
t (s , a) �∞ almost surely, holds in this case. An iteration n is called a visit to state (s , a) if (s , a) � (Sn

t , a
n
t ) (so the

stepsize is nonzero). Let {∆k
t (s , a)}k≥1 be a process that describes the interarrival times for visits to the state (s , a); in other

words, ∆k
t (s , a) is the number of iterations that pass between the (k − 1)-st and k-th visits to the state (s , a). The arrival time

sequence (the iterations for which (s , a) is visited) is thus given by the sum

N k
t (s , a)�

k∑
k′�1
∆k′

t (s , a), for k > 0.

To simplify notation, we henceforth drop the dependence of these processes on (s , a) and use ∆k
t �∆

k
t (s , a) and N k

t � N k
t (s , a).

By selecting only the iterations for which the stepsizes are nonzero, we see that
∞∑

k�1
γ

Nk
t

t �

∞∑
n�1

γn
t (s , a).
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Analogous to N k
t process, define the deterministic sequence

nk
t �

⌈ k∑
k′�1

δk′
t

⌉
and δk

t �
−2

log(1− ε) log k.

Observe that under the ε-greedy sampling policy, the event {(s , a) , (Sn
t , a

n
t )} occurs with probability at most 1− ε. Hence,

by independence, we can show that
P(∆k

t ≥ δk
t ) ≤ (1− ε)dδ

k
t e ≤ 1

k2 .

By the Borel-Cantelli Lemma, with probability 1, the events {∆k
t ≥ δk

t } occur finitely often. Hence, there exists an almost
surely finite Kt such that for all k ≥ Kt , it is true that ∆k

t ≤ δk
t . Clearly, nk

t ≤ O(k log k) and
∞∑

k�1
γ

nk
t

t �

∞∑
k�1

γt

nk
t

�∞ (A.4)

holds. Let C1 �
∑Kt−1

i�1 (γt/N i
t ) and C2 �

∑Kt−1
i�1 ∆

i
t be almost surely finite random variables. Some simple manipulations yield

(the following chain of inequalities may be analyzed ω-wise to obtain the a.s . qualification)
∞∑

k�1
γ

Nk
t

t �

∞∑
k�1

γt

N k
t

� C1 +
∞∑

k�Kt

γt

C2 +
∑k

i�Kt
∆i

t

≥ C1 +
∞∑

k�Kt

γt

C2 +
∑k

i�Kt
δi

t

≥ C1 +
∞∑

k�Kt

γt

C2 −
∑Kt−1

i�0 δi
t + nk

t

�∞ a.s.,

where the final equality follows from (A.4). �

Lemma 3. Under the same conditions as Lemma 2, the sequence of approximations Q̄n
t generated by Algorithm 1 satisfies, for any

κ0 , κ1 , . . . , κm > 0,

E[‖Q̄n
t −Q∗t ‖22 ] ≤

[
1−

ηt

n

(
2 ε− LΦκ0 − LΦ

m∑
i�1
κi

)]
E[‖Q̄n−1

t −Q∗t ‖22 ]

+
ηt LΦ
nκ0

E[‖Q̄n−1
t+1 −Q∗t+1‖22 ]+

ηt

n

m∑
i�1

LΦ
κi

E[‖ū i , n−1
t − u i , ∗

t ‖22 ]+CH
η2

t

n2 ,

where CH bounds the term
E
[
Q̄n−1

t (s , a) −Ht(ū1, n−1
t , . . . , ūm , n−1

t , Q̄n−1
t+1 ,Wt+1)(s , a)

]2 ≤ CH ,

for all (s , a) ∈U.

Proof. Note that although we omit its algebraic form, the existence of Cg is guaranteed by Assumption 2(ii) and the
boundedness of Q̄n−1

t (s , a). Let us recall the update equation given in Step 7 of Algorithm 1 can be rewritten as

Q̄n
t �ΠX

q
t

{
Q̄n−1

t −diag(ηn
t )[Q̄n−1

t −Q∗t + ε
q , n
t+1 + ξ

q , n
t+1]

}
.

