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There is growing interest in the use of grid-level storage to smooth variations in supply that are likely to
arise with an increased use of wind and solar energy. Energy arbitrage, the process of buying, storing, and

selling electricity to exploit variations in electricity spot prices, is becoming an important way of paying for
expensive investments into grid-level storage. Independent system operators such as the New York Independent
System Operator (NYISO) require that battery storage operators place bids into an hour-ahead market (although
settlements may occur in increments as small as five minutes, which is considered near “real-time”). The operator
has to place these bids without knowing the energy level in the battery at the beginning of the hour and
simultaneously accounting for the value of leftover energy at the end of the hour. The problem is formulated as a
dynamic program. We describe and employ a convergent approximate dynamic programming (ADP) algorithm
that exploits monotonicity of the value function to find a revenue-generating bidding policy; using optimal
benchmarks, we empirically show the computational benefits of the algorithm. Furthermore, we propose a
distribution-free variant of the ADP algorithm that does not require any knowledge of the distribution of the
price process (and makes no assumptions regarding a specific real-time price model). We demonstrate that a
policy trained on historical real-time price data from the NYISO using this distribution-free approach is indeed
effective.
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1. Introduction
Bidding into the electricity market can be a compli-
cated process, mainly because of the requirement of
balancing supply and demand at each point in the
grid. To solve this issue, the independent system oper-
ators (ISOs) and the regional transmission organiza-
tions (RTOs) generally use multi-settlement markets:
several tiers of markets covering planning horizons
that range from day-ahead to real time. The idea is that
the markets further away from the operating time set-
tle the majority of the generation needed to handle
the predicted load, whereas the markets closer to the
operating time correct for the small yet unpredictable
deviations that may be caused by issues like weather,
transmission problems, and generation outages (see,
for example, Shahidehpour et al. 2002, Eydeland and
Wolyniec 2003, Harris 2011 for more details). Settle-
ments in these real-time markets are based on a set
of intrahour prices, typically computed at 5-, 10-, or
15-minute intervals, depending on the specific market
in question. A settlement refers to the financial trans-
action after a generator clears the market, which refers
to being selected to either buy or sell energy from the

market. If a generator does not clear the market, it
remains idle and no settlement occurs. We refer to this
situation as being out of the market.

Many ISOs and RTOs, such as the Pennsylvania–
New Jersey–Maryland Interconnection (PJM), deal
with the balancing market primarily through the
day-ahead market. PJM’s balancing market clears
every five minutes (considered to be near “real
time”), but the bids are all placed the previ-
ous day. See Eydeland and Wolyniec (2003) and
the PJM Energy and Ancillary Services Market
Operations Manual (http://www.pjm.com/~/media/
documents/manuals/m11.ashx) for more informa-
tion. In certain markets, however, it is not only possi-
ble to settle in real time, but market participants can
also submit bids each hour, for an hour in the future.
Thus, a bid (consisting of buy and sell prices) can be
made at 1 p.m. that will govern the battery between
2 and 3 p.m. The process of both bidding and settling
in real-time is a characteristic of the New York Inde-
pendent System Operator (NYISO) real-time market
and is the motivating example for this paper. Other
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prominent examples of markets that include a real-
time bidding aspect include California ISO and Mid-
continent ISO. In particular, our goal is to pair battery
storage with hour-ahead bidding in the real-time mar-
ket for revenue maximization, a strategy sometimes
referred to as energy arbitrage.

It is unlikely that profits from energy arbitrage
alone can be sustainable for a company; however, if
performed optimally, it can be an important part of a
range of profit generating activities (one such exam-
ple is the frequency regulation market). Walawalkar
et al. (2007) provides an economic analysis of using a
storage device for both energy arbitrage (using a sim-
ple “charge-off-peak and discharge-on-peak” policy)
and frequency regulation in the New York area. The
conclusion is that in New York City (but not the sur-
rounding areas), there is a “high probability of pos-
itive NPV [net present value] for both energy arbi-
trage and regulation” (p. 2566), but even so, there is
still significant risk of not being able to recover the
initial capital cost. However, the potential for more
efficient and cost-effective technology combined with
better control policies can make energy arbitrage fea-
sible in the near future. Other studies on the topic
of the value of storage include Sioshansi et al. (2009,
2011) and Byrne and Silva-Monroy (2012).

