
This article was downloaded by: [140.180.241.64] On: 05 January 2016, At: 21:41
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

An Approximate Dynamic Programming Algorithm for
Monotone Value Functions
Daniel R. Jiang, Warren B. Powell

To cite this article:
Daniel R. Jiang, Warren B. Powell (2015) An Approximate Dynamic Programming Algorithm for Monotone Value Functions.
Operations Research 63(6):1489-1511. http://dx.doi.org/10.1287/opre.2015.1425

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2015, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/opre.2015.1425
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 63, No. 6, November–December 2015, pp. 1489–1511
ISSN 0030-364X (print) ó ISSN 1526-5463 (online) http://dx.doi.org/10.1287/opre.2015.1425

©2015 INFORMS

An Approximate Dynamic Programming

Algorithm for Monotone Value Functions

Daniel R. Jiang, Warren B. Powell

Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08540
{drjiang@princeton.edu, powell@princeton.edu}

Many sequential decision problems can be formulated as Markov decision processes (MDPs) where the optimal value
function (or cost-to-go function) can be shown to satisfy a monotone structure in some or all of its dimensions. When the
state space becomes large, traditional techniques, such as the backward dynamic programming algorithm (i.e., backward
induction or value iteration), may no longer be effective in finding a solution within a reasonable time frame, and thus
we are forced to consider other approaches, such as approximate dynamic programming (ADP). We propose a provably
convergent ADP algorithm called Monotone-ADP that exploits the monotonicity of the value functions to increase the rate
of convergence. In this paper, we describe a general finite-horizon problem setting where the optimal value function is
monotone, present a convergence proof for Monotone-ADP under various technical assumptions, and show numerical results
for three application domains: optimal stopping, energy storage/allocation, and glycemic control for diabetes patients. The
empirical results indicate that by taking advantage of monotonicity, we can attain high quality solutions within a relatively
small number of iterations, using up to two orders of magnitude less computation than is needed to compute the optimal
solution exactly.

Keywords : approximate dynamic programming; monotonicity; optimal stopping; energy storage; glycemic control.
Subject classifications : dynamic programming/optimal control: Markov, finite state.
Area of review : Optimization.
History : Received July 2014; revisions received May 2015, July 2015; accepted August 2015. Published online in Articles

in Advance November 4, 2015.

1. Introduction
Sequential decision problems are an important concept
in many fields, including operations research, economics,
and finance. For a small, tractable problem, the backward
dynamic programming (BDP) algorithm (also known as
backward induction or finite-horizon value iteration) can be
used to compute the optimal value function, from which we
get an optimal decision making policy (Puterman 1994).
However, the state space for many real-world applications
can be immense, making this algorithm very computation-
ally intensive. Hence, we must often turn to the field of
approximate dynamic programming, which seeks to solve
these problems via approximation techniques. One way
to obtain a better approximation is to exploit (problem-
dependent) structural properties of the optimal value func-
tion, and doing so often accelerates the convergence of
ADP algorithms. In this paper, we consider the case where
the optimal value function is monotone with respect to a
partial order. Although this paper focuses on the theory
behind our ADP algorithm and not a specific application,
we first point out that our technique can be broadly uti-
lized. Monotonicity is a very common property because
it is true in many situations that “more is better.” To be
more precise, problems that satisfy free disposal (to bor-
row a term from economics) or no holding costs are likely
to contain monotone structure. There are also less obvious

ways that monotonicity can come into play, such as envi-
ronmental variables that influence the stochastic evolution
of a primary state variable (e.g., extreme weather can lead
to increased expected travel times; high natural gas prices
can lead to higher electricity spot prices). The following list
is a small sample of real-world applications spanning the
literature of the aforementioned disciplines (and their sub-
fields) that satisfy the special property of monotone value
functions.

Operations Research
• The problem of optimal replacement of machine parts

is well studied in the literature (see e.g., Feldstein and
Rothschild 1974, Pierskalla and Voelker 1976, and Rust
1987) and can be formulated as a regenerative optimal stop-
ping problem in which the value function is monotone in
the current health of the part and the state of its environ-
ment. Section 7 discusses this model and provides detailed
numerical results.
• The problem of batch servicing of customers at a ser-

vice station as discussed in Papadaki and Powell (2002)
features a value function that is monotone in the number
of customers. Similarly, the related problem of multiprod-
uct batch dispatch studied in Papadaki and Powell (2003b)
can be shown to have a monotone value function in the
multidimensional state variable that contains the number of
products awaiting dispatch.

1489

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

mailto:drjiang@princeton.edu
mailto:powell@princeton.edu


Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1490 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

Energy
• In the energy storage and allocation problem, one must

optimally control a storage device that interfaces with the
spot market and a stochastic energy supply (such as wind
or solar). The goal is to reliably satisfy a possibly stochas-
tic demand in the most profitable way. We can show that
without holding costs, the value function is monotone in the
resource (see Scott and Powell 2012 and Salas and Powell
2013). Once again, refer to §7 for numerical work in this
problem class.

• The value function from the problem of maximizing
revenue using battery storage while bidding hourly in the
electricity market can be shown to satisfy monotonicity in
the resource, bid, and remaining battery lifetime (see Jiang
and Powell 2015).

Healthcare
• Hsih (2010) develops a model for optimal dosing

applied to glycemic control in diabetes patients. At each
decision epoch, one of several treatments (e.g., sensitiz-
ers, secretagogues, alpha-glucosidase inhibitors, or peptide
analogs) with varying levels of “strength” (i.e., ability to
decrease glucose levels) but also varying side effects, such
as weight gain, needs to be administered. The value func-
tion in this problem is monotone whenever the utility func-
tion of the state of health is monotone. See §7 for the
complete model and numerical results.

• Statins are often used as treatment against heart dis-
ease or stroke in diabetes patients with lipid abnormalities.
The optimal time for statin initiation, however, is a difficult
medical problem due to the competing forces of health ben-
efits and side effects. Kurt et al. (2011) models the problem
as an MDP with a value function monotone in a risk factor
known as the lipid ratio.

Finance
• The problem of mutual fund cash balancing, described

in Nascimento and Powell (2010), is faced by fund man-
agers who must decide on the amount of cash to hold, tak-
ing into account various market characteristics and investor
demand. The value functions turn out to be monotone in
the interest rate and the portfolio’s rate of return.

• The pricing problem for American options (see
Luenberger 1998) uses the theory of optimal stopping and
depending on the model of the price process, monotonicity
can be shown in various state variables: for example, the
current stock price or the volatility (see Ekström 2004).

Economics
• Kaplan and Violante (2014) model the decisions of

consumers after receiving fiscal stimulus payments to
explain observed consumption behavior. The household has
both liquid and illiquid assets (the state variable), in which
the value functions are clearly monotone.

• A classical model of search unemployment in eco-
nomics describes a situation where at each period, a worker

has a decision of accepting a wage offer or continuing to
search for employment. The resulting value functions can
be shown to be increasing with wage (see §10.7 of Stockey
and Lucas 1989 and McCall 1970).
This paper makes the following contributions. We de-

scribe and prove the convergence of an algorithm, called
Monotone-ADP 4M-ADP5 for learning monotone value
functions by preserving monotonicity after each update. We
also provide empirical results for the algorithm in the con-
text of various applications in operations research, energy,
and healthcare as experimental evidence that exploiting
monotonicity dramatically improves the rate of conver-
gence. The performance of Monotone-ADP is compared
to several established algorithms: kernel-based reinforce-
ment learning (Ormoneit and Sen 2002), approximate policy
iteration (Bertsekas 2011), asynchronous value iteration
(Bertsekas 2007), and Q-learning (Watkins and Dayan
1992).
The paper is organized as follows. Section 2 gives a lit-

erature review, followed by the problem formulation and
algorithm description in §§3 and 4. Next, §5 provides
the assumptions necessary for convergence, and §6 states
and proves the convergence theorem, with several proofs
of lemmas and propositions postponed until the appendix
and online supplement (available as supplemental mate-
rial at http://dx.doi.org/10.1287/opre.2015.1425). Section 7
describes numerical experiments over a suite of problems,
with the largest one having a seven dimensional state vari-
able and nearly 20 million states per time period. We con-
clude in §8.

2. Literature Review
General monotone functions (not necessarily a value func-
tion) have been extensively studied in the academic liter-
ature. The statistical estimation of monotone functions is
known as isotonic or monotone regression and has been
studied as early as 1955; see Ayer et al. (1955) or Brunk
(1955). The main idea of isotonic regression is to minimize
a weighted error under the constraint of monotonicity (see
Barlow et al. 1972 for a thorough description). The problem
can be solved in a variety of ways, including the Pool Adja-
cent Violators Algorithm 4PAVA5 described in Ayer et al.
(1955). More recently, Mammen (1991) builds upon this
previous research by describing an estimator that combines
kernel regression and PAVA to produce a smooth regres-
sion function. Additional studies from the statistics litera-
ture include Mukerjee (1988), Ramsay (1998), and Dette
et al. (2006). Although these approaches are outside the
context of dynamic programming, that they were devel-
oped and well studied highlights the pertinence of mono-
tone functions.
From the operations research literature, monotone value

functions and conditions for monotone optimal policies are
broadly described in Puterman (1994, §4.7) and some gen-
eral theory is derived therein. Similar discussions of the
topic can be found in Ross (1983), Stockey and Lucas

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

http://dx.doi.org/10.1287/opre.2015.1425


Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1491

(1989), Müller (1997), and Smith and McCardle (2002).
The algorithm that we describe in this paper is first used
in Papadaki and Powell (2002) as a heuristic to solve the
stochastic batch service problem, where the value func-
tion is monotone. However, the convergence of the algo-
rithm is not analyzed and the state variable is scalar.
Finally, in Papadaki and Powell (2003a), the authors prove
the convergence of the Discrete Online Monotone Esti-
mation (DOME) algorithm, which takes advantage of a
monotonicity preserving step to iteratively estimate a dis-
crete monotone function. DOME, though, was not designed
for dynamic programming, and the proof of convergence
requires independent observations across iterations, which
is an assumption that cannot be made for Monotone-ADP.

Another common property of value functions, especially
in resource allocation problems, is convexity/concavity.
Rather than using a monotonicity preserving step as
Monotone-ADP does, algorithms such as the Successive
Projective Approximation Routine 4SPAR5 of Powell et al.
(2004), the Lagged Acquisition ADP Algorithm of Nasci-
mento and Powell (2009), and the Leveling Algorithm of
Topaloglu and Powell (2003) use a concavity preserving
step, which is the same as maintaining monotonicity in
the slopes. The proof of convergence for our algorithm,
Monotone-ADP, uses ideas found in Tsitsiklis (1994) (later
also used in Bertsekas and Tsitsiklis 1996) and Nascimento
and Powell (2009). Convexity has also been exploited suc-
cessfully in multistage linear stochastic programs (see, e.g,
Birge 1985, Pereira and Pinto 1991, and Asamov and Pow-
ell 2015). In our work, we take as inspiration the value
of convexity demonstrated in the literature and show that
monotonicity is another important structural property that
can be leveraged in an ADP setting.

3. Mathematical Formulation
We consider a generic problem with a time horizon, t = 01
1121 0 0 0 1T . Let S be the state space under consideration,
where óSó < à, and let A be the set of actions or deci-
sions available at each time step. Let St 2 S be the ran-
dom variable representing the state at time t and at 2 A
be the action taken at time t. For a state St 2 S and an
action at 2 A, let Ct4St1at5 be a contribution or reward
received in period t and CT 4ST 5 be the terminal contribu-
tion. Let Aè

t 2 S !A be the decision function at time t for
a policy è from the class Á of all admissible policies. Our
goal is to maximize the expected total contribution, giving
us the following objective function:

sup
è2Á

E

TÉ1X

t=0

Ct4St1A
è
t 4St55+CT 4ST 5

�
1

where we seek a policy to choose the actions at sequen-
tially based on the states St that we visit. Let 4Wt5

T
t=0 be a

discrete time stochastic process that encapsulates all of the
randomness in our problem; we call it the information pro-
cess. Assume that Wt 2W for each t and that there exists a
state transition function f 2 S ⇥A⇥W !S that describes
the evolution of the system. Given a current state St , an

action at , and an outcome of the information process Wt+1,
the next state is given by

St+1 = f 4St1at1Wt+150 (1)

Let s 2S . The optimal policy can be expressed through a
set of optimal value functions using the well-known Bell-
man’s equation:
V ⇤
t 4s5=sup

a2A
6Ct4s1a5+E6V ⇤

t+14St+15 óSt=s1 at=a77

for t=0111210001T É11

V ⇤
T 4s5=CT 4s51

(2)

with the understanding that St+1 transitions from St accord-
ing to (1). In many cases, the terminal contribution function
CT 4ST 5 is zero. Suppose that the state space S is equipped
with a partial order, denoted �, and the following mono-
tonicity property is satisfied for every t:

s � s0 =) V ⇤
t 4s5∂ V ⇤

t 4s
050 (3)

In other words, the optimal value function V ⇤
t is order-

preserving over the state space S . In the case where the
state space is multidimensional (see §7 for examples), a
common example of � is componentwise inequality, which
we henceforth denote using the traditional ∂.
A second example that arises very often is the following

definition of �, which we call the generalized componen-
twise inequality. Assume that each state s can be decom-
posed into s = 4m1 i5 for some m 2M and i 2 I . For two
states s = 4m1 i5 and s0 = 4m01 i05, we have

s � s0 () m∂m01 i= i00 (4)

In other words, we know that whenever i is held constant,
then the value function is monotone in the “primary” vari-
able m. An example of when such a model would be useful
is when m represents the amount of some held resource
that we are both buying and selling, while i represents
additional state-of-the-world information, such as prices of
related goods, transport times on a shipping network, or
weather information. Depending on the specific model, the
relationship between the value of i and the optimal value
function may be quite complex and a priori unknown to us.
However, it is likely to be obvious that for i held constant,
the value function is increasing inm, the amount of resource
that we own. Hence, the definition (4) is natural for this
situation. The following proposition is given in the setting
of the generalized componentwise inequality and provides
a simple condition that can be used to verify monotonicity
in the value function.

Proposition 1. Suppose that every s 2S can be written as

s = 4m1 i5 for some m 2M and i 2I , and let St = 4Mt1 It5
be the state at time t, with Mt 2 M and It 2 I . Let the

partial order � on the state space S be described by (4).