Expanding, we have

‖Q̄n
t −Q∗t ‖22 ≤ ‖Q̄n−1

t −Q∗t ‖22 +
diag(ηn

t )
[
Q̄n−1

t −Q∗t + ε
q , n
t+1 + ξ

q , n
t+1

]2
2 − 2(Q̄n−1

t −Q∗t)T diag(ηn
t )

[
Q̄n−1

t −Q∗t + ε
q , n
t+1 + ξ

q , n
t+1

]
. (A.5)

We focus on the cross term. First, by the ε-greedy sampling policy, notice that

E
[
(Q̄n−1

t −Q∗t)T diag(ηn
t )(Q̄n−1

t −Q∗t) | Gn−1
t+1

]
≥
εηt

n
‖Q̄n−1

t −Q∗t ‖22 , (A.6)

and by the definition of εq , n
t+1,

E
[
(Q̄n−1

t −Q∗t)T diag(ηn
t )ε

q , n
t+1 | G

n−1
t+1

]
� 0. (A.7)

Using the bound (A.3), the fact that ηn
t contains exactly one nonzero component, and the monotonicity of the lp norms, we

can see that

E
[
−(Q̄n−1

t −Q∗t)T diag(ηn
t )ξ

q , n
t+1 | G

n−1
t+1

]
≤
ηt

n
LΦ

[
‖Q̄n−1

t −Q∗t ‖∞‖Q̄n−1
t+1 −Q∗t+1‖∞ + ‖Q̄n−1

t −Q∗t ‖∞
∑

i
‖ū i , n−1

t − u i , ∗
t ‖∞

]
≤
ηt

n
LΦ

[
‖Q̄n−1

t −Q∗t ‖2‖Q̄n−1
t+1 −Q∗t+1‖2 + ‖Q̄n−1

t −Q∗t ‖2
∑

i
‖ū i , n−1

t − u i , ∗
t ‖2

]
.

Again applying 2ab ≤ a2κ+ b2/κ, we see that for any constants κk > 0, k � 0, 1, . . . ,m,

E
[
−2 (Q̄n−1

t −Q∗t)T diag(ηn
t )ξ

φ,n
t+1 | G

n−1
t+1

]
≤
ηt

n
LΦ

[(
κ0 +

m∑
i�1
κi

)
‖Q̄n−1

t −Q∗t ‖22 +
1
κ0
‖Q̄n−1

t+1 −Q∗t+1‖22 +
m∑

i�1

1
κi
‖ū i , n−1

t − u i , ∗
t ‖22

]
. (A.8)

The statement of the lemma follows by taking expectations of (A.5)–(A.8), using the CH bound, and combining. �
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Theorem 3 (Convergence Rate). Choose initial approximations Q̄0 ∈�D and ū i , 0 ∈�D for each i ∈ {1, 2, . . . ,m} so that Q̄0
t ∈X

q
t and

ū i , 0
t ∈ X u

t for all t ∈ T . Under Assumptions 1(vi)–3, the ε-greedy sampling policy of (13), and the deterministic harmonic stepsizes
given in (14), the sequences of iterates ū i , n for i ∈ {1, . . . ,m} and Q̄n generated by Algorithm 1 satisfy convergence rates of the form
E[‖ū i , n − u i , ∗‖22 ] ≤ O(1/n) for i ∈ {1, . . . ,m} and E[‖Q̄n −Q∗‖22 ] ≤ O(1/n).
Proof. First, we state a special case of Chung’s Lemma (see Chung [19]), which is useful for analyzing a specific type of
sequence that arises often in recursive optimization algorithms (see, e.g., Juditsky et al. [34], Rakhlin et al. [52]).
Lemma 4 (Chung [19]). Consider a sequence {an}. Suppose that the following recursive inequality holds for some b > 1 and every
n ≥ 1:

an ≤
(
1− b

n

)
an−1

+
c

n2 .

Then, if k ≥max{c/(b − 1), a0}, it follows that an ≤ k/n for n ≥ 1.
To prove the theorem, we use an induction argument for Q̄n . Let us first consider t � T as the base case. Since E[‖Q̄n

T −
Q∗T ‖22 ]� 0, it is trivially O(1/n), so let us take our induction hypothesis to be E[‖Q̄n

t+1−Q∗t+1‖22 ] ≤ O(1/n) for a particular t < T.
Hence, there exists kq

t+1 > 0 independent of n such that E[‖Q̄n−1
t+1 −Q∗t+1‖22 ] ≤ kq

t+1/n holds for n ≥ 1 (note the n − 1 on the left
hand side). We first apply Lemma 2 with γt � 2/(εCl f