In our problem, we assume that the goal is to opti-
mally control a 1 MW battery; in practice, a company
may operate a fleet of such batteries. Market rules
state that we must bid in integer increments, meaning
the possible actions at each settlement are to charge,
discharge (both at a rate of 1 MW), or do nothing.
Hence, our precise problem is to optimize the place-
ment of two hour-ahead bids, a “positive” bid (for
a quantity of +1 MW) and a “negative” bid (for a
quantity of −1 MW) that correspond to selling (gener-
ation) and buying (negative generation), respectively,
over a period of time such that purchased energy can
be stored in the finite capacity battery. The goal is to
maximize expected revenue. Further, given that our
model is tailored to battery storage (inherently small
capacity), it is reasonable to assume no price impact
(i.e., our bids do not affect the spot prices of electric-
ity). In the real-time market, bidding for the operating
hour closes an hour in advance and the hour-ahead
bid is fixed for the entire operating hour.

This paper makes the following contributions. We
describe, in detail, a mathematical model of the bid-
ding process in the real-time electricity market and for-
mulate the sequential decision problem as a Markov
decision process (MDP). Along the way, we show
the structural properties of the problem (monotonic-
ity of the contribution and value functions) that we
utilize in our solution technique. Next, we describe
and benchmark a convergent approximate dynamic
programming (ADP) algorithm called Monotone-ADP

(M-ADP; Jiang and Powell 2015) that can be used
to obtain an approximate but near-optimal bidding
policy. We also present a new version of Monotone-
ADP utilizing post-decision states that allows us to
train bidding policies without any model or knowl-
edge of the distribution of real-time prices (which we
call a distribution-free method), allowing our solu-
tion technique to be easily adopted in practice. Finally,
we present a case study detailing the results of an
ADP policy trained using only historical real-time
price data from the NYISO. In the case study, we also
compare the ADP policy to other rule-based policies,
two of which are from the energy arbitrage litera-
ture and one from our industry contacts. All proofs
can be found in the online supplement (available as
supplemental material at http://dx.doi.org/10.1287/
ijoc.2015.0640).

2. Literature Review
With renewable energy sources like wind and solar
becoming more established, the problem of energy stor-
age is also becoming increasingly important. In this
section, we first review studies dedicated solely to stor-
age and then move on to those that consider the bidding
aspect. Lastly, we discuss algorithmic techniques simi-
lar to our proposed method of Monotone-ADP.

Coupling wind energy with storage has been well
studied in a variety of ways. The paper by Kim and
Powell (2011) poses a wind energy commitment prob-
lem given storage and then analytically determines the
optimal policy for the infinite horizon case. Sioshansi
(2011) uses ideas from economics and game theory
(i.e., the Stackelberg Model) to make several conclu-
sions, including the finding that the value of storage
increases with market competitiveness. In addition,
Greenblatt et al. (2007) find that for high greenhouse
gas emissions prices, compressed air energy storage
is a better choice as a supplemental generator to
wind energy when compared to natural gas turbines.
The well-known smoothing effects of energy stor-
age on intermittent renewable sources is studied in
the context of wind power output by Paatero and
Lund (2005).

Another problem within this realm is the stor-
age of natural gas, which involves optimally control-
ling injection and withdrawal of gas from a storage
facility that is typically underground. Carmona and
Ludkovski (2010) use a technique known as optimal
switching to solve a natural gas storage problem; com-
putationally, the value function is approximated basis
functions. In a similar vein, Thompson et al. (2009)
formulate a stochastic control problem and numeri-
cally solve the resulting integro-differential equation
to arrive at the optimal policy. Lai et al. (2010) pro-
pose using an ADP algorithm along with an approxi-
mation technique to reduce the number of state space
dimensions for natural gas storage valuation.
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Other energy storage problems include reservoir
management (see Nandalal and Bogardi 2007) and
pairing solar with battery storage (see Barnhart et al.
2013). It quickly becomes clear that all of these prob-
lems are similar; in fact, Secomandi (2010) gives the
structure of the optimal policy for trading generic
commodities given storage. At its core, energy stor-
age has similarities to an array of classical problems
related to operations research, such as resource allo-
cation and inventory control.