Assume the following assumptions hold.

(i) For every s1 s0 2 S with s � s0, a 2 A, and w 2W ,

the state transition function satisfies

f 4s1a1w5� f 4s01a1w50
(ii) For each t < T , s1 s0 2S with s � s0, and a 2A,

Ct4s1a5∂Ct4s
01a5 and CT 4s5∂CT 4s

050

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1492 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

(iii) For each t < T , Mt and Wt+1 are independent.

Then the value functions V ⇤
t satisfy the monotonicity

property of (3).

Proof. See the online supplement.

There are other similar ways to check for monotonicity;
for example, see Proposition 4.7.3 of Puterman (1994) or
Theorem 9.11 of Stockey and Lucas (1989) for conditions
on the transition probabilities. We choose to provide the
above proposition because of its relevance to our example
applications in §7.

The most traditional form of Bellman’s equation has
been given in (2), which we refer to as the pre-decision
state version. Next, we discuss some alternative formula-
tions from the literature that can be very useful for cer-
tain problem classes. A second formulation, called the
Q-function (or state-action) form Bellman’s equation, is
popular in the field of reinforcement learning, especially in
applications of the widely used Q-learning algorithm (see
Watkins and Dayan 1992):

Q⇤
t 4s1a5=E

h
Ct4s1a5+ max

at+12A
Q⇤

t+14St+11at+15
���St = s1

at = a
i

for t = 011121 0 0 0 1T É 11

Q⇤
T 4s1a5=CT 4s51

(5)

where we must now impose the additional requirement that
A is a finite set. Q⇤ is known as the state-action value
function and the “state space” in this case is enlarged to be
S ⇥A.

A third formulation of Bellman’s equation is in the con-
text of post-decision states (see Powell 2011 for a detailed
treatment of this important technique). Essentially, the post-
decision state, which we denote Sa

t , represents the state
after the decision has been made, but before the random
information Wt+1 has arrived (the state-action pair is also
a post-decision state). For example, in the simple prob-
lem of purchasing additional inventory xt to the current
stock Rt to satisfy a next-period stochastic demand, the
post-decision state can be written as Rt + xt , and the pre-
decision state is Rt . It must be the case that Sa

t contains the
same information as the state-action pair 4St1at5, meaning
that regardless of whether we condition on Sa

t or 4St1at5,
the conditional distribution of Wt+1 is the same. The attrac-
tiveness of this method is that (1) in certain problems, Sa

t

is of lower dimension than 4St1at5 and (2) when writing
Bellman’s equation in terms of the post-decision state space
(using a redefined value function), the supremum and the
expectation are interchanged, giving us some computational
advantages. Let sa be a post-decision state from the post-
decision state space S a. Bellman’s equation becomes

V a1⇤
t 4sa5=E

h
sup
a2A

6Ct+14St+11a5+V a1⇤
t+1 4S

a
t+157 óSa

t =sa
i

for t=0111210001T É21

V a1⇤
TÉ14s

a5=E6CT 4ST 5 óSa
TÉ1=sa71

(6)

where V ⇤1a is known as the post-decision value function.
In approximate dynamic programming, the original Bell-
man’s equation formulation (2) can be used if the transition
probabilities are known. When the transition probabilities
are unknown, we must often rely purely on experience or
some form of black box simulator. In these situations, for-
mulations (5) and (6) of Bellman’s equation, where the
optimization is within the expectation, become extremely
useful. For the remainder of this paper, rather than dis-
tinguishing between the three forms of the value function
(V ⇤, Q⇤, and V a1⇤), we simply use V ⇤ and call it the opti-
mal value function, with the understanding that it may be
replaced with any of the definitions. Similarly, to simplify
notation, we do not distinguish between the three forms of
the state space (S , S ⇥A, and S a) and simply use S to
represent the domain of the value function (for some t).
Let d = óS ó and D = 4T + 15óS ó. We view the optimal

value function as a vector in ✓D; that is to say, V ⇤ 2 ✓D

has a component at 4t1 s5 denoted as V ⇤
t 4s5. Moreover, for

a fixed t ∂ T , the notation V ⇤
t 2✓d is used to describe V ⇤

restricted to t; i.e., the components of V ⇤
t are V ⇤

t 4s5 with s
varying over S . We adopt this notational system for arbi-
trary value functions V 2✓D as well. Finally, we define the
generalized dynamic programming operator H 2 ✓D !✓D,
which applies the right-hand sides of either (2), (5), or (6)
to an arbitrary V 2 ✓D, i.e., replacing V ⇤

t , Q
⇤
t , and V ⇤·a

t

with Vt . For example, if H is defined in the context of (2),
then the component of HV at 4t1 s5 is given by

4HV 5t4s5

=

8
><

>:

sup
a2A

6Ct4s1a5+E6Vt+14St+15 óSt=s1at=a77

for t=0111210001T É11
CT 4s5 for t=T 0

(7)

For (5) and (6), H can be defined in an analogous way. We
now state a lemma concerning useful properties of H . Parts
of it are similar to Assumption 4 of Tsitsiklis (1994), but
we can show that these statements always hold true for our
more specific problem setting, where H is a generalized
dynamic programming operator.

Lemma 1. The following statements are true for H , when

it is defined using (2), (5), or (6).

(i) H is monotone; i.e., for V 1V 0 2 ✓D
such that V ∂

V 0
, we have that HV ∂HV 0

(componentwise).

(ii) For any t < T , let V 1V 0 2✓D
, such that Vt+1 ∂ V 0

t+1.

It then follows that 4HV 5t ∂ 4HV 05t .
(iii) The optimal value function V ⇤

uniquely satisfies the

fixed point equation HV = V .
(iv) Let V 2 ✓D

and e is a vector of ones with dimen-

sion D. For any á> 0,

HV Éáe∂H4V Éáe5∂H4V +áe5∂HV +áe0

Proof. See Appendix A.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1493

4. Algorithm
In this section, we formally describe the Monotone-ADP
algorithm. Assume a probability space 4Ï1F 1P5 and let
V̄ n be the approximation of V ⇤ at iteration n, with the ran-
dom variable Sn

t 2 S representing the state that is visited
(by the algorithm) at time t in iteration n. The observation
of the optimal value function at time t, iteration n, and
state Sn

t is denoted v̂nt 4S
n
t 5 and is calculated using the esti-

mate of the value function from iteration nÉ 1. The raw
observation v̂nt 4S

n
t 5 is then smoothed with the previous esti-

mate V̄ nÉ1
t 4Sn

t 5, using a stochastic approximation step, to
produce the smoothed observation znt 4S

n
t 5. Before present-

ing the description of the ADP algorithm, some definitions
need to be given. We start with ÁM , the monotonicity pre-
serving projection operator. Note that the term “projection”
is being used loosely here; the space that we “project” onto
actually changes with each iteration.

Definition 1. For sr 2S and zr 2✓, let 4sr 1 zr5 be a refer-
ence point to which other states are compared. Let Vt 2✓d

and define the projection operator ÁM 2 S ⇥✓⇥✓d !✓d,
where the component of the vector ÁM4s

r 1 zr 1Vt5 at s is
given by

ÁM4s
r 1 zr 1Vt54s5=

8
>>><

>>>:

zr if s = sr 1

zr _Vt4s5 if sr � s1 s 6= sr 1

zr ^Vt4s5 if sr ⌫ s1 s 6= sr 1

Vt4s5 otherwise.

(8)

In the context of the Monotone-ADP algorithm, Vt is
the current value function approximation, 4sr 1 zr5 is the lat-
est observation of the value (sr is latest visited state), and
ÁM4s

r 1 zr 1Vt5 is the updated value function approximation.
Violations of the monotonicity property of (3) are corrected
by ÁM in the following ways:

• if zr æ Vt4s5 and sr � s, then Vt4s5 is too small and is
increased to zr = zr _Vt4s5 and• if zr ∂ Vt4s5 and sr ⌫ s, then Vt4s5 is too large and is
decreased to zr = zr ^Vt4s5.

See Figure 1 for an example showing a sequence of
two observations and the resulting projections in the Carte-
sian plane, where � is the componentwise inequality in
two dimensions. We now provide some additional motiva-
tion for the definition of ÁM . Because znt 4S

n
t 5 is the latest

observed value and it is obtained via stochastic approxima-
tion (see the Step 2b of Figure 2), our intuition guides us
to “keep” this value, i.e., by setting V̄ n

t 4S
n
t 5= znt 4S

n
t 5. For

s 2S and v 2✓, let us define the set

V M4s1 z5= 8V 2✓d2 V 4s5= z1V monotone over S 9

which fixes the value at s to be z while restricting to the set
of all possible V that satisfy the monotonicity property (3).
Now, to get the approximate value function of iteration n
and time t, we want to find V̄ n

t that is close to V̄ nÉ1
t but

also satisfies the monotonicity property:

V̄ n
t 2 argmin8òVt É V̄ nÉ1

t ò22 Vt 2V M4S
n
t 1 z

n
t 4S

n
t 5591 (9)

Figure 1. Example illustrating the projection
operator ÁM .

0

10

5

= Observations

!M

!M

where ò ·ò2 is the Euclidean norm. Let us now briefly pause
and consider a possible alternative, where we do not require
V̄ n
t 4S

n
t 5 = znt 4S

n
t 5. Instead, suppose we introduce a vector

V̂ nÉ1
t 2 ✓d such that V̂ nÉ1

t 4s5 = V̄ nÉ1
t 4s5 for s 6= Sn

t and
V̂ nÉ1
t 4Sn

t 5 = znt 4S
n
t 5. Next, project V̂

nÉ1
t , the space of vec-

tors V that are monotone over S , to produce V̄ n
t (this would

be a proper projection, where the space does not change).
The problem with this approach arises in the early itera-
tions where we have poor estimates of the value function:
for example, if V̄ 0

t 4s5 = 0 for all s, then V̂ 0
t is a vector

of mostly zeros and the likely result of the projection, V̄ 1
t ,

would be the original vector V̄ 0
t —hence, no progress is

made. A potential explanation for the failure of such a strat-
egy is that it is a naive adaptation of the natural approach
for a batch framework to a recursive setting.
The next proposition shows that this representation of V̄ n

t

is equivalent to one that is obtained using the projection
operator ÁM .

Proposition 2. The solution to the minimization (9) can

be characterized using ÁM . Specifically,

ÁM4S
n
t 1 z

n
t 4S

n
t 51 V̄

nÉ1
t 5

2 argmin8òVt É V̄ nÉ1
t ò22 Vt 2V M4S

n
t 1 z

n
t 4S

n
t 5591

so that we can write V̄ n
t =ÁM4S

n
t 1 z

n
t 4S

n
t 51 V̄

nÉ1
t 5.

Proof. See Appendix B.

We now introduce, for each t, a (possibly stochastic)
stepsize sequence Ån

t ∂ 1 used for smoothing in new obser-
vations. The algorithm only directly updates values (i.e.,
not including updates from the projection operator) for
states that are visited, so for each s 2S , let

Ån
t 4s5= ÅnÉ1

t 18s=Snt 9
0

Let v̂nt 2 ✓d be a noisy observation of the quantity
4HV̄ nÉ15t , and let wn

t 2 ✓d represent the additive noise
associated with the observation:

v̂nt = 4HV̄ nÉ15t +wn
t 0

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1494 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

Figure 2. Monotone-ADP algorithm.

Step 0a. Initialize V̄ 0
t 2 601Vmax7 for each t ∂ T É 1 such that

monotonicity is satisfied within V̄ 0
t , as described in (3).

Step 0b. Set V̄ n
T 4s5=CT 4s5 for each s 2S and n∂N .

Step 0c. Set n= 1.
Step 1. Select an initial state Sn

0 .
Step 2. For t = 0111 0 0 0 1 4T É 15:
Step 2a. Sample a noisy observation of the future value:

v̂nt = 4HV̄ nÉ15t +wn
t .

Step 2b. Smooth in the new observation with previous
value at each s:

znt 4s5= 41ÉÅn
t 4s55V̄

nÉ1
t 4s5+Ån

t 4s5v̂
n
t 4s50

Step 2c. Perform monotonicity projection operator:
V̄ n
t =ÁM 4S

n
t 1 z

n
t 4S

n
t 51 V̄

nÉ1
t 5.

Step 2d. Choose the next state Sn
t+1 given F nÉ1.

Step 3. If n<N , increment n and return to Step 1.

Although the algorithm is asynchronous and only updates
the value for Sn

t (therefore, it only needs v̂nt 4S
n
t 5, the com-

ponent of v̂nt at Sn
t ), it is convenient to assume v̂nt 4s5

and wn
t 4s5 are defined for all s. We also require a vec-

tor znt 2✓d to represent the “smoothed observation” of the
future value; i.e., znt 4s5 is v̂nt 4s5 smoothed with the previ-
ous value V̄ nÉ1

t 4s5 via the stepsize Ån
t 4s5. Let us denote the

history of the algorithm up until iteration n by the filtration
8F n9næ1, where

F n = ë84Sm
t 1w

m
t 5m∂n1 t∂T 90

A precise description of the algorithm is given in Fig-
ure 2. Notice from the description that if the monotonic-
ity property (3) is satisfied at iteration n É 1, then the
fact that the projection operator ÁM is applied ensures
that the monotonicity property is satisfied again at time
n. Our benchmarking results of §7 show that maintain-
ing monotonicity in such a way is an invaluable aspect
of the algorithm that allows it to produce very good poli-
cies in a relatively small number of iterations. Traditional
approximate (or asynchronous) value iteration, on which
Monotone-ADP is based, is asymptotically convergent but
extremely slow to converge in practice (once again, see §7).
As we have mentioned, ÁM is not a standard projection
operator, as it “projects” to a different space on every iter-
ation, depending on the state visited and value observed;
therefore, traditional convergence results no longer hold.
The remainder of the paper establishes the asymptotic con-
vergence of Monotone-ADP.

4.1. Extensions of Monotone-ADP

We now briefly present two possible extensions of
Monotone-ADP. First, consider a discounted, infinite hori-
zon MDP. An extension (or perhaps, simplification) to this
case can be obtained by removing the loop over t (and all
subscripts of t and T ) and acquiring one observation per
iteration, exactly resembling asynchronous value iteration
for infinite horizon problems.