) and κ � εCl f
/CLF

, so by Lemma 4, we can take

k i
t � 2 max

{ 2CLF

ε2C2
l f

kq
t+1 +

4 Cαi

ε2C2
l f

, ‖ū i , 0
t − u i , ∗

t ‖22
}

to satisfy E[‖ūn
t − u∗t ‖22 ] ≤ k i

t/(2n) for n ≥ 1. It follows that E[‖ūn−1
t − u∗t ‖22 ] ≤ k i

t/n for n ≥ 2. Finally, we apply Lemma 3 with
ηt � 2/ε, κ0 � ε/(2LΦ), and κi � ε/(2mLΦ) for all i. Again by Lemma 4, we can choose

kq
t � max

{ 4L2
Φ

ε2 kq
t+1 +

4mL2
Φ

ε2

∑
i

k i
t +

4CH

ε2 , ‖Q̄0
t −Q∗t ‖22

}
,

whichgivesE[‖Q̄n
t −Q∗t ‖22 ] ≤ kq

t /n for n ≥ 2, theO(1/n) rateneeded to complete the inductive step.Therefore,wecanconclude that

E[‖Q̄n −Q∗‖22 ]�
T∑

t�0
E[‖Q̄n

t −Q∗t ‖22 ] ≤ O(1/n),

as desired. As for the convergence of E[‖ū i , n − u i , ∗‖22 ], we note that the values k i
t obtained through the induction above can

be used to deduce the O(1/n) convergence rate. �
Similar to the sequences ξ i , n

t+1 and ξ
q , n
t+1 used in the proofs of Lemma 1 and Theorem 2, let us introduce another useful

process ξh , n
t+1 (s , a) ∈ �K for each t and (s , a). As in Step 7 of Algorithm 2, let w � W q , n

t+1 . We define

ξh , n
t+1 (s , a)�

[
|H∗t (w | s , a)| − |Hn

t (w | s , a)|
]
φ(w)pt(w)pu(w)p̄n−1

t (w | s , a)−1 ,

representing the error from using Hn
t (w | s , a) to approximate H∗t (w | s , a).

Lemma 5. Under the ε-greedy sampling policy of (13) and Assumptions 1(vi)–5, it follows that
∞∑

n�1
β̃n−1

t E[‖ξh , n
t+1 (s , a)‖2 | G

n−1
t+1 ] <∞ a.s .

for each t and (s , a).
Proof. For simplicity, let w � W q , n

t+1 and P � φ(w)pt(w)pu(w)p̄n−1
t (w | s , a)−1. We notice that

‖ξh , n
t+1 (s , a)‖2 ≤ ‖P‖2

��H∗t (w | s , a) −Hn
t (w | s , a)

�� ≤ ‖P‖2LΦ‖Q̄n−1
t+1 −Q∗t+1‖2 + ‖P‖2LΦ

∑
i
‖ū i , n−1

t − u i , ∗
t ‖2 ,

where the second inequality follows from the same steps used in deriving (A.3) and then applying the monotonicity of lp
norms. Squaring, applying the inequality 2ab ≤ a2κ + b2/κ for any κ > 0 to the cross terms, and using the fact that each
component of P is bounded (due to pu), we can write

‖ξh , n
t+1 (s , a)‖22 ≤ CQ ‖Q̄n−1

t+1 −Q∗t+1‖22 +
∑

i
Cu , i ‖ū i , n−1

t − u i , ∗
t ‖22 , (A.9)

for some constants CQ ,Cu , 1 , . . . ,Cu ,m ≥ 0. Taking expectation of (A.9) and using the convergence rate result of Theorem 4,
we see that E[‖ξh , n

t+1 (s , a)‖22 ] ≤ O(1/n). Now, by Cauchy-Schwarz and Assumption 4(iii),

E
[
β̃n−1

t E[‖ξh , n
t+1 (s , a)‖2 | G

n−1
t+1 ]

]
� E[β̃n−1

t ‖ξh , n
t+1 (s , a)‖2] ≤

√
E[(β̃n−1

t )2]E[‖ξh , n
t+1 (s , a)‖22 ] ≤ O(n−1−ε/2),

so it is clear that the terms E[β̃n−1
t E[‖ξh , n

t+1 (s , a)‖2 | G
n−1
t+1 ]] are summable. By the monotone convergence theorem, we conclude

E
[ ∞∑

n�1
β̃n−1

t E[‖ξh , n
t+1 (s , a)‖2 | G

n−1
t+1 ]