There are also many studies that consider the bid-
ding aspect of the electricity markets. One signifi-
cant difference between many of these studies and
our paper is that, rather than considering the place-
ment of many bids at once, we consider a sequen-
tial, hourly bidding problem. Löhndorf and Minner
(2010) consider a day-ahead bidding problem differ-
ent from ours using an infinite horizon MDP; Conejo
et al. (2002) solve a price-taker bidding problem
using a deterministic look-ahead policy; Gross and
Finlay (2000) formulate a constrained optimization
problem for optimal bidding in a competitive power
pool; and David (1993) develops both deterministic
and stochastic models for bidding under the con-
sideration of other market players. Finally, Löhndorf
et al. (2013) uses approximate dual dynamic program-
ming to solve a day-ahead bidding problem involving
hydro storage. Along with the major algorithmic dif-
ferences from our paper, Löhndorf et al. (2013) also
works in a day-ahead setting with individual bids
for each hourly subinterval, whereas we work in an
hourly setting with bids that must be simultaneously
active for every five-minute subinterval. Furthermore,
to have complete information to make the optimal
decision and to implement the transition dynamics,
the previous bid (placed in the last time interval) is
a part of our state variable, which is not the case for
Löhndorf et al. (2013). For more details, the literature
survey by Wen and David (2000) provides an excel-
lent overview to strategic bidding.

In the case of real-world problems with large state
spaces, backward dynamic programming is typically
not a viable solution strategy, so we often use ADP
techniques. In this paper, we consider a variant of
the approximate value iteration (AVI) algorithm (see
both Bertsekas and Tsitsiklis 1996 and Powell 2011)
that exploits the monotonicity in certain dimensions
of the optimal value function (also known as the cost-
to-go function) to quickly approximate the shape of
the value function. The algorithm, called Monotone-
ADP, is analyzed in Jiang and Powell (2015) and
was used previously as a heuristic in Papadaki and
Powell (2003).

Like monotonicity, convexity/concavity also often
arises in applications, and similar algorithms to

Monotone-ADP that exploit these structural proper-
ties have been studied in Godfrey and Powell (2001),
Topaloglu and Powell (2003), Powell et al. (2004), and
Nascimento and Powell (2009). In general, these stud-
ies on monotonicity and convexity have shown that
it is advantageous to use the structural properties of
value functions in ADP algorithms.

3. Mathematical Formulation
We can formulate the problem mathematically as fol-
lows. Let M be the number of settlements made per
hour and let ãt = 1/M be the time increment between
settlements (in hours). For example, in the NYISO,
settlements occur every five minutes, so we choose
M = 12. Although settlements are made intrahour,
bidding decisions are always made on the hour, for
an hour in the future. Thus, the operator places bids
at 1 p.m. to operate the battery between 2 and 3 p.m.,
with settlements made in five-minute intervals within
the hour. For time indexing, we use t (measured in
hours); bidding decisions are made when t ∈ � and
settlements occur when t ∈T= 8k ·ãt2 k ∈�9.

Let the price Pt for t ∈ T be a discrete-time, nonne-
gative, stochastic process. Because bidding decisions
and settlements occur on two different schedules
(every hour versus every ãt), we use the following
notation. For t ∈ �, let P4t1 t+17 be an M-dimensional
vector that represents the spot prices that occurred
within the hour from t to t + 1:

P4t1 t+17 =
(

Pt+ãt1Pt+2·ãt1 0 0 0 1 Pt+4M−15·ãt1Pt+1

)

0 (1)

Hence, P4t1 t+17 does not become fully known until time
t+ 1. Next, let our set of bidding decisions be a finite
set B such that

B⊆
{

4b−1 b+52 0 ≤ b−
≤ b+

≤ bmax

}

1 (2)

with bmax ∈ �+. Let bt = 4b−
t 1 b

+

t 5 ∈ B be the bidding
decision made at t used for the interval 4t + 11 t + 27.
All sell bids b+

t (or “positive” bids because we are
transferring at a rate of +1 MW) less than the spot
price are picked up for dispatch (releasing energy into
the grid). All buy bids b−

t (or “negative” bids because
we are transferring at a rate of −1 MW) greater than
the spot price are picked up for charge. If the spot
price falls in between the two bids, we are out of
the market and the battery stays in an idle state.
When we are obligated to sell to the market but are
unable to deliver, we are penalized K ·Pt , where K ≥ 0.
The restriction of b−

t ≤ b+

t guarantees that we are never
obligated to buy and sell simultaneously.