Second, we consider possible extensions when represen-
tations of the approximate value function other than lookup

table are used; for example, imagine we are using basis
functions 8îg9g2G for some feature set G combined with
a coefficient vector àn

t (which has components àn
tg), giving

the approximation

V̄ n
t 4s5=

X

g2G
àn
tgîg4s50

Equation (9) is the starting point for adapting Monotone-
ADP to handle this case. An analogous version of this
update might be given by

àn
t 2 argmin8òàt É ànÉ1

t ò22 V̄ n
t 4S

n
t 5= znt 4S

n
t 5

and V̄ n
t monotone91 (10)

where we have altered the objective to minimize distance
in the coefficient space. Unlike (9), there is, in general, no
simple and easily computable solution to (10), but special
cases may exist. The analysis of this situation is beyond the
scope of this paper and left to future work. In this paper,
we consider the finite horizon case using a lookup table
representation.

5. Assumptions
We begin by providing some technical assumptions that
are needed for convergence analysis. The first assumption
gives, in more general terms than previously discussed, the
monotonicity of the value functions.

Assumption 1. The two monotonicity assumptions are as

follows.

(i) The terminal value function CT is monotone over S
with respect to �.

(ii) For any t < T and any vector V 2✓D
such that Vt+1

is monotone over S with respect to �, it is true that 4HV 5t
is monotone over the state space as well.

The above assumption implies that for any choice of ter-
minal value function V ⇤

T = CT that satisfies monotonicity,
the value functions for the previous time periods are mono-
tone as well. Examples of sufficient conditions include
monotonicity in the contribution function plus a condition
on the transition function, as in (i) of Proposition 1, or
a condition on the transition probabilities, as in Proposi-
tion 4.7.3 of Puterman (1994). Intuitively speaking, when
the statement “starting with more at t) ending with more
at t + 1” applies, in expectation, to the problem at hand,
Assumption 1 is satisfied. One obvious example that satis-
fies monotonicity occurs in resource or asset management
scenarios; oftentimes in these problems, it is true that for
any outcome of the random information Wt+1 that occurs
(e.g., random demand, energy production, or profits), we
end with more of the resource at time t + 1 whenever we
start with more of the resource at time t. Mathematically,
this property of resource allocation problems translates to
the stronger statement:

4St+1 ó St = s1at = a5� 4St+1 ó St = s01at = a5 a.s.

for all a 2 A when s � s0. This is essentially the situation
that Proposition 1 describes.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1495

Assumption 2. For all s 2S and t < T , the sampling pol-

icy satisfies

àX

n=1

P4Sn
t = s óF nÉ15=à a0s0

By the Extended Borel-Cantelli Lemma (see Breiman
1992), any scheme for choosing states that satisfies the
above condition will visit every state infinitely often with
probability one.

Assumption 3. Suppose that the contribution function

Ct4s1a5 is bounded: without loss of generality, let us

assume that for all s 2S , t < T , and a 2A, 0∂Ct4s1a5∂
Cmax, for some Cmax > 0. Furthermore, suppose that 0 ∂
CT 4s5∂ Cmax for all s 2S as well. This naturally implies

that there exists Vmax > 0 such that 0∂ V ⇤
t 4s5∂ Vmax.

The next three assumptions are standard ones made
on the observations v̂nt , the noise wn

t , and the stepsize
sequence Ån

t ; see Bertsekas and Tsitsiklis (1996) (e.g.,
Assumption 4.3 and Proposition 4.6) for additional details.

Assumption 4. The observations that we receive are

bounded (by the same constant Vmax): 0 ∂ v̂nt 4s5 ∂ Vmax
almost surely, for all s 2S and t < T .

Note that the lower bounds of zero in Assumptions 3
and 4 are chosen for convenience and can be shifted by a
constant to suit the application (as is done in §7).

Assumption 5. The following holds almost surely:

E6wn+1
t 4s5 ó F n7 = 0, for any state s 2 S and t < T . This

property means that wn
t is a martingale difference noise

process.

Assumption 6. For each s 2S and t < T , s 2S , suppose

Ån
t 2 60117 is F n

-measurable and

(i)
Pà

n=1Å
n
t 4s5=à a0s0,

(ii)
Pà

n=1Å
n
t 4s5

2 <à a0s0

5.1. Remarks on Simulation

Before proving the theorem, we offer some additional com-
ments regarding the assumptions as they pertain to simu-
lation. If H is defined in the context of (2), then it is not
easy to perform Step 2a of Figure 2,

v̂nt =
�
HV̄ nÉ1

�
t
+wn

t 1

such that Assumption 5 is satisfied. Because the supremum
is outside of the expectation operator, an upward bias would
be present in the observation v̂nt 4s5 unless the expectation
can be computed exactly, in which case wn

t 4s5= 0 and we
have

v̂nt 4s5=sup
a2A

6Ct4s1a5+E6V̄ nÉ1
t+1 4St+15 óSt=s1at=a770 (11)

Thus, any approximation scheme used to calculate the
expectation inside of the supremum would cause Assump-
tion 5 to be unsatisfied. When the approximation scheme is

a sample mean, the bias disappears asymptotically with the
number of samples (see Kleywegt et al. 2002, which dis-
cusses the sample average approximation or SAA method).
It is therefore possible that although theoretical conver-
gence is not guaranteed, a large enough sample may still
achieve decent results in practice.
On the other hand, in the context of (5) and (6),

the expectation and the supremum are interchanged. This
means that we can trivially obtain an unbiased estimate of
4HV̄ nÉ15t by sampling one outcome of the information pro-
cess Wn

t+1 from the distribution Wt+1 ó St = s; computing
the next state Sn

t+1; and solving a deterministic optimization
problem (i.e., the optimization within the expectation). In
these two cases, we would respectively use

v̂nt 4s1a5=Ct4s1a5+ max
at+12A

Q̄nÉ1
t+1 4S

n
t+11at+15 (12)

and

v̂nt 4s
a5= sup

a2A
6Ct+14S

n
t+11a5+ V̄ a1nÉ1

t+1 4Sa1n
t+1571 (13)

where Q̄nÉ1
t+1 is the approximation to Q⇤

t+1, V̄
a1nÉ1
t is the

approximation to V a1⇤
t , and Sa1n

t+1 is the post-decision state
obtained from Sn

t+1 and a. Notice that (11) contains an
expectation whereas (12) and (13) do not, making them par-
ticularly well suited for model-free situations, where distri-
butions are unknown and only samples or experience are
available. Hence, the best choice of model depends heavily
upon the problem domain.
Finally, we give a brief discussion of the choice of step-

size. There are a variety of ways in which we can satisfy
Assumption 6, and here we offer the simplest example.
Consider any deterministic sequence 8an9 such that the
usual stepsize conditions are satisfied:

àX

n=0

an =à and
àX

n=0

4an52 <à0

Let N 4s1n1 t5=Pn
m=1 18s=Smt 9 be the random variable rep-

resenting the total number of visits of state s at time t until
iteration n. Then Ån

t = aN 4Snt 1n1t5 satisfies Assumption 6.

6. Convergence Analysis of the
Monotone-ADP Algorithm

We are now ready to show the convergence of the algo-
rithm. Note that although there is a significant similarity
between this algorithm and the DOME algorithm described
in Papadaki and Powell (2003a), the proof technique is very
different. The convergence proof for the DOME algorithm
cannot be directly extended to our problem because of dif-
ferences in the assumptions.
Our proof draws on proof techniques found in Tsitsiklis

(1994) and Nascimento and Powell (2009). In the latter,
the authors prove convergence of a purely exploitative ADP
algorithm given a concave, piecewise-linear value function

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1496 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

for the lagged asset acquisition problem. We cannot exploit
certain properties inherent to that problem, but in our algo-
rithm we assume exploration of all states, a requirement
that can be avoided when we are able to assume concavity.
Furthermore, a significant difference in this proof is that
we consider the case where S may not be a total ordering.
A consequence of this is that we extend to the case where
the monotonicity property covers multiple dimensions (e.g.,
the relation on S is the componentwise inequality), which
was not allowed in Nascimento and Powell (2009).

Theorem 1. Under Assumptions 1–6, for each t ∂ T and

s 2S , the estimate V̄ n
t 4s5 produced by the Monotone-ADP

Algorithm of Figure 2 converge to the optimal value func-

tion V ⇤
t 4s5 almost surely.

Before providing the proof for this convergence result, we
present some preliminary definitions and results. First, we
define two deterministic bounding sequences, Uk and Lk.
The two sequences Uk and Lk can be thought of, jointly,
as a sequence of “shrinking” rectangles, with Uk being the
upper bounds and Lk being the lower bounds. The central
idea to the proof is showing that the estimates V̄ n enter (and
stay) in smaller and smaller rectangles, for a fixed ó 2 Ï
(we assume that the ó does not lie in a discarded set of
probability zero). We can then show that the rectangles con-
verge to the point V ⇤, which in turn implies the convergence
of V̄ n to the optimal value function. This idea is attributed
to Tsitsiklis (1994) and is illustrated in Figure 3.

The sequences Uk and Lk are written recursively. Let

U 0 = V ⇤ +Vmax · e1 L0 = V ⇤ ÉVmax · e1 (14)

and let

Uk+1 = Uk +HUk

2
1 Lk+1 = Lk +HLk

2
0

Lemma 2. For all kæ 0, we have that

HUk ∂Uk+1 ∂Uk1 HLk æ Lk+1 æ Lk0

Furthermore,

Uk É! V ⇤1 Lk É! V ⇤0 (15)

Figure 3. Central idea of convergence proof.

Ut
k(s)

Lt
k(s)

Lt
k + 1(s)

Ut
k + 1(s)

...

...

...

...

Ut
k + 2(s)

Lt
k + 2(s)

V̄t
n(s) Vt(s)

Iter. n

Proof. The proof of this lemma is given in Bertsekas and
Tsitsiklis (1996) (see Lemmas 4.5 and 4.6). The properties
of H given in Proposition 1 are used for this result.

Lemma 3. The bounding sequences satisfy the monotonic-

ity property; that is, for k æ 0, t ∂ T , s 2 S , s0 2 S such

that s � s0, we have

Uk
t 4s5∂Uk

t 4s
051 Lk

t 4s5∂ Lk
t 4s

050

Proof. See Appendix C.

We continue with some definitions pertaining to the pro-
jection operator ÁM . A “É” in the superscript signifies “the
value s is too small” and the “+” signifies “the value of s
is too large.”

Definition 2. For t < T and s 2 S , let N É
t 4s5 be a

random set representing the iterations for which s was
increased by the projection operator at time t. Similarly, let
N +

t 4s5 represent the iterations for which s was decreased:

NÁÉ
t 4s5= 8n2 s 6= Sn

t and V̄ nÉ1
t 4s5< V̄ n

t 4s591

NÁ+
t 4s5= 8n2 s 6= Sn

t and V̄ nÉ1
t 4s5> V̄ n

t 4s590

Definition 3. For t < T and s 2 S , let NÁÉ4t1 s5 be the
last iteration for which the state s was increased by ÁM at
time t.

NÁÉ
t 4s5=maxN É

t 4s50

Similarly, let

NÁ+
t 4s5=maxN +

t 4s50

Note that NÁÉ
t 4s5=à if óN É

t 4s5ó=à and NÁ+
t 4s5=à if

óN +
t 4s5ó=à.

Definition 4. Let NÁ be large enough so that for itera-
tions næNÁ, any state increased (decreased) finitely often
by the projection operator ÁM is no longer affected by ÁM .
In other words, if some state is increased (decreased) by
ÁM on an iteration after NÁ, then that state is increased
(decreased) by ÁM infinitely often. We can write the
following:

NÁ =max48NÁÉ
t 4s52 t < T 1 s 2S 1 NÁÉ

t 4s5<à9[
8NÁ+

t 4s52 t < T 1 s 2S 1 NÁ+
t 4s5<à95+ 10

We now define, for each t, two random subsets SÉ
t and

S+
t of the state space S where SÉ

t contains states that
are increased by the projection operator ÁM finitely often
and S+

t contains states that are decreased by the projection
operator finitely often. The role that these two sets play in
the proof is as follows:
• We first show convergence for states that are projected

finitely often (s 2SÉ
t or s 2S+

t ).

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1497

• Next, because convergence already holds for states
that are projected finitely often, we use an induction-like
argument to extend the property to states that are pro-
jected infinitely often (s 2S\SÉ

t or s 2S\S+
t ). This step

requires the definition of a tree structure that arranges the
set of states and its partial ordering in an intuitive way.

Definition 5. For t < T , define

SÉ
t = 8s 2S 2 NÁÉ

t 4s5<à9 and

S+
t = 8s 2S 2 NÁ+

t 4s5<à91

to be random subsets of states that are projected finitely
often.

Lemma 4. The random sets SÉ
t and S+

t are almost surely

nonempty.

Proof. See Appendix D.

We now provide several remarks regarding the projection
operator ÁM . The value of a state s can only be increased
by ÁM if we visit a “smaller” state; i.e., Sn

t � s. This state-
ment is obvious from the second condition of (8). Similarly,
the value of the state can only be decreased by ÁM if the
visited state is “larger”; i.e., Sn

t ⌫ s. Intuitively, it can be
useful to imagine that, in some sense, the values of states
can be “pushed up” from the “left” and “pushed down”
from the “right.”

Finally, because of our assumption that S is only a par-
tial ordering, the update process (from ÁM ) becomes more
difficult to analyze than in the total ordering case. To facil-
itate the analysis of the process, we introduce the notions
of lower (upper) immediate neighbors and lower (upper)
update trees.

Definition 6. For s = 4m1 i5 2 S , we define the set of
lower immediate neighbors S L4s5 in the following way:

S L4s5= 8s0 2S 2 s0 � s1

s0 6= s1

@ s00 2S 1 s00 6= s1 s00 6= s01 s0 � s00 � s90

In other words, there does not exist s00 in between s0 and s.
The set of upper immediate neighbors S U 4s5 is defined in
a similar way:

S U 4s5= 8s0 2S 2 s0 ⌫ s1

s0 6= s1

@ s00 2S 1 s00 6= s1 s00 6= s01 s0 ⌫ s00 ⌫ s90

The intuition for the next lemma is that if some state s
is increased by ÁM , then it must have been caused by vis-
iting a lower state. In particular, either the visited state was
one of the lower immediate neighbors or one of the lower
immediate neighbors was also increased by ÁM . In either
case, one of the lower immediate neighbors has the same
value as s. This lemma is crucial later in the proof.