]
<∞,

from which the statement of the lemma follows (notice that the term within the expectation must be finite almost surely). �
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Theorem 5 (Convergence of Risk-Directed Sampling Procedure). Choose initial approximations Q̄0 ∈ �D and ū i , 0 ∈ �D for each i ∈
{1, 2, . . . ,m} so that Q̄0

t ∈ X
q
t and ū i , 0

t ∈ X u
t for all t ∈ T . Under Assumptions 1(vi)–5, the ε-greedy sampling policy of (13), and

the deterministic harmonic stepsizes given in (14), Algorithm 2 generates a sequence of iterates Q̄n that converge almost surely to the
optimal value function Q∗. Moreover, the sampling coefficients θ̄n

t (s , a) converge to the optimal sampling coefficients under φ:

θ̄n
t (s , a) −→Πφ[|H∗t (· | s , a)|pt( · )] a.s .

for each t and (s , a) ∈U.
Proof. First, notice that the convergence of Q̄n and ū i , n is (mostly) unaffected by the addition of the sampling procedure. By
the principle of importance sampling, the factor of diag(Ln

t ) corrects, in expectation, for the fact that W q , n
t+1 is sampled from

the importance distribution p̄n−1
t (w | s , a) rather than pt(w). In addition, Assumption 5 implies that the condition stating

that the second moment of the gradient term is finite, which is needed for Kushner and Yin [40, Theorem 2.4], still holds and
therefore the convergence follows.

We now focus on the last part of the theorem and analyze the convergence of the sampling coefficients. Let

θ∗t (s , a)�Πφ[|H∗t (· | s , a)|pt( · )],

and we aim to show θ̄n
t (s , a)→ θ∗t (s , a) almost surely. The proof technique is standard and uses a supermartingale conver-

gence argument; see, e.g, Pflug [45, Theorem 5.3], but several aspects need to be adapted for technical reasons in our setting.
Throughout this proof, fix a t and (s , a). To simplify notation, we use the shorthand p̄n−1

t (w) � p̄n−1
t (w | s , a), w � W q , n

t+1 ∼
p̄n−1

t (w), Hn
t (w)�Hn

t (w | s , a), and H∗t (w)�H∗t (w | s , a). First, we decompose the gradient term. Define a function ht : �K→�K ,
so that for θ ∈ �K ,

ht(θ)� E
[
[θTφ(w) − |H∗t (w)|pt(w)]φ(w)pu(w)p̄n−1

t (w)−1] .
Note that ht is affine in θ and is the gradient of the (strictly convex) quadratic objective function in (21), meaning that we
can find positive constants Ch , 1 and Ch , 2 such that

‖ht(θ)‖22 ≤ Ch , 1‖θ− θ∗t (s , a)‖22 +Ch , 2. (A.10)

Next, the noise term εh , n
t+1(s , a) is given by

εh , n
t+1(s , a)�

[
(θ̄n−1

t (s , a))Tφ(w) − |H∗t (w)|pt(w)
]
φ(w)pu(w)p̄n−1

t (w)−1 − ht(θ̄n−1
t (s , a)),

and it follows that E[εh , n
t+1(s , a) | G

n−1
t+1 ] � 0. Using the fact that ht(θ̄n−1

t (s , a)) is a deterministic affine function of θ̄n−1
t (s , a),

we observe that εh , n
t+1(s , a) can be written in the form X [θ̄n−1

t (s , a) − θ∗t (s , a)] + Z where X ∈ �K×K and Z ∈ �K are random.
Since pu(w)� 0 for w outside of a compact set, the entries of both X and Z are bounded. Let ‖ · ‖2 denote the operator norm
whenever its argument is a matrix and we have

‖εh , n
t+1(s , a)‖22 ≤

[
‖X‖2‖θ̄n−1

t (s , a) − θ∗t (s , a)‖2 + ‖Z‖2
]2 ≤ Cε, 1‖θ̄n−1

t (s , a) − θ∗t (s , a)‖22 +Cε, 2 , (A.11)

for some constants Cε, 1 and Cε, 2. We also reproduce the definition of ξh , n
t+1 (s , a) given previously:

ξh , n
t+1 (s , a)� [|H∗t (w)| − |Hn

t (w)|]φ(w)pt(w)pu(w)p̄n−1
t (w)−1.

Step 7 of Algorithm 2 can therefore be written

θ̄n
t (s , a)�

[
θ̄n−1

t (s , a) − βn
t (s , a)[ht(θ̄n−1

t (s , a))+ εh , n
t+1(s , a)+ ξ

h , n
t+1 (s , a)]

]+
.