We remark that in the actual bidding process, the
buy bid is a negative number and the criteria for clear-
ing the market is that the bid is less than the negative
of the spot price. Because our bids are for only two
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quantities (±1 MW), the above reformulation of the
bidding process is cleaner and more intuitive.

Let Rt ∈R=80111210001Rmax9 be the energy stored in
the battery. For simplicity, assume that Rmax is adjusted
so that a unit of resource represents 1/M MWh
of energy. Thus, it is clear that at each settlement
within the hour, the change in resource is either +1,
−1, or 0. We also define a deterministic function
that maps a vector of intrahour prices P ∈�M

+
and a

bid b= 4b−1b+5∈B to a vector of outcomes (charge=

−1, discharge=+1, or idle=0). Define q2 �M ×B→

8−110119M such that the mth component of q4P1b5 is

qm4P1 b5= 18b+<e
ᵀ
mP9

− 18b−>e
ᵀ
mP9

1 (3)

where em is a vector of zeros with a one at the mth
row (and thus picks out the mth component of the
price vector P ). Note that q is not dependent on time,
but in the context of our hour-ahead bidding prob-
lem, we use it in the form of q4P4t−11 t71 bt−25, which is
deterministic at time t. Figure 1 illustrates the intra-
hour behavior.

To define the hourly transition function between Rt

and Rt+1, we model each of the individual settlements
within the hour and then combine them recursively
(because from t to t + 1, we settle M times). Let qs ∈

8−110119M be a vector of settlement outcomes and
suppose gR

m4Rt1 qs5 represents the amount of resource
after the mth settlement. Thus, we have

gR
0 4Rt1 qs5 = Rt1

gR
m+14Rt1 qs5 =

[

min8gR
m4Rt1 qs5− e

ᵀ
mqs1Rmax9

]+
(4)

for 1 ≤m≤M . The intrahour resource levels are

Rt+mãt = gR
m4Rt1 qs50

Finally, let gR be the hourly transition function, which
is defined as a composition of the functions gR

M and q
in the following way:

Rt+1 =gR4Rt1P4t1 t+171bt−15=gR
M

(

Rt1q4P4t1 t+171bt−15
)

0 (5)

The need for an hourly transition function from Rt

directly to Rt+1 (rather than simply defining the sub-
transitions between the intrahour settlements) is due
to the hourly decision epoch of the problem.

t

�t

t+1

Pt

b–
t–1: Buy bid

b+
t–1: Sell bid

: Buy (charge): Sell (discharge) : Idle

Figure 1 Illustration of the Intrahour Bidding Behavior

Proposition 1. For an initial resource level r ∈ R, a
vector of intrahour prices P ∈�M , a bid b = 4b−1 b+5 ∈B,
and a subinterval m, the resource transition function
gR
m4r1 q4P1 b55 is nondecreasing in r , b−, and b+.

We now consider another dimension to our prob-
lem by allowing a limit to be imposed on the number
of charge–discharge cycles used by the battery, for the
sake of increasing the lifetime of the battery. Battery
cycle life (the approximate number of cycles before
capacity diminishes to around 80%), a key issue when
considering economic feasibility, varies between the
different types of battery technologies and the operat-
ing conditions, but are typically in the range of 1,000
(e.g., lead-acid) to 5,000 (e.g., vanadium redox); for
an extensive review, see Yang et al. (2011). In our
correspondence with industry colleagues, we found
that a common (though possibly somewhat conser-
vative) estimate of battery usage is 300 cycles/year,
meaning that most devices can last at least three to
four years. However, the model developed in this
paper is for hourly decision making, and it would be
impractical to solve the model for time horizons of
several years. Note that different battery technologies
degrade in different ways, but in general, degradation
occurs slowly (nearly linearly with charge–discharge
cycles) at first; after a point, efficiency drops much
more rapidly.