Lemma 5. Suppose the value of s is increased by ÁM on

some iteration n: s 6= Sn
t and V̄ nÉ1

t 4s5< V̄ n
t 4s5. Then there

exists another state s0 2S L4s5 (in the set of lower immedi-

ate neighbors) whose value is equal to the newly updated

value: V̄ n
t 4s

05= V̄ n
t 4s5.

Proof. See Appendix E.

Definition 7. Consider some ó 2 Ï. Let s 2 S\SÉ
t ,

meaning that s is increased by ÁM infinitely often:
óN É

t 4s5ó =à. A lower update tree T É
t 4s5 is an organiza-

tion of the states in the set L = 8s0 2S 2 s0 � s9 where the
value of each node is an element of L. The tree T É

t 4s5 is
constructed according to the following rules.
(i) The root node of T É

t 4s5 has value s.
(ii) Consider an arbitrary node j with value sj .

(a) If sj 2 S\SÉ
t , then for each sjc 2 S L4sj5, add a

child node with value sjc to the node j .
(b) If sj 2SÉ

t , then j is a leaf node (it does not have
any child nodes).
The tree T É

t 4s5 is unique and can easily be built by start-
ing with the root node and successively applying the rules.
The upper update tree T +

t 4s5 is defined in a completely
analogous way.

Note that the lower update tree is random and we now
argue that for each ó, it is well defined. We observe
that it cannot be the case for some state s to be an ele-
ment of S\SÉ

t while S L4s
05 = 89 because for it to be

increased infinitely often, there must exist at least one
“lower” state whose observations cause the monotonicity
violations. Using this fact along with the finiteness of S
and Lemma 4, which states that SÉ

t is nonempty, it is clear
that all paths down the tree reach a leaf node (i.e., an ele-
ment of SÉ

t ). The reason for discontinuing the tree at states
in SÉ

t is that our convergence proof employs an induction-
like argument up the tree, starting with states in SÉ

t . Lastly,
we remark that it is possible for multiple nodes to have
the same value. As an illustrative example, consider the
case with S = 80111292 with � being the component-
wise inequality. Assume that for a particular ó 2 Ï, s =
4sx1 sy5 2SÉ

t if and only if sx = 0 or sy = 0 (lower bound-
ary of the square). Figure 4 shows the realization of the
lower update tree at evaluated at the state 42125.

Figure 4. Illustration of the lower update tree.

! S \St
–

! St
–

(0, 2)
(2, 2)

(1, 2)

(2, 1)
(1, 1)

(2, 0)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

(1, 1)

Tt
– {(2, 2)} = 

S =

0

1

2

2

1

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1498 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

The next lemma is a useful technical result used in the
convergence proof.

Lemma 6. For any s 2S ,

lim
m!à

 mY

n=1

41ÉÅn
t 4s55

�
= 0 a0s0

Proof. See Appendix F.

With these preliminaries in mind (other elements will be
defined as they arise), we begin the convergence analysis.

Proof of Theorem 1. As previously mentioned, to show
that the sequence V̄ n

t 4s5 (almost surely) converges to V ⇤
t 4s5

for each t and s, we need to argue that V̄ n
t 4s5 eventu-

ally enters every rectangle (or “interval,” when we dis-
cuss a specific component of the vector V̄ n) defined by the
sequence Lk

t 4s5 and Uk
t 4s5. Recall that the estimates of the

value function produced by the algorithm are indexed by n
and the bounding rectangles are indexed by k. Hence, we
aim to show that for each k, we have that for n sufficiently
large, it is true that 8 s 2S ,

Lk
t 4s5∂ V̄ n

t 4s5∂Uk
t 4s50 (16)

Following this step, an application of (15) in Lemma 2
completes the proof. We show the second inequality of (16)
and remark that the first can be shown in a completely
symmetric way. The goal is then to show that 9Nk

t < à
a.s. such that 8næNk

t and 8 s 2S ,

V̄ n
t 4s5∂Uk

t 4s50 (17)

Choose ó 2 Ï. For ease of presentation, the dependence
of the random variables on ó is omitted. We use backward
induction on t to show this result, which is the same tech-
nique used in Nascimento and Powell (2009). The inductive
step is broken up into two cases, s 2SÉ

t and s 2S\SÉ
t .

Base case, t = T . Since for all s 2S , k, and n, we have
that (by definition) V̄ n

T 4s5 = Uk
T 4s5 = 0, we can arbitrarily

select Nk
T . Suppose that for each k, we choose Nk

T = NÁ,
allowing us to use the property of NÁ that if s 2SÉ

t , then
the estimate of the value at s is no longer affected by ÁM

on iterations næNÁ.
Induction hypothesis, t + 1. Assume for t + 1 ∂ T that

8k æ 0, 9Nk
t+1 <à such that Nk

t+1 æ NÁ and 8n æ Nk
t+1,

we have that 8 s 2S , V̄ n
t+14s5∂Uk

t+14s5.
Inductive step from t + 1 to t. The remainder of the

proof concerns this inductive step and is broken up into
two cases, s 2 SÉ

t and s 2 S\SÉ
t . For each s, we show

the existence of a state dependent iteration Ñ k
t 4s5 æ NÁ,

such that for næ Ñ k
t 4s5, (17) holds. The state independent

iteration Nk
t is then taken to be the maximum of Ñ k

t 4s5
over s.

Case 12 s 2 SÉ
t . To prove this case, we induct forward

on k. Note that we are still inducting backward on t, so
the induction hypothesis for t+1 still holds. The inductive
step is proved in essentially the same manner as Theorem 2
of Tsitsiklis (1994).

Base case, k = 0 4within induction on t5. By Assump-
tion 3 and (14), we have that U 0

t 4s5æ Vmax. But by Assump-
tion 4, the updating equation (Step 2b of Figure 2), and
the initialization of V̄ 0

t 4s5 2 601Vmax7, we can easily see that
V̄ n
t 4s5 2 601Vmax7 for any n and s. Therefore, V̄ n

t 4s5∂U 0
t 4s5,

for any n and s, so we can choose N 0
t arbitrarily. Let us

choose Ñ 0
t 4s5=N 0

t+1, and since N 0
t+1 came from the induc-

tion hypothesis for t+ 1, it is also true that Ñ 0
t 4s5æNÁ.

Induction hypothesis, k 4within induction on t5. Assume
for k æ 0 that 9 Ñ k

t 4s5 <à such that Ñ k
t 4s5 æ Nk

t+1 æ NÁ

and 8næ Ñ k
t 4s5, we have V̄ n

t 4s5∂Uk
t 4s5.

Before we begin the inductive step from k to k+ 1, we
define some additional sequences and state a few useful
lemmas.

Definition 8. The positive incurred noise, since a starting
iteration m, is represented by the sequence Wn1m

t 4s5. For
s 2S , it is defined as follows:

Wm1m
t 4s5= 01

Wn+11m
t 4s5= 641ÉÅn

t 4s55W
n1m
t 4s5+Ån

t 4s5w
n+1
t 4s57+

for næm0

The term Wn+11m
t 4s5 is only updated from Wn1m

t 4s5 when
s = Sn

t , i.e., on iterations where the state is visited by the
algorithm, because the stepsize Ån

t 4s5= 0 whenever s 6= Sn
t .

Lemma 7. For any starting iteration mæ 0 and any state

s 2S , under Assumptions 4, 5, and 6, Wn1m
t 4s5 asymptoti-

cally vanishes:

lim
n!àWn1m

t 4s5= 0 a0s0

Proof. The proof is analogous to that of Lemma 6.2 in
Nascimento and Powell (2009), which uses a martingale
convergence argument.

To reemphasize the presence of ó, we note that the fol-
lowing definition and the subsequent lemma both use the
realization Ñ k

t 4s54ó5 from the ó chosen at the beginning
of the proof.

Definition 9. The other auxiliary sequence that we need
is Xn

t 4s5, which applies the smoothing step to 4HUk5t4s5.
For any state s 2S , let

X
Ñk
t 4s5

t 4s5=Uk
t 4s51

Xn+1
t 4s5= 41ÉÅn

t 4s55X
n
t 4s5+Ån

t 4s54HUk5t4s5

for næ Ñ k
t 4s50

Lemma 8. For næ Ñ k
t 4s5 and state s 2SÉ

t ,

V̄ n
t 4s5∂Xn

t 4s5+W
n1 Ñ k

t 4s5
t 4s50

Proof. See Appendix G.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1499

Inductive step from k to k + 1. If Uk
t 4s5 = 4HUk5t4s5,

then by Lemma 2, we see that Uk
t 4s5 = Uk+1

t 4s5 so V̄ n
t ∂

Uk
t 4s5∂ Uk+1

t 4s5 for any næ Ñ k
t 4s5 and the proof is com-

plete. Since we know that 4HUk5t4s5∂Uk
t 4s5 by Lemma 2,

we can now assume that s 2K, where

K= 8s0 2S 2 4HUk5t4s
05<Uk

t 4s
0590

In this case, we can define

Ñk
t = min

s2SÉ
t \K

✓
Uk

t 4s5É 4HUk5t4s5

4

◆
> 00

Choose Ñ k+1
t 4s5æ Ñ k

t 4s5 such that

Ñ k+1
t 4s5É1Y

n=Ñ k
t 4s5

41ÉÅn
t 4s55∂

1
4

and for all næ Ñ k+1
t 4s5,

W
n1 Ñ k

t 4s5
t 4s5∂ Ñk

t 0

Note that Ñ k+1
t 4s5 clearly exists because both sequences

converge to zero, by Lemma 6 and 7. Recursively using the
definition of Xn

t 4s5, we get that

Xn
t 4s5= Çn

t 4s5U
k
t 4s5+ 41ÉÇn

t 4s554HUk5t4s51

where Çn
t 4s5 =

QnÉ1
l=Ñ k

t 4s5
41 É Ål

t4s55. Notice that for n æ
Ñ k+1

t 4s5, we know that Çn
t 4s5∂ 1

4 , so we can write

Xn
t 4s5= Çn

t 4s5U
k
t 4s5+ 41ÉÇn

t 4s554HUk5t4s5

= Çn
t 4s56U

k
t 4s5É 4HUk5t4s57+ 4HUk5t4s5

∂ 1
4U

k
t 4s5+ 3

4 4HUk5t4s5

= 1
2 6U

k
t 4s5+ 4HUk5t4s57É 1

4 6U
k
t 4s5É 4HUk5t4s57

∂Uk+1
t 4s5É Ñk

t 0 (18)

We can apply Lemma 8 and (18) to get

V̄ n
t 4s5∂Xn

t 4s5+W
n1 Ñ k

t 4s5
t 4s5

∂ 4Uk+1
t 4s5É Ñk

t 5+ Ñk
t

=Uk+1
t 4s51

for all næ Ñ k+1
t 4s5. Thus, the inductive step from k to k+1

is complete.
Case 22 s 2S\SÉ

t . Recall that we are still in the induc-
tive step from t + 1 to t (where the hypothesis was the
existence of Nk

t+1). As previously mentioned, the proof for
this case relies on an induction-like argument over the tree
T É
t 4s5. The following lemma is the core of our argument,

and the proof is provided below.

Lemma 9. Consider some k æ 0 and a node j of T É
t 4s5

with value sj 2S\SÉ
t and let the Cj æ 1 child nodes of j

be denoted by the set 8sj111 sj121 0 0 0 1 sj1Cj
9. Suppose that for

each sj1 c where 1 ∂ c ∂ Cj , we have that 9 Ñ k
t 4sj1 c5 <à

such that 8næ Ñ k
t 4sj1 c5,

V̄ n
t 4sj1 c5∂Uk

t 4sj1 c50 (19)

Then 9 Ñ k
t 4sj5<à such that 8næ Ñ k

t 4sj5,

V̄ n
t 4sj5∂Uk

t 4sj50

Proof. First, note that by the induction hypothesis, part (ii)
of Lemmas 1, and 2, we have the inequality

4HV̄ n5t4s5∂ 4HUk5t4s5∂Uk
t 4s50 (20)

We break the proof into several steps.
Step 1. Let us consider the iteration Ñ defined by

Ñ =min4n 2NÁÉ
t 4sj52 næmax

c
Ñ k

t 4sj1 c551

which exists because sj 2S\SÉ
t and is increased infinitely

often. This means that ÁM increased the value of state sj
on iteration Ñ . As the first step, we show that 8næ Ñ ,

V̄ n
t 4sj5∂Uk

t 4sj5+Wn1 Ñ
t 4sj51 (21)

using an induction argument.
Base case, n = Ñ . Using Lemma 5, we know that for

some c 2 81121 0 0 0 1Cj9, we have

V̄ n
t 4sj5= V̄ n

t 4sj1 c5∂Uk
t 4sj1 c5

∂Uk
t 4sj5+Wn1 Ñ

t 4sj50

The fact that Ñ æ Ñ k
t 4sj1 c5 for every c justifies the first

inequality and the second inequality above follows from
the monotonicity within Uk (see Lemma 3) and that
WÑ 1Ñ

t 4sj5= 0.
Induction hypothesis, n. Suppose (21) is true for n where

næ Ñ .
Inductive step from n to n+ 1. Consider the following

two cases:
(I) Suppose n + 1 2 NÁÉ

t 4sj5. The proof for this is
exactly the same as for the base case, except we use
Wn+11 Ñ

t 4sj5 æ 0 to show the inequality. Again, this step
depends heavily on Lemma 5 and on every child node rep-
resenting a state that satisfies (19).
(II) Suppose n+1 62NÁÉ

t 4sj5. There are again two cases
to consider:

(A) Suppose Sn+1
t = sj . Then

V̄ n+1
t 4sj5= zn+1

t 4sj5

= 41ÉÅn+1
t 4sj55V̄

n
t 4sj5+Ån+1

t 4sj5v̂
n+1
t 4sj5

∂ 41ÉÅn+1
t 4sj554U

k
t 4sj5+Wn1 Ñ

t 4sj55

+Ån+1
t 4sj564HV̄ n5t4sj5+wn+1

t 4sj57

∂Uk
t 4sj5+Wn+11 Ñ

t 4sj51

where the first inequality follows from the induction
hypothesis for n and the second inequality follows by (20).