For convenience, let us define

An
t � θ̄

n
t (s , a) − θ∗t (s , a) and ĥn

t � ht(θ̄n−1
t (s , a))+ εh , n

t+1(s , a)+ ξ
h , n
t+1 (s , a).

Hence,

‖An
t ‖22 ≤

[θ̄n−1
t (s , a) − βn

t (s , a)ĥn
t ]+ − [θ∗t (s , a)]+

2
2 ≤ ‖A

n−1
t ‖22 − 2βn

t (s , a)(An−1
t )T ĥn

t + (β̃n−1
t )2‖ ĥn

t ‖22 . (A.12)

Taking conditional expectation of the cross term, using Assumption 4, noting the inequality (An−1
t )T ht(θ̄n−1

t (s , a)) > 0 (by
strict convexity), and using Cauchy-Schwarz, we get

E[−2βn
t (s , a)(An−1

t )T ĥn
t | Gn−1

t+1 ] ≤ −2εβ̃n−1
t (An−1

t )Tht(θ̄n−1
t (s , a))+ 2β̃n−1

t ‖An−1
t ‖2E[‖ξh , n

t+1 (s , a)‖2 | G
n−1
t+1 ] (A.13)

Moving onto the third term of (A.12), we have

E[‖ ĥn
t ‖22 | Gn−1

t+1 ] ≤
[
‖ht(θ̄n−1

t (s , a))‖22 +E
[
‖εh , n

t+1(s , a)‖22 + ‖ξ
h , n
t+1 (s , a)‖22 + 2‖εh , n

t+1(s , a)‖2‖ξ
h , n
t+1 (s , a)‖2

+ 2‖ht(θ̄n−1
t (s , a))‖2‖εh , n

t+1(s , a)‖2 + 2‖ht(θ̄n−1
t (s , a))‖2‖ξh , n

t+1 (s , a)‖2 | G
n−1
t+1

] ]
≤ 3

[
E
[
‖εh , n

t+1(s , a)‖22 + ‖ξ
h , n
t+1 (s , a)‖22 | G

n−1
t+1

]
+ ‖ht(θ̄n−1

t (s , a))‖22
]

≤
[
C ĥ , 1‖An−1

t ‖22 +C ĥ , 2 + 3E[‖ξh , n
t+1 (s , a)‖22 | G

n−1
t+1 ]

]
(A.14)
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where the second inequality is due to the inequality 2ab ≤ a2 + b2 and the third inequality, with new constants C ĥ , 1 and C ĥ , 2,
is due to the bounds (A.10) and (A.11). Combining (A.12)–(A.14),

E[‖An
t ‖22 | Gn−1

t+1 ] ≤ ‖An−1
t ‖22 (1+ ζn−1

t )+ µn−1
t − νn−1

t ,

where

ζn−1
t � C ĥ , 1 (β̃n−1

t )2 + 2β̃n−1
t E[‖ξh , n

t+1 (s , a)‖2 | G
n−1
t+1 ],

µn−1
t � 3(β̃n−1

t )2E[‖ξh , n
t+1 (s , a)‖22 | G

n−1
t+1 ]+C ĥ , 2(β̃n−1

t )2 ,
νn−1

t � 2εβ̃n−1
t (An−1

t )Tht(θ̄n−1
t (s , a)).

Note that ∑∞
n�1(β̃n−1

t )2 <∞ almost surely by Assumption 4(iii) and the monotone convergence theorem (we can apply the
same logic as Lemma 5). This, together with Lemma 5, allows us to conclude that ∑∞

n�1 ζ
n−1
t <∞ almost surely. Moreover,

since β̃n−1
t must converge to zero and (A.9) implies E[‖ξh , n

t+1 (s , a)‖22 | G
n−1
t+1 ] converges to zero, we can see that ∑∞

n�1 µ
n−1
t <∞

almost surely. The well-known supermartingale convergence lemma of Robbins and Siegmund [55] tells us that ‖An
t ‖2

converges and ∑∞
n�1 ν

n−1
t <∞ almost surely. Let Dδ � {limn→∞ ‖An

t ‖2 > δ}. On the event Dδ , using strict convexity, we know that
(An−1

t )Tht(θ̄n−1
t (s , a)) is positive and bounded away from zero for any n. Along with ∑∞

n�1 β̃
n−1
t �∞, this implies ∑∞

n�1 ν
n−1
t �∞,

which in turn shows us that Dδ must occur with probability zero for any δ > 0. �
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