Over a short horizon (on the order of days), the
effects of battery degradation is negligible, but we
propose the following way for one to impose a sort
of artificial limit to the number of trades (charge–
discharge cycles) performed. Let Lt ∈ L = 8011121
0 0 0 1Lmax9 be decremented on every discharge of the
battery (starting with L0 = Lmax) and suppose that
when selling to the market at a settlement time t′

in 4t1 t + 17, the revenue is discounted by a factor of
�4Lt′5 where �2L→ 60117 is a nondecreasing function.
Depending on the battery technology, preferences of
the operator, and the time horizon of the model, the
choice of � may vary greatly; the following list offers
a few examples:

1. Constant: �4l5= c ∈ 60117 for all l ∈L,
2. Step: �405= 0 and �4l5= 1 for l ∈L\809,
3. Linear: �4l5= l/Lmax for all l ∈L,
4. Power: �4l5 = 4l/Lmax5

1/n for some n > 1 and all
l ∈L,
where (4) seeks to very roughly mimic the efficiency
degradation of a real battery. We assume that the
physical characteristics of the battery are summarized
through � and the dynamics of Lt , which we now
describe.

Similar to the specification of q in (3), we define a
function d2 �M ×B→ 80119M such that the mth com-
ponent of d4P1 b5 is

dm4P1 b5= 18b+<e
ᵀ
mP9

1
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which indicates the settlements for which a discharge
occurred. Like before, we define the transition func-
tion from Lt to Lt+1 using a sequence of subtransitions.
Let ds ∈ 80119M be a vector of settlement outcomes
(in this case, whether a discharge happened) and

gL
0 4Lt1ds5 = Lt1

gL
m+14Lt1ds5 = 6gL

m4Lt1ds5− e
ᵀ
mds7

+
(6)

for 1 ≤m≤M . The intrahour values are

Lt+mãt = gL
m4Lt1ds51

and the hourly transition function gL is defined as

Lt+1 = gL4Lt1P4t1 t+171 bt−15= gL
M

(

Lt1d4P4t1 t+171 bt−15
)

0 (7)

Proposition 2. For an initial l ∈L, a vector of intra-
hour prices P ∈ �M , a bid b = 4b−1 b+5 ∈ B, and a
subinterval m, the transition function gL

m4l1 d4P1 b55 is
nondecreasing in l, b−, and b+.

At time t, we can determine the revenue from the
previous hour 4t − 11 t7, which depends on the initial
resource Rt−1, the remaining lifetime Lt−1, the intra-
hour prices P4t−11 t7, and the bid placed in the previous
hour, bt−2. The revenue made at the mth settlement
depends on four terms, the price Pt+mãt , the settlement
outcome qm4P1 b5 (which establishes the direction of
energy flow), a discount factor �m (due to Lt), and the
undersupply penalty Um. Let r ∈ R, l ∈ L, P ∈ �M , and
b ∈ B. Because we discount only when selling to the
market, let

�m4l1 P1 b5= �4l5 · 18qm4P1 b5=19 + 18qm4P1 b56=190 (8)

The undersupply penalty takes values of either 1 (no
penalty) or −K (penalty):

Um4r1P1 b5=
(

1 − 4K + 15 · 18r=09 · 18qm4P1 b5=19

)

0 (9)

This penalization scheme reflects reality: the NYISO
penalizes using a price-proportional penalty of K = 1
(in addition to lost revenue) to uphold the market bal-
ance. When a market participant reneges on a promise
to deliver energy to the market, it must pay the
penalty of the quantity times the market price to cor-
rect the imbalance; this is equivalent to purchasing the
energy from another generator at the market price and
delivering to the market.

Hence, we can write the following sum (over the
settlements) to arrive at the hourly revenue, denoted
by the function C:

C4Rt−11Lt−11P4t−11 t71 bt−25

=

M
∑

m=1

�m4Lt−1+mãt1P4t−11 t71 bt−25 · Pt+mãt · qm4P4t−11 t71 bt−25

·Um4Rt−1+mãt1P4t−11 t71 bt−250 (10)

t t+1 t+2

bt bt+1

Rt+1
Lt+1

Rt+2
Lt+2

bt–1 bt

... ...

q (P(t, t+1], bt–1)

(–1,0,1,1,0, ...,0,–1)

M settlements

Revenue from (t, t+1] = C (Rt, Lt, P(t, t+1], bt–1)

= ∑
M

m = 1
revenue/cost at settlement m

P(t, t+1]