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1500 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

(B) Suppose Sn+1
t 6= sj . This means the stepsize

Ån+1
t 4sj5 = 0, which in turn implies the noise sequence

remains unchanged: Wn+11 Ñ
t 4sj5 = Wn1 Ñ

t 4sj5. Because the
value of sj is not increased at n+ 1,

V̄ n+1
t 4sj5∂ V̄ n

t 4sj5

∂Uk
t 4sj5+Wn1 Ñ

t 4sj5

=Uk
t 4sj5+Wn+11 Ñ

t 4sj50

Step 2. By Lemma 7, we know that Wn1 Ñ
t 4sj5! 0 and

thus, for a given Ö > 0, 9 Ñ k1 Ö
t 4sj5 < à such that 8n æ

Ñ k1 Ö
t 4sj5,

V̄ n
t 4sj5∂Uk

t 4sj5+ Ö0 (22)

Let Ö = Uk
t 4sj5É V ⇤

t 4sj5 > 0. Since Uk
t 4sj5 & V ⇤

t 4sj5, we
also have that 9k0 > k such that

Uk0
t 4sj5ÉV ⇤

t 4sj5< Ö/20

Combining with the definition of Ö, we have

Uk
t 4sj5ÉUk0

t 4sj5> Ö/20

Applying (22), we know that 9 Ñ k01 Ö/2
t 4sj5 < à such that

8næ Ñ
k01 Ö/2
t 4sj5,

V̄ n
t 4sj5∂Uk0

t 4sj5+ Ö/2

∂Uk
t 4sj5É Ö/2+ Ö/2

∂Uk
t 4sj50

Therefore, we can choose Ñ k
t 4sj5=N

k01 Ö/2
t 4sj5 to conclude

the proof.

We now present a simple algorithm that incorporates
the use of Lemma 9 to obtain Ñ k

t 4s5 when s 2 S\SÉ
t .

Denote the height (longest path from root to leaf) of T É
t 4s5

by HÉ
t 4s5. The depth of a node j is the length of the path

from the root node to j .
Step 0. Set h=HÉ

t 4s5É1. The child nodes of any node
of depth h are leaf nodes that represent states in SÉ

t —the
conditions of Lemma 9 are thus satisfied by Case 1.

Step 1. Consider all nodes jh (with value sh) of depth h
in T É

t 4s5. An application of Lemma 9 results in Ñ k
t 4sh5

such that V̄ n
t 4sh5∂Uk

t 4sh5 for all næ Ñ k
t 4sh5.

Step 2. If h = 0, we are done. Otherwise, decrement h
and note that once again, the conditions of Lemma 9 are
satisfied for any node of depth h. Return to Step 1.

At the completion of this algorithm, we have the desired
Ñ k

t 4s5 for s 2 S\SÉ
t . By its construction, we see that

Ñ k
t 4s5æ NÁ, and the final step of the inductive step from

t + 1 to t is to define Nk
t = maxs2S Ñ k

t 4s5. The proof is
complete.

7. Numerical Results
Theoretically, we have shown that Monotone-ADP is an
asymptotically convergent algorithm. In this section, we
discuss its empirical performance. There are two main
questions that we aim to answer using numerical examples:
1. How much does the monotonicity preservation oper-

ator, ÁM , increase the rate of convergence, compared to
other popular approximate dynamic programming or rein-
forcement learning algorithms?
2. How much computation can we save by solving a

problem to near-optimality using Monotone-ADP com-
pared to solving it to full optimality using backward
dynamic programming?
To provide insight into these questions, we compare

Monotone-ADP against four ADP algorithms from the
literature (kernel-based reinforcement learning, approxi-
mate policy iteration with polynomial basis functions,
asynchronous value iteration, and Q-learning) across a
set of fully benchmarked problems from three distinct
applications (optimal stopping, energy allocation/storage,
and glycemic control for diabetes patients). Through-
out our numerical work, we assume that the model is
known and thus compute the observations v̂nt using (11).
For Monotone-ADP, asynchronous value iteration, and
Q-learning, the sampling policy we use is the ò-greedy
exploration policy (explore with probability ò; follow cur-
rent policy otherwise)—we found that across our range of
problems, choosing a relatively large ò (e.g., ò 2 6005117)
generally produced the best results. These same three algo-
rithms also require the use of a stepsize, and in all cases
we use the adaptive stepsize derived in George and Pow-
ell (2006). Moreover, note that since we are interested in
comparing the performance of approximation algorithms
against optimal benchmarks, it is necessary to sacrifice a
bit of realism and discretize the distribution of Wt+1 so that
an exact optimal solution can be obtained using backward
dynamic programming (BDP). However, this certainly is
not necessary in practice; Monotone-ADP handles contin-
uous distributions of Wt+1 perfectly well, especially if (12)
and (13) are used.
Before moving on to the applications, let us briefly intro-

duce each of the algorithms that we use in the numerical
work. For succinctness, we omit step-by-step descriptions
of the algorithms and instead point the reader to external
references.

Kernel-Based Reinforcement Learning (KBRL)

Kernel regression, which dates back to Nadaraya (1964), is
arguably the most widely used nonparametric technique in
statistics. Ormoneit and Sen (2002) develop this powerful
idea in the context of approximating value functions using
an approximate value iteration algorithm—essentially, the
Bellman operator is replaced with a kernel-based approx-
imate Bellman operator. For our finite-horizon case, the
algorithm works backwards from t = T É 1 to produce

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1501

kernel-based approximations of the value function at each t,
using a fixed-size batch of observations each time. The
most attractive feature of this algorithm is that no structure
whatsoever needs to be known about the value function,
and in general, a decent policy can be found. One major
drawback, however, is that KBRL cannot be implemented
in a recursive way; the number of observations used per
time period needs to be specified beforehand, and if the
resulting policy is poor, then KBRL needs to completely
start over with a larger number of observations. A second
major drawback is bandwidth selection—in our empirical
work, the majority of the time spent with this algorithm
was focused on tuning the bandwidth, with guidance from
various “rules of thumb,” such as the one found in Scott
(2009). Our implementation uses the popular Gaussian ker-
nel, given by

K4s1 s05= 1
2è

exp
✓òsÉ s0ò22

2b

◆
1

where s and s0 are two states and b the bandwidth (tuned
separately for each problem). The detailed description of
the algorithm can be found in the original paper, Ormoneit
and Sen (2002).

Approximate Policy Iteration with Polynomial
Basis Functions (API)

Based on the exact policy iteration algorithm (which is well
known to possess finite time convergence), certain forms
of approximate policy iteration have been applied success-
fully in a number of real applications (Bertsekas 2011 pro-
vides an excellent survey). The basis functions that we
employ are all possible monomials up to degree 2 over
all dimensions of the state variable (i.e., we allow interac-
tions between every pair of dimensions). Because there are
typically a small number of basis functions, policies pro-
duced by API are very fast to evaluate, regardless of the
size of the state space. The exact implementation of our
API algorithm, specialized for finite-horizon problems, is
given in Powell (2011, §10.5). One drawback of API that
we observed is an inadequate exploration of the state space
for certain problems; even if the initial state S0 is fully ran-
domized, the coverage of the state space in a much later
time period, t0 � 0, may be sparse. To combat this issue,
we introduced artificial exploration to time periods t0 with
poor coverage by adding simulations that started at t0 rather
than 0. The second drawback is that we observed what we
believe to be policy oscillations, where the policies go from
good to poor in an oscillating manner. This issue is not
well understood in the literature but is discussed briefly in
Bertsekas (2011).

Asynchronous Value Iteration (AVI)

This algorithm is an elementary algorithm of approximate
dynamic programming/reinforcement learning. As the basis

for Monotone-ADP, we include it in our comparisons to
illustrate the utility of ÁM . In fact, AVI can be recovered
from Monotone-ADP by simply removing the monotonicity
preservation step; it is a lookup table based algorithm where
only one state (per time period) is updated at every itera-
tion. More details can be found in Sutton and Barto (1998,
§4.5), Bertsekas (2007, §2.6), or Powell (2011, §10.2).

Q-Learning (QL)

Due to Watkins and Dayan (1992), this reinforcement-
learning algorithm estimates the values of state-action pairs,
rather than just the state, to handle the model-free situation.
Its crucial drawback, however, is it can only be applied in
problems with very small action spaces—for this reason,
we only show results for Q-learning in the context of our
optimal stopping application, where the size of the action
space is two. To make the comparison between Q-learning
and the algorithms as fair as possible, we improve the per-
formance of Q-learning by taking advantage of our known
model and compute the expectation at every iteration (as
we do in AVI). This slight change from the original formu-
lation, of course, does not alter its convergence properties.

Backward Dynamic Programming (BDP)

This is the well known, standard procedure for solv-
ing finite-horizon MDPs. Using significant computational
resources, we employ BDP to obtain the optimal bench-
marks in each of the example applications in this section.
A description of this algorithm, which is also known as
backward induction or finite-horizon value iteration, can be
found in Puterman (1994).

7.1. Evaluating Policies

We follow the method in Powell (2011) for evaluating
the policies generated by the algorithms. By the princi-
ple of dynamic programming, for particular value functions
V 2✓D, the decision function at time t, At2 S !A can be
written as

At4s5= argmax
a2A

6Ct4s1a5+E6Vt+14St+15 ó St = s1 at = a770

To evaluate the value of a policy (i.e., the expected contri-
bution over the time horizon) using simulation, we take a
test set of L= 11000 sample paths, denoted Ï̂, compute the
contribution for each ó 2 Ï̂ and take the empirical mean:

F 4V 1ó5=
TX

t=0

Ct4St4ó51At4St4ó555 and

F̄ 4V 5= LÉ1
X

ó2Ï̂
F 4V 1ó50

For each problem instance, we compute the optimal policy
using backward dynamic programming. We then compare
the performance of approximate policies generated by each

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1502 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

of the above approximation algorithms to that of the opti-
mal policy (given by V ⇤

0 4S05), as a percentage of optimality.
We remark that although a complete numerical study

is not the main focus of this paper, the results below do
indeed show that Monotone-ADP provides benefits in each
of these nontrivial problem settings.

7.2. Regenerative Optimal Stopping

We now present a classical example application from
the fields of operations research, mathematics, and eco-
nomics: regenerative optimal stopping (also known as opti-
mal replacement or optimal maintenance; see Pierskalla
and Voelker 1976 for a review). The optimal stopping
model described in this paper is inspired by that of Feld-
stein and Rothschild (1974), Rust (1987), and Kurt and
Kharoufeh (2010) and is easily generalizable to higher
dimensions. We consider the decision problem of a firm
that holds a depreciating asset that it needs to either sell or
replace (known formally as replacement investment), with
the depreciation rate determined by various other economic
factors (giving a multidimensional state variable). The com-
peting forces can be summarized to be the revenue gener-
ated from the asset (i.e., production of goods, tax breaks)
versus the cost of replacement and the financial penalty
when the asset’s value reaches zero.

Consider a depreciating asset whose value over discrete
time indices t 2 80111 0 0 0 1T 9 is given by a process 8Xt9

T
t=0

where Xt 2 X = 80111 0 0 0 1Xmax9. Let 8Yt9
T
t=0 with Yt =

4Y i
t 5

nÉ1
i=1 2Y describe external economic factors that affect

the depreciation process of the asset. Each component Y i
t 2

80111 0 0 0 1Y i
max9 contributes to the overall depreciation of

the asset. The asset’s value either remains the same or
decreases during each time period t. Assume that for each i,
higher values of the factor Y i

t correspond to more positive
influences on the value of the asset. In other words, the
probability of its value depreciating between time t and
t+ 1 increases as Y i

t decreases.
Let St = 4Xt1Yt5 2 S = X ⇥ Y be the n-dimensional

state variable. When Xt > 0, we earn a revenue of P for
some P > 0, and when the asset becomes worthless (i.e.,
when Xt = 0), we suffer a penalty of ÉF for some F > 0.
At each stage, we can either choose to replace the asset
by taking action at = 1 for some cost r4Xt1Yt5, which is
nonincreasing in Xt and Yt , or do nothing by taking action
at = 0 (therefore, A = 80119). Note that when the asset
becomes worthless, we are forced to pay the penalty F in
addition to the replacement cost r4Xt1Yt5. Therefore, we
can specify the following contribution function:

Ct4St1at5= P · 18Xt>09 É F · 18Xt=09

É r4Xt1Yt541É 18at=0918Xt>0950

Let f É2 X ⇥Y ! 60117 be a nonincreasing function in
all of its arguments. The process Xt obeys the following
dynamics. If Xt = 0 or if at = 1, then Xt+1 = Xmax with

probability 1 (regeneration or replacement). Otherwise, Xt

decreases with probability f É4Xt1Yt5 or stays at the same
level with probability 1É f É4Xt1Yt5. The transition func-
tion is written

Xt+1 = 4Xt · 18Ut+1>f 4Xt 1Yt59
+ 6Xt É ÖXt+17

+ · 18Ut+1∂f 4Xt 1Yt59
5

· 18at=0918Xt>09 +Xmax41É 18at=0918Xt>0951

where Ut+1 are i.i.d. uniform random variables over the
interval 60117 and ÖXt+1 are i.i.d. discrete uniform random
variables over 81121 0 0 0 1 Ömax9. The first part of the transi-
tion function covers the case where we wait (at = 0) and
the asset still has value (Xt > 0); depending on the out-
come of Ut+1, its value either remains at its current level
or depreciates by some random amount ÖXt+1. The second
part of the formula reverts Xt+1 to Xmax whenever at = 1
or Xt = 0.
Let Y i

t evolve stochastically such that if at = 0 and
Xt > 0, Y i

t+1 ∂ Y i
t with probability 1. Otherwise, the exter-

nal factors also reset: Y i
t+1 = Y i

max:

Y i
t+1 = 6Y i

t ÉÖit+17
+ ·18at=0918Xt>09+Y i

max ·41É18at=0918Xt>0951

where Öit+1 are i.i.d. (across i and t) Bernoulli with a fixed
parameter pi. Thus, we take the information process to be
Wt+1 = 4Ut+11 Ö

X
t+11 Ö

1
t+11 Ö

2
t+11 0 0 0 1 Ö

n
t+15, which is indepen-

dent of St . Moreover, we take CT 4x1y5= 0 for all 4x1y5 2
X⇥Y. The following proposition establishes that Assump-
tion 1 is satisfied.

Proposition 3. Under the regenerative optimal stopping

model, define the Bellman operator H as in (7) and let �
be the componentwise inequality over all dimensions of the

state space. Then Assumption 1 is satisfied. In particular,

this implies that the optimal value function is monotone:

for each t ∂ T , V ⇤
t 4Xt1Yt5 is nondecreasing in both Xt and

Yt (i.e., in all n dimensions of the state variable St).

Proof. See the online supplement.

7.2.1. Parameter Choices. In the numerical work of
this paper, we consider five variations of the problem,
where the dimension varies across n = 3, n = 4, n = 5,
n= 6, and n= 7, and the labels assigned to these are R3,
R4, R5, R6, and R7, respectively. The following set of
parameters are used across all of the problem instances. We
use Xmax = 10 and Y i

max = 10, for i= 1121 0 0 0 1nÉ 1 over a
finite time horizon T = 25. The probability of the i-th exter-
nal factor Y i

t decrementing, pi, is set to pi = i/42n5, for
i= 1121 0 0 0 1nÉ 1. Moreover, the probability of the asset’s
value Xt depreciating is given by

f É4Xt1Yt5= 1É X2
t + òYtò22

X2
max + òYmaxò22

1

and we use Ömax = 5. The revenue is set to be P = 100 and
the penalty to be F = 11000. Finally, we let the replacement
cost be:

r4Xt1Yt5= 400+ 2
n
4X2

max ÉX2
t + òYmaxò22 ÉòYtò2251

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1503

Table 1. Basic properties of regenerative optimal stop-
ping problem instances.

Label State space Eff. state space Action space CPU (sec.)

R3 11331 331275 2 49
R4 141641 3661025 2 325
R5 1611051 410261275 2 31957
R6 117711561 4412891025 2 491360
R7 1914871171 48711791275 2 6201483

which ranges from 400 to 600. All of the policies that
we compute assume an initial state of S0 = 4Xmax1Ymax5.
For each of the five problem instances, Table 1 gives the
cardinalities of the state space; effective state space (i.e.,
4T + 15óS ó); and action space along with the computation
time required to solve the problem exactly using backward
dynamic programming. In the case of R7, we have an effec-
tive state space of nearly half a billion, which requires more
than a week of computation time to solve exactly.

7.2.2. Results. Figure 5 displays the empirical results
of running Monotone-ADP and each of the aforementioned
ADP/RL algorithms on the optimal stopping instances
R3–R7. Because of the vast difference in size of the prob-
lems (e.g., R7 is 14,000 times larger than R3), each prob-
lem was run for a different number of iterations. First,
we point out that AVI and QL barely make any progress,
even in the smallest instance R3. However, this observa-
tion only partially attests to the value of the simple ÁM

operator; it is not entirely surprising because AVI and QL
only update one state (or one state-action) per iteration.
The fact that Monotone-ADP also outperforms both KBRL
and API (in the area of 10%–15%) makes a stronger case
for Monotone-ADP because in both KBRL and API, there

Figure 5. Comparison of Monotone-ADP to other ADP/RL algorithms.

Number of iterations

%
 O

pt
im

al
ity

50

60

70

80

90

100

M-ADP
KBRL
API
AVI
QL

(a) Instance R3

Number of iterations

%
 O

pt
im

al
ity

50

60

70

80

90

100
(b) Instance R4 (c) Instance R5

Number of iterations × 104

%
 O

pt
im

al
ity

50

60

70

80

90

100

Number of iterations × 104 Number of iterations × 104

%
 O

pt
im

al
ity

50

60

70

80

90

100
(d) Instance R6

0 200 400 600 800 1,000 0 500 1,000 1,500 2,000 0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 0 54321 6

%
 O

pt
im

al
ity

50

60

70

80

90

100
(e) Instance R7

is a notion of generalization to the entire state space. As
we mentioned earlier, aside from the larger optimality gap,
the main concerns with KBRL and API are, respectively,
bandwidth selection and policy oscillations.
Question (2) concerns the computation requirement for

Monotone-ADP. The optimality of the Monotone-ADP
policies versus the computation times needed for each are
shown on the semilog plots in Figure 6 below. In addition,
the single point to the right represents the amount of com-
putation needed to produce the exact optimal solution using
BDP. The horizontal line represents 90% optimality (near-
optimal). The plots show that for every problem instance,
we can reach near-optimality using Monotone-ADP with
around an order of magnitude less computation than if
we used BDP to compute the true optimal. In terms of
a percentage, Monotone-ADP required 5.3%, 5.2%, 4.5%,
4.3%, and 13.1% of the optimal solution computation time
to reach a near-optimal solution in each of the respective
problem instances. From Table 1, we see that for larger
problems, the amount of computation needed for an exact
optimal policy is unreasonable for any real-world applica-
tion. Combined with the fact that it is extremely easy to
find examples of far more complex problems (the relatively
small Xmax and Y i

max makes this example still somewhat
tractable), it should be clear that exact methods are not a
realistic option, even given the attractive theory of finite
time convergence.

7.3. Energy Storage and Allocation

The recent surge of interest in renewable energy leads us to
present a second example application in area energy storage.
The goal of this specific problem is to optimize revenues
while satisfying demand, in the presence of (1) a storage

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1504 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

Figure 6. Computation times (seconds) of Monotone-ADP vs. backward dynamic programming.

CPU time (seconds), log scale
100 101 102

%
 O

pt
im

al
ity

50

60

70

80

90

100

M-ADP
Optimal
90%

(a) Instance R3

CPU time (seconds), log scale

100 101 102 103

%
 O

pt
im

al
ity

50

60

70

80

90

100
(b) Instance R4 (c) Instance R5

(e) Instance R7(d) Instance R6

CPU time (seconds), log scale
102 103 104 105

%
 O

pt
im

al
ity

50

60

70

80

90

100

CPU time (seconds), log scale

102 103 104 105

%
 O

pt
im

al
ity

50

60

70

80

90

100

CPU time (seconds), log scale

104 105 106

%
 O

pt
im

al
ity

50

60

70

80

90

100

device, such as a battery, and (2) a (stochastic) renewable
source of energy, such as wind or solar. Our action or deci-
sion vector is an allocation decision, containing five dimen-
sions that describe how the energy is transferred within our
network, consisting of nodes for the storage device, the
spot market, demand, and the source of renewable gener-
ation (see Figure 7). Similar problems from the literature
that share the common theme of storage include Secomandi
(2010), Carmona and Ludkovski (2010), and Kim and Pow-
ell (2011), to name a few.

Let the state variable be St = 4Rt1Et1Pt1Dt5 2S , where
Rt is the amount of energy in storage at time t, Et is the
amount of renewable generation available at time t, Pt is the
price of energy on the spot market at time t, and Dt is
the demand that needs to be satisfied at time t. We define
the discretized state space S by allowing 4Rt1Et1Pt1Dt5
to take on all integral values contained within the hyper-
rectangle

601Rmax7⇥ 6Emin1Emax7⇥ 6Pmin1Pmax7⇥ 6Dmin1Dmax71

Figure 7. Network diagram for the energy storage
problem.

Demand

Storage RenewablesSpot market

xt
md

xt
rd

xt
ed

xt
rm xt

er

where Rmax æ 0, Emax æ Emin æ 0, Pmax æ Pmin æ 0, and
Dmax æDmin æ 0. Let Éc and Éd be the maximum rates of
charge and discharge from the storage device, respectively.
The decision vector is given by (refer again to Figure 7 for
the meanings of the components)

xt = 4xed
t 1x

md
t 1xrd

t 1x
er
t 1x

rm
t 5T 2X4St51

where the feasible set X4St5 is defined by xt 2 �5 inter-
sected with the following, mostly intuitive, constraints:

4xed
t 1x

md
t 1xrd

t 1x
er
t 1x

rm
t 5T æ 01 (23)

xed
t + xrd

t + xmd
t =Dt1 (24)

xrd
t + xrm

t ∂Rt1

xer
t + xed

t ∂ Et1

xrd
t + xrm

t ∂ Éd1

xer
t ∂min8Rmax ÉRt1 Éc90 (25)

Note that whenever the energy in storage combined with
the amount of renewable generation is not enough to satisfy
demand, the remainder is purchased from the spot market.
The contribution function is given by

Ct4St1xt5= Pt4Dt + xrm
t É xmd

t 50

To describe the transition of the state variable, first define
î = 40101É1111É15T to be the flow coefficients for a
decision xt with respect to the storage device. We also
assume that the dependence on the past for the stochastic
processes 8Et9

T
t=0, 8Pt9

T
t=0, and 8Dt9

T
t=0 is at most Markov

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1505

of order one. Let 6 · 7ab = min4max4·1b51a5. Thus, we can
write the transition function for St using the following set
of equations:

Rt+1 =Rt +îTxt and

Et+1 = 6Et + Êt+17
Emax
Emin

1

Pt+1 = 6Pt + P̂t+17
Pmax
Pmin

1

Dt+1 = 6Dt + D̂t+17
Dmax
Dmin

1

(26)

where the information process Wt+1 = 4Êt+11 P̂t+11 D̂t+15 is
independent of St and xt (the precise processes used are
given in §7.3.1). Note that the combined transition function
is monotone in the sense of (i) of Proposition 1, where �
is the componentwise inequality.

Proposition 4. Under the energy storage model, define

the Bellman operator H as in (7), with A replaced with

the state dependent X4s5, and let � be the component-

wise inequality over all dimensions of the state space. Then

Assumption 1 is satisfied. In particular, this implies that

the optimal value function is monotone: for each t ∂ T ,
V ⇤
t 4Rt1Et1Pt1Dt5 is nondecreasing in Rt , Et , Pt , and Dt .

Proof. See the online supplement.

7.3.1. Parameter Choices. In our experiments, a con-
tinuous distribution D with density fD is discretized over
a set XD by assigning each outcome x 2XD the probabil-
ity fD4x5/

P
x02XD

fD4x
05. We consider two instances of the

energy storage problem for T = 25: the first is labeled S1
and has a smaller storage device and relatively low variance
in the change in renewable supply Êt+1, while the second,
labeled S2, uses a larger storage device and has relatively
higher variance in Êt+1. We take Rmin = 0 with Rmax = 30
for S1 and Rmax = 50 for S2, and we set Éc = Éd = 5 for
S1 and S2. The stochastic renewable supply has charac-
teristics given by Emin = 1 and Emax = 7, with Êt+1 being
i.i.d. discrete uniform random variables over 801±19 for
S1 and Êt+1 being i.i.d. N 401325 discretized over the set
801±11±21 0 0 0 1±59. For both cases, we have Pmin = 30
and Pmax = 70 with P̂t+1 = ÖPt+1 + 18Ut+1<p9Ö

J
t+1, to simulate

price spikes (or jumps). The noise term ÖPt+1 is N 40120525
discretized over 801±11±21 0 0 0 1±89; the noise term ÖJt+1
is N 4015025 discretized over 801±11±21 0 0 0 1±409; and
Ut+1 is U40115 with p = 00031. Lastly, for the demand
process, we take Dmin = 0, Dmax = 7, and Dt + D̂t+1 =
è3É4 sin42è4t+15/T 5ê+ÖDt+1, where Ö

D
t+1 is N 401225 dis-

cretized over 801±11±29, to roughly model the seasonality

Table 2. Basic properties of energy storage problem
instances.

Label State space Eff. state space Action space CPU (sec.)

S1 711176 118501576 165, Max: 623 411675
S2 1171096 310441496 178, Max: 623 1151822

that often exists in observed energy demand. For both prob-
lems, we use an initial state of an empty storage device and
the other dimensions of the state variable set to their min-
imum values: S0 = 4Rmin1Emin1Pmin1Dmin5. Table 2 sum-
marizes the sizes of these two problems. Since the size
of the action space is not constant over the state space,
we report the average, i.e., óS óÉ1P

s óX4s5ó. The maximum
size of the feasible set over the state space is also given
(and is the same for both S1 and S2). Finally, we remark
that the greater than linear increase in computation time
for S2 compared to S1 is due to the larger action space
and the larger number of random outcomes that need to be
evaluated.

7.3.2. Results. For this problem, we did not imple-
ment QL because of the impracticality of working with
state-action pairs in problem domains with vastly larger
action space than optimal stopping. The state-dependent
action space also introduces implementation difficulties.
With regard to KBRL, API, and AVI, the results for energy
storage tell a similar story as before, as seen in Figure 8.
The computational gap between Monotone-ADP and BDP,
however, has increased even further. As illustrated in Fig-
ure 9, the ratio of the amount of computation time for
Monotone-ADP to reach near-optimality to the amount of
computation needed for BDP stands at 1.9% for S1 and
0.7% for S2, reaching two orders of magnitude.

7.4. Glycemic Control for Diabetes

Our final application is in the area of healthcare, con-
cerning optimal treatment decisions for glycemic control
(i.e., the management of blood glucose) in Type 2 diabetes
patients over a time horizon t 2 80111 0 0 0 1T 9. The model is
based primarily on the work Hsih (2010) (with a few exten-
sions) and also exhibits similarities to the ones described
in Kurt et al. (2011), Mason et al. (2012), and Mason et al.
(2014). Because diabetes is a chronic disease, its patients
require long-term, personalized treatment plans that take
into account a variety of factors, such as measures of blood
glucose, negative side effects, and medical costs. The idea
of the model is to maximize a utility function (often cho-
sen to be related to quality-adjusted life years, or QALYs
in the literature) over time. The action at each time period
is a treatment decision that has a stochastic effect on the
patient’s state of health, represented via the state variable
St = 4Ha

t 1H
b
t 1H

c
t 1H

d
t 5, where H

a
t 2Ha = 8Ha

min1 0 0 0 1H
a
max9

and Hb
t 2 H b = 8Hb

min1 0 0 0 1H
b
max9 are measures of blood

glucose; Hc
t 2 H c = 8Hc

min1 0 0 0 1H
c
max9 is a patient’s BMI

(body mass index); and Hd
t 2Hd = 8Hd

min1 0 0 0 1H
d
max9 is the

severity of side effects (e.g., gastrointestinal discomfort or
hypoglycemia). More specifically, let Ha

t be the FPG (fast-
ing plasma glucose) level, a short term indicator of blood
glucose and Hb

t be the HbA1c (glycated hemoglobin) level,
an indicator of average blood glucose over a longer term of
a few months. The set of available treatment decisions is

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1506 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

Figure 8. Comparison of Monotone-ADP to other ADP/RL algorithms.

Number of iterations

%
 O

pt
im

al
ity

50

60

70

80

90

100

M-ADP
KBRL
API
AVI

(a) Instance S1

Number of iterations
0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000

%
 O

pt
im

al
ity

50

60

70

80

90

100
(b) Instance S2

Figure 9. Computation times (seconds) of Monotone-ADP vs. backward dynamic programming.

CPU time (seconds), log scale

101 102 103 104 105

%
 O

pt
im

al
ity

50

60

70

80

90

100

M-ADP
Optimal
90%

(a) Instance S1 (b) Instance S2

CPU time (seconds), log scale
102 103 104 105 106

%
 O

pt
im

al
ity

50

60

70

80

90

100

X = 80111213149. Below is basic summary of the various
treatments:

• No treatment, at = 0. It is often the case that the
usual recommendations of diet and exercise can be suffi-
cient when the patient’s glucose levels are in the normal
range; there is no cost and no risk of increasing the severity
of side effects.

• Insulin sensitizers, at = 1. These drugs increase the
patient’s sensitivity to insulin; the two most common types
are called biguanides and thiazolidinediones (TZDs).

• Secretagogues, at = 2. Pancreatic Ç-cells are respon-
sible for the release of insulin in the human body. Secreta-
gogues act directly on Ç-cells to increase insulin secretion.

• Alpha-glucosidase inhibitors, at = 3. As the name
suggests, this treatment disrupts the enzyme alpha-
glucosidase, which breaks down carbohydrates into simple
sugars, and therefore decreases the rate at which glucose is
absorbed into the bloodstream.

• Peptide analogs, at = 4. By acting on certain incretins,
which are hormones that affect the insulin production of
pancreatic Ç-cells, this type of medication is able to regu-
late blood glucose levels.

We make the assumption that the patient under consid-
eration has levels of Ha

t , Hb
t , Hc

t , and Hd
t higher (i.e.,

worse) than the normal range (as is typical of a diabetes
patient) and only model this regime. Therefore, assume that
we have nonincreasing utility functions ui

t2 H i ! ✓ for

i 2 8a1b1 c1d9 and that the cost of treatment is P æ 0. The
contribution function at time t is

Ct4St1at5= ua
t 4H

a
t 5+ ub

t 4H
b
t 5+ ub

t 4H
b
t 5

+ ud
t 4H

d
t 5ÉP · 18at 6=090

Furthermore, the information process in this problem is
the stochastic effect of the treatment on the patient. This
effect is denoted Wt+1 = 4Ĥa

t+11 Ĥ
b
t+11 Ĥ

c
t+11 Ĥ

d
t+15 with the

transitions given by Hi
t+1 = 6Hi

t + Ĥ i
t+17

Hi
max

Hi
min

for each

i 2 8a1b1 c1d9. Of course, the distribution of Wt+1 depends
on the treatment decision xt , but we assume it is indepen-
dent of the state variable St .
Notice that in this problem, the contribution function is

nonincreasing with respect to the state variable, reversing
the monotonicity in the value function as well.

Proposition 5. Under the glycemic control model, define

the Bellman operator H as in (7), with A replaced with the

set of treatment decisions X , and let � be the component-

wise inequality over all dimensions of the state space. Then

Assumption 1 is satisfied, with the direction of � reversed.

In particular, this implies that the optimal value function is

monotone: for each t ∂ T , V ⇤
t 4H

a
t 1H

b
t 1H

c
t 1H

d
t 5 is nonin-

creasing in Ha
t , H

b
t , H

c
t , and Hd

t .

Proof. Proposition 1 can be applied, with the direction of
the inequalities reversed.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1507

7.4.1. Parameter Choices. We remark that the param-
eters used in our experimental work are not realistic or
estimated from data, but chosen so that the resulting MDP
is interesting and not too easy to solve (we found that the
original parameters from Hsih 2010 created a problem that
Monotone-ADP could solve to near optimality in as little as
50 iterations, making for a weak comparison). We consider
two variations of the glycemic control problem, labeled G1
and G2, where the only difference is that for G1, we assume
there is no cost of treatment, i.e., P = 0, and for G2, we set
P = 2. This comparison is made to illustrate that a trivial,
seemingly inconsequential change to the problem can cre-
ate dramatic difficulties for certain ADP algorithms, as we
see in the next section.

The finite time horizon for glycemic control is chosen
as T = 12 (time is typically measured in units of a few
months for a problem such as this). The lower and upper
bounds of the state variable are given by

4Ha
min1H

b
min1H

c
min1H

d
min5= 468141191051

4Ha
max1H

b
max1H

c
max1H

d
max5= 430012015011050

For each health indicator i 2 8a1b1 c9, the utility function
is taken to have the form ui

t4h5= ki log4Hi
maxÉh5 for all t.

The values of the constant are ka = 40586, kb = 70059, and
kc = 50771. Additionally, let the utility function for side
effects be given by ud

t 4h5=É10h.
Next, we assume that the distribution of 4Ĥa

t+11

Ĥb
t+11 Ĥ

c
t+15

T conditional on xt = x is multivariate normal
for all t, with mean vector åx and covariance matrix Ëx:

åx =

2

664

åx1a

åx1b

åx1c

3

775 and Ëx =

2

664

ëx1aa ëx1ab ëx1ac

ëx1ab ëx1bb ëx1bc

ëx1ac ëx1bc ëx1cc

3

775 0

Discretization of these continuous distributions is per-
formed in the same way as described in §7.3.1. The set of
values onto which we discretize is a hyperrectangle, where
dimension i takes values between åx1 i ± 3

p
ëx1 ii, for i 2

8a1b1 c9. The distribution of Ĥd
t+1 conditional on xt = x

(change in side effect severity for treatment x) is a discrete
distribution that takes values ĥx1d and with probabilities
px1d (both vectors), for all t. The numerical values of these
parameters are given in Table 3. Finally, as we did for the
previous two problems, Table 4 shows state space and com-
putation time information for the glycemic control problem.

Table 3. Parameter values for glycemic control problem.

Treatment åx1a åx1b åx1 c ëx1aa ëx1bb ëx1 cc ëx1ab ëx1ac ëx1bc ĥx1d px1d

xt = 0 30 3 2 25 8 8 008 005 002 6É1107 600810027
xt = 1 É25 É1 3 100 16 25 102 005 002 6011127 6008100110017
xt = 2 É45 É3 5 100 16 25 102 005 001 6011127 600751001510017
xt = 3 É10 É1 É1 81 10 16 006 005 005 6011127 6008100110017
xt = 4 É10 É1 É4 81 10 16 102 005 005 6011127 6007100210017

Table 4. Basic properties of glycemic control problem
instances.

Label State space Eff. state space Action space CPU (sec.)

G1/G2 1,312,256 17,059,328 5 201,925

The initial state is set to S0 = 4Ha
max1H

b
max1H

c
max1H

d
min5 to

represent an unhealthy diabetes patient who has not under-
gone any treatment (and therefore, no side effects).

7.4.2. Results. In the numerical work for glycemic
control, we show a slightly different algorithmic phe-
nomenon. Recall that in G1, there no cost of treatment, and
consequently, the contribution function is independent of
the treatment decision. It turns out that after relatively few
iterations, all of the ADP algorithms are able to learn that
there is some value to be gained by applying treatment.
Figure 10(a) shows that they end up achieving policies
between 75% and 90% of optimality, with Monotone-ADP
outperforming KBRL by roughly 10% and AVI (the worst
performing) by only 15%. What if we add in a seemingly
minor treatment cost of P = 2? Figure 10(b), on the other
hand, shows a dramatic failure of AVI: it never improves
beyond 10% of optimality. API shows similar behavior, and
KBRL performed slightly worse (approx. 5%) than it did
on G1 and reached a plateau in the middle iterations. The
reason for AVI’s poor performance is that it updates values
too slowly from the initialization of V̄ 0 (usually constant
over S )—in other words, the future value term of Bell-
man’s equation, E6V̄ n

t+14St+15 ó St = s1at = a7, is unable to
compensate for the treatment cost of P = 2 quickly enough.
We therefore conclude that it can be crucially important
to update large swathes of states at a time, while observ-
ing the structural behavior. Even though KBRL and API
do generalize to the entire state space, our observations
from comparing G1 and G2 point to the additional value
gained from using structural information. The computa-
tion time results of Figure 11 are similar to that of the
previous examples. Monotone-ADP once again produces
near-optimal solutions with significantly less computation:
a ratio of 1.5% for G1 and 1.2% for G2.

8. Conclusion
In this paper, we formulated a general sequential deci-
sion problem with the property of a monotone value
function. We then formally described an ADP algorithm,
Monotone-ADP, first proposed in Papadaki and Powell

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1508 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

Figure 10. Comparison of Monotone-ADP to other ADP/RL algorithms.

Number of iterations

%
 O

pt
im

al
ity

0
10
20
30
40
50
60
70
80
90

100

M-ADP
KBRL
API
AVI

(a) Instance G1

Number of iterations

0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000

%
 O

pt
im

al
ity

0
10
20
30
40
50
60
70
80
90

100
(b) Instance G2

Figure 11. Computation times (seconds) of Monotone-ADP vs. backward dynamic programming.

CPU time (seconds), log scale

102 103 104 105 106

CPU time (seconds), log scale

102 103 104 105 106

%
 O

pt
im

al
ity

0
10
20
30
40
50
60
70
80
90

100

M-ADP
Optimal
90%

(a) Instance G1 (b) Instance G2

%
 O

pt
im

al
ity

0
10
20
30
40
50
60
70
80
90

100

(2002) as a heuristic for one dimensional state variables,
that exploits the structure of the value function by per-
forming a monotonicity preserving operation at each itera-
tion to increase the information gained from each random
observation. The algorithm can be applied in the con-
text of three common formulations of Bellman’s equation,
the pre-decision version, post-decision version and the Q-
function (or state-action) version. Under several techni-
cal assumptions, we prove the almost sure convergence
of the estimates produced by Monotone-ADP to the opti-
mal value function. The proof draws upon techniques used
in Tsitsiklis (1994) and Nascimento and Powell (2009).
However, in Nascimento and Powell (2009), where con-
cavity was assumed, pure exploitation could be used, but
only in one dimension. This paper requires a full explo-
ration policy but exploits monotonicity in multiple dimen-
sions, dramatically accelerating the rate of convergence.
We then presented three example applications: regenerative
optimal stopping, energy storage/allocation, and glycemic
control for diabetes patients. Our empirical results show
that in these problem domains, Monotone-ADP outper-
forms several popular ADP/RL algorithms (kernel-based
reinforcement learning, approximate policy iteration, asyn-
chronous value iteration, and Q-learning) by exploiting the
additional structural information. Moreover, it can produce
near-optimal policies using up to two orders of magnitude
less computational resources than backward dynamic pro-
gramming. In an application where the optimal solution

cannot be computed exactly because of a large state space,
we expect that utilizing monotonicity can bring significant
advantages.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2015.1425.

Acknowledgments
The authors are grateful to the area editor, associate editor, and
three anonymous reviewers whose comments have helped to sig-
nificantly improve earlier versions of this paper. This project was
funded in part by the National Science Foundation [Grant ECCS-
1127975] and the SAP Initiative for Energy Systems Research.

Appendix A. Proof of Lemma 1

Proof. The following arguments apply to all three definitions
of H . (i) is true because of the monotonicity of the supremum
(or maximum) and expectation operators. (ii) follows by the def-
inition of H (for each of the three cases) and (iii) follows from
the well-known fact that our finite horizon MDP has a unique
solution. (iii) is easily deduced by applying the definition of H .

Appendix B. Proof of Proposition 2

Proof. Let V̄ Á
t =ÁM 4S

n
t 1 z

n
t 4S

n
t 51 V̄

nÉ1
t 5 and consider an arbitrary

feasible solution Ṽt 2 V M4S
n
t 1 z

n
t 4S

n
t 55 to (9). To prove the state-

ment of the proposition, we need to argue that

òV̄ Á
t É V̄ nÉ1

t ò2 ∂ òṼt É V̄ nÉ1
t ò20

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

http://dx.doi.org/10.1287/opre.2015.1425
http://dx.doi.org/10.1287/opre.2015.1425


Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1509

We do so by verifying that for each state s 2S ,

óV̄ Á
t 4s5É V̄ nÉ1

t 4s5ó2 ∂ óṼt4s5É V̄ nÉ1
t 4s5ó20 (B1)

There are four cases:
1. If s and Sn

t are incomparable (neither s � Sn
t nor Sn

t � s),
then monotonicity does not apply and V̄ Á

t 4s5= V̄ nÉ1
t 4s5, trivially

satisfying (B1).
2. If s = Sn

t , then the definition of the feasible region gives
V̄ Á
t 4s5= Ṽt4s5. Once again, (B1) is satisfied.
3. Consider the case where s ⌫ Sn

t and s 6= Sn
t . First, if mono-

tonicity is not violated with the new observation znt 4S
n
t 5, then

ÁM does not alter the value at s. Therefore, V̄ Á
t 4s5 = V̄ nÉ1

t 4s5
and (B1) holds. Now suppose monotonicity is violated, meaning
that V̄ nÉ1

t 4s5∂ znt 4S
n
t 5. After applying ÁM , we have that V̄ Á

t 4s5=
znt 4S

n
t 5. Since Ṽt is in the feasible set, it must be the case that

Ṽt4s5æ znt 4S
n
t 5 since Ṽt4S

n
t 5= znt 4S

n
t 5. Combining these relation-

ships, it is clear that (B1) holds.
4. The case where s � Sn

t and s 6= Sn
t is handled in an analo-

gous way.
Since this holds for any feasible solution Ṽt , the proof is

complete.

Appendix C. Proof of Lemma 3

Proof. The proof is by induction on k. We note that by definition
and (3), U 0 and L0 satisfy this property. By the definition of
H and Assumption 1, it is easy to see that if Uk satisfies the
property, then HUk does as well. Thus, by the definition of Uk+1

being the average of the two, we see that Uk+1 also satisfies the
monotonicity property.

Appendix D. Proof of Lemma 4

Proof. Consider SÉ
t (the other case is symmetric). Since S is

finite, there exists a state s such that there is no state s0 2S where
s0 � s. An increase from the projection operator must originate
from a violation of monotonicity during an observation of a state
s0 where s0 � s and s0 6= s, but such a state does not exist. Thus,
s 2SÉ

t .

Appendix E. Proof of Lemma 5

Proof. Define

A= 8s002 s00 � s1 s00 6= s9 and B= [

sl2SL4s5

8s002 s00 � sl90

We argue that A✓ B. Choose s1 2A and suppose for the sake of
contradiction that s1 62 B. In particular, this means that s1 62S L4s5
because S L4s5 ✓ B. By Definition 6, it follows that there must
exist s2 such that s1 � s2 � s where s2 6= s1 and s2 6= s. It now
follows that s2 62 S L4s5 because if it were, then s1 � s2 would
imply that s1 is an element of B. This argument can be repeated to
produce other states s31 s41 0 0 0, each different from the rest, such
that

s1 � s2 � s3 � s4 � · · ·� s1 (E1)

where each state sk is not an element S L4s5. However, because
S is a finite set, eventually we reach a point where we cannot
produce another state to satisfy Definition 6 and we will have that
the final state, call it sK , is an element of S L. Here, we reach

a contradiction because (E1) (specifically, the fact that s1 � sK)
implies that s1 2 B. Thus, s1 2 B and we have shown that A✓ B.

Because the value of s was increased, a violation of monotonic-
ity must have occurred during the observation of Sn

t , implying that
Sn
t 2 A. Therefore, Sn

t 2 B, and we know that Sn
t � s0 for some

s0 2S L4s5. Since V̄ nÉ1
t is monotone over S and V̄ n

t 4s5= znt 4S
n
t 5,

we can write

V̄ nÉ1
t 4Sn

t 5∂ V̄ nÉ1
t 4s05∂ V̄ nÉ1

t 4s5< znt 4S
n
t 5= V̄ n

t 4s51

meaning that ÁM acts on s0 and we have

V̄ n
t 4s

05= znt 4S
n
t 5= V̄ n

t 4s51

the desired result.

Appendix F. Proof of Lemma 6

Proof. We first notice that the product inside the limit is nonneg-
ative because the stepsizes Ån

t ∂ 1. Also the sequence is mono-
tonic; therefore, the limit exists. Now,

mY

n=1

41ÉÅn
t 4s55=exp

 mX

n=1

log41ÉÅn
t 4s55

�
∂exp


É

mX

n=1

Ån
t 4s5

�
1

where the inequality follows from log41É x5∂Éx. Since

àX

n=1

Ån
t 4s5=à a0s01

the result follows by appropriately taking limits.

Appendix G. Proof of Lemma 8

Proof. First, we state an inequality needed later in the proof.
Since næ Ñ k

t 4s5, we know that næNk
t+1 by the induction hypoth-

esis for k. Now by the induction hypothesis for t + 1, we know
that V̄ n

t+14s5 ∂ Uk
t+14s5 holds. Therefore, using (ii) of Lemma 1,

we see that

4HV̄ n5t4s5∂ 4HUk5t4s50 (G1)

To show the statement of the lemma, we induct forward on n.
Base case, n = Ñ k

t 4s5. By the induction hypothesis for k

(which we can safely use in this proof because of the place-
ment of the lemma after the induction hypothesis), we have that
V̄

Ñ k
t 4s5

t 4s5∂Uk
t 4s5. Combined with

W
Ñk
t 4s51 Ñ

k
t 4s5

t 4s5= 0 and Uk
t 4s5=X

Ñk
t 4s5

t 4s51

we see that the statement of the lemma holds for the base case.
Induction hypothesis, n. Suppose the statement of the

lemma holds for n.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
1510 Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS

Inductive step from n to n+ 1. Suppose Sn+1
t = s, meaning

a direct update happened on iteration n+ 1. Thus, we have that

V̄ n+1
t 4s5=zn+1

t 4s5

=41ÉÅn
t 4s55V̄

n
t 4s5+Ån

t 4s5v̂
n+1
t 4s5

=41ÉÅn
t 4s55V̄

n
t 4s5+Ån

t 4s564HV̄ n5t4s5+wn+1
t 4s57

∂41ÉÅn
t 4s554X

n
t 4s5+W

n1Ñ k
t 4s5

t 4s55

+Ån
t 4s564HV̄ n5t4s5+wn+1

t 4s57 (G2)

∂41ÉÅn
t 4s554X

n
t 4s5+W

n1Ñ k
t 4s5

t 4s55

+Ån
t 4s564HUk5t4s5+wn+1

t 4s57 (G3)

=Xn+1
t 4s5+W

n+11Ñ k
t 4s5

t 4s50

where (G2) follows from the induction hypothesis for n, and (G3)
follows from (G1). Now let us consider the second case, that
Sn+1
t 6= s. This means that the stepsize Ån+1

t 4s5= 0 and thus,

Xn+1
t 4s5=Xn

t 4s51

W
n+11Ñ k

t 4s5
t 4s5=W

n1 Ñ k
t 4s5

t 4s50
(G4)

Because s 2 SÉ
t and n+ 1 æ Ñ k

t 4s5 æ NÁ (induction hypothesis
for k), we know that the projection operator did not increase the
value of s on this iteration (though a decrease is possible). Hence,

V̄ n+1
t 4s5∂ V̄ n

t 4s5∂Xn
t 4s5+W

n1 Ñ k
t 4s5

t 4s5

∂Xn+1
t 4s5+W

n+11 Ñ k
t 4s5

t 4s51

by the induction hypothesis for n and (G4).

References
Asamov T, Powell WB (2015) Regularized decomposition of high-

dimensional multistage stochastic programs with Markov uncertainty.
Working paper, Princeton University, Princeton, NJ.

Ayer M, Brunk HD, Ewing GM (1955) An empirical distribution func-
tion for sampling with incomplete information. Ann. Math. Statist.
26(4):641–647.

Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical
Inference Under Order Restrictions: The Theory and Application of
Isotonic Regression (John Wiley & Sons, New York).

Bertsekas DP (2007) Dynamic Programming and Optimal Control, Vol. II,
4 ed. (Athena Scientific, Belmont, MA).

Bertsekas DP (2011) Approximate policy iteration: A survey and some
new methods. J. Control Theory Appl. 9(3):310–335.

Bertsekas DP, Tsitsiklis JN (1996) Neuro–Dynamic Programming (Athena
Scientific, Belmont, MA).

Birge JR (1985) Decomposition and partitioning methods for multistage
stochastic linear programs. Oper. Res. 33(5):989–1007.

Breiman L (1992) Probability (SIAM, Philadelphia, PA).
Brunk HD (1955) Maximum likelihood estimates of monotone parameters.

Ann. Math. Statist. 26(4):607–616.
Carmona R, Ludkovski M (2010) Valuation of energy storage: An optimal

switching approach. Quant. Finance 10(4):359–374.
Dette H, Neumeyer N, Pilz KF (2006) A simple nonparametric estimator

of a strictly monotone regression function. Bernoulli 12(3):469–490.
Ekström E (2004) Properties of American option prices. Stochastic Pro-

cesses Appl. 114(2):265–278.
Feldstein MS, Rothschild M (1974) Towards an economic theory of

replacement investment. Econometrica 42(3):393–424.

George AP, Powell WB (2006) Adaptive stepsizes for recursive estimation
with applications in approximate dynamic programming. Machine
Learn. 65(1):167–198.

Hsih KW (2010) Optimal dosing applied to glycemic control of type 2
diabetes. Senior thesis, Princeton University, Princeton, NJ.

Jiang DR, Powell WB (2015) Optimal hour-ahead bidding in the real-time
electricity market with battery storage using approximate dynamic
programming. INFORMS J. Comput. 27(3):525–543.

Kaplan G, Violante GL (2014) A model of the consumption response to
fiscal stimulus payments. Econometrica 82(4):1199–1239.

Kim JH, Powell WB (2011) Optimal energy commitments with storage
and intermittent supply. Oper. Res. 59(6):1347–1360.

Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample average
approximation method for stochastic discrete optimization. SIAM J.
Optim. 12(2):479–502.

Kurt M, Kharoufeh JP (2010) Monotone optimal replacement policies
for a Markovian deteriorating system in a controllable environment.
Oper. Res. Lett. 38(4):273–279.

Kurt M, Denton BT, Schaefer AJ, Shah ND, Smith SA (2011) The struc-
ture of optimal statin initiation policies for patients with type 2 dia-
betes. IIE Trans. Healthcare Systems Engrg. 1(1):49–65.

Luenberger DG (1998) Investment Science (Oxford University Press,
New York).

Mammen E (1991) Estimating a smooth monotone regression function.
Ann. Statist. 19(2):724–740.

Mason JE, Denton BT, Shah ND, Smith SA (2014) Optimizing the simul-
taneous management of blood pressure and cholesterol for type 2
diabetes patients. Eur. J. Oper. Res. 233(3):727–738.

Mason JE, England DA, Denton BT, Smith SA, Kurt M, Shah ND (2012)
Optimizing statin treatment decisions for diabetes patients in the
presence of uncertain future adherence. Medical Decision Making
32(1):154–166.

McCall JJ (1970) Economics of information and job search. Quart. J.
Econom. 84(1):113–126.

Mukerjee H (1988) Monotone nonparametric regression. Ann. Statist.
16(2):741–750.

Müller A (1997) How does the value function of a Markov decision pro-
cess depend on the transition probabilities? Math. Oper. Res. 22(4):
872–885.

Nadaraya EA (1964) On estimating regression. Theory Probab. Appl.
9(1):141–142.

Nascimento JM, Powell WB (2009) An optimal approximate dynamic pro-
gramming algorithm for the lagged asset acquisition problem. Math.
Oper. Res. 34(1):210–237.

Nascimento JM, Powell WB (2010) Dynamic programming models and
algorithms for the mutual fund cash balance problem. Management
Sci. 56(5):801–815.

Ormoneit D, Sen A (2002) Kernel-based reinforcement learning. Machine
Learn. 49(2–3):161–178.

Papadaki KP, Powell WB (2002) Exploiting structure in adaptive dynamic
programming algorithms for a stochastic batch service problem. Eur.
J. Oper. Res. 142(1):108–127.

Papadaki KP, Powell WB (2003a) A discrete online monotone estima-
tion algorithm. Working paper LSEOR 03.73, London School of
Economics, London.

Papadaki KP, Powell WB (2003b) An adaptive dynamic programming
algorithm for a stochastic multiproduct batch dispatch problem.
Naval Res. Logist. 50(7):742–769.

Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization
applied to energy planning. Math. Programming 52(1–3):359–375.

Pierskalla WP, Voelker JA (1976) A survey of maintenance models: The
control and surveillance of deteriorating systems. Naval Res. Logist.
Quart. 23(3):353–388.

Powell WB (2011) Approximate Dynamic Programming: Solving the
Curses of Dimensionality 2nd ed. (John Wiley & Sons, Hoboken, NJ).

Powell WB, Ruszczyński A, Topaloglu H (2004) Learning algorithms for
separable approximations of discrete stochastic optimization prob-
lems. Math. Oper. Res. 29(4):814–836.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Jiang and Powell: An Approximate Dynamic Programming Algorithm for Monotone Value Functions
Operations Research 63(6), pp. 1489–1511, © 2015 INFORMS 1511

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic
Dynamic Programming (Wiley, New York).

Ramsay JO (1998) Estimating smooth monotone functions. J. Roy. Statist.
Soc.: Ser. B (Statist. Methodology) 60(2):365–375.

Ross SM (1983) Introduction to Stochastic Dynamic Programming (Aca-
demic Press, New York).

Rust J (1987) Optimal replacement of GMC bus engines: An empiri-
cal model of Harold Zurcher. Econometrica: J. Econometric Soc.
55(5):999–1033.

Salas D, Powell WB (2013) Benchmarking a scalable approximation
dynamic programming algorithm for stochastic control of multidi-
mensional energy storage problems. Working paper, Princeton Uni-
versity, Princeton, NJ.

Scott DW (2009) Multivariate Density Estimation: Theory, Practice, and
Visualization, Vol. 383 (John Wiley & Sons, New York).

Scott WR, Powell WB, Moazeni S (2012) Least squares policy itera-
tion with instrumental variables vs. direct policy search: Comparison
against optimal benchmarks using energy storage. Working paper,
Princeton University, Princeton, NJ.

Secomandi N (2010) Optimal commodity trading with a capacitated stor-
age asset. Management Sci. 56(3):449–467.

Smith JE, McCardle KF (2002) Structural properties of stochastic dynamic
programs. Oper. Res. 50(5):796–809.

Stockey N, Lucas Jr RE (1989) Recursive Methods in Economic Dynamics
(Harvard University Press, Cambridge, MA).

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction
(MIT Press, Cambridge, MA).

Topaloglu H, Powell WB (2003) An algorithm for approximating piece-
wise linear concave functions from sample gradients. Oper. Res. Lett.
31(1):66–76.

Tsitsiklis JN (1994) Asynchronous stochastic approximation and Q-
learning. Machine Learn. 16(3):185–202.

Watkins CJ, Dayan P (1992) Q-learning. Machine Learn. 8(3–4):279–292.

Daniel R. Jiang did his Ph.D. research in the Department
of Operations Research and Financial Engineering at Princeton
University. His research interests are in stochastic optimization,
sequential decision making, and approximate dynamic program-
ming, with applications in energy systems and markets.

Warren B. Powell is a professor in the Department of Opera-
tions Research and Financial Engineering at Princeton University,
where he has taught since 1981. His research specializes in com-
putational stochastic optimization, with applications in energy,
transportation, finance, and health. He founded and directs CAS-
TLE Labs and the Princeton Laboratory for Energy Systems Anal-
ysis (PENSA), focusing on the solution of stochastic optimization
problems that arise in a wide range of applications.

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

40
.1

80
.2

41
.6

4]
 o

n 
05

 Ja
nu

ar
y 

20
16

, a
t 2

1:
41

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 