Figure 2 Illustration of the Bidding Process

Note that C is not time dependent. The timeline of
events and notation we use is summarized in Fig-
ure 2. The top half of Figure 2 shows the contrast
between when bids are placed and when bids are
active: bt and bt+1 are placed at times t and t + 1
(arrows pointing up), whereas bt−1 is active for the
interval 4t1 t + 17 and bt is active for the interval
4t + 11 t + 27. It also shows that the revenue function
C4Rt1Lt1P4t1 t+171 bt−15 refers to the interval 4t1 t + 17.
The bottom half of Figure 2 shows an example of the
bidding outcomes, i.e., the output of q4P4t1 t+171 bt−15.
Finally, we emphasize that M settlements (and thus,
transitions) occur between consecutive values of Rt

and Lt because of the discrepancy between the bid-
ding timeline (hourly) and the settlement timeline
(every five minutes).

3.1. Markov Decision Process
The problem of optimizing revenue over a time
horizon is a sequential decision problem that we
can formulate as an MDP. First, suppose the set of
state variables associated with the price process Pt is
denoted P S

t ∈P, where P is the space of price model
state variables. The MDP can be characterized by the
following components:

• The state variable for the overall problem is St =

4Rt1Lt1 b
−
t−11 b

+

t−11P
S
t 5 ∈ S, where S is the state space.

The previous bid bt−1 is included because it is the bid
that becomes valid at time t for the interval 4t1 t + 17
and is necessary for computing the resource transition
function.

• The decision is the hour-ahead bid bt = 4b−
t 1 b

+

t 5
∈B that is active for the interval 4t + 11 t + 27.

• The exogenous information in this problem is the
price process Pt .

• The state transition function or system model SM is
given by

St+1 = SM 4St1 bt1P4t1 t+175

=
(

gR4Rt1P4t1 t+171 bt−151

gL4Lt1P4t1 t+171 bt−151 bt1P
S
t+1

)

0 (11)
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• The contribution function in this model represents
the expected value of the revenue in the interval from
t + 1 to t + 2 using bid bt given the current state St .
Define

Ct1 t+24St1 bt5= E
(

C4Rt+11Lt+11P4t+11 t+271 bt5 � St
)

0 (12)

The double subscript of t and t + 2 signifies that
the contribution is determined at t (hence, vari-
ables indexed by t′ ≤ t are known) but represents
the expectation of the revenue in the interval 4t + 11
t + 27. In practice, it is likely that we must redefine
Ct1 t+24St1 bt5 as a sample expectation over the available
training data (see §6) if (1) a stochastic model of the
prices is unavailable or (2) the expectation is impos-
sible to compute. Regardless of its form, we assume
that Ct1 t+24St1 bt5 can be computed exactly at time t.

• Let T −1 be the last time for which a bid needs to
be placed (hence, the trading horizon lasts until T +1
and the last value function we need to define is at
T ) and let B�

t 2 S → B be the decision function for a
policy � from the class ç of all admissible policies.
The following is the objective function for maximizing
expected revenue:

max
�∈ç

E
[T−1
∑

t=0

Ct1 t+24St1B
�
t 4St55+Cterm4ST 5

∣

∣

∣

∣

S0

]

1

where Cterm4ST 5 represents a terminal contribution
that is nondecreasing in RT , LT , and bT−1.

We can express the optimal policy in the form of a
stochastic dynamic program using Bellman’s optimal-
ity equation (Bellman 1957). The optimal value func-
tion V ∗ is defined for each t and each state St :

V ∗

t 4St5= max
bt∈B

{

Ct1 t+24St1 bt5+E4V ∗

t+14St+15 � St5
}

for t = 011121 0 0 0 1 T − 11

V ∗

T 4ST 5=Cterm4ST 50

(13)

Figure 3 illustrates the above notation. Notice that at
any decision epoch t, both the contribution and value
functions are looking one step ahead, i.e., from t + 1
onward, in the form of an expectation. Because of
this, the revenue from t to t + 1 becomes, in a sense,
irrelevant. However, the link between the time peri-
ods comes from the dependence of Rt+1 and Lt+1 on
Rt , Lt , and bt−1 (and of course, the random prices).
In other words, at time t, our bid has to be placed
for 4t+11 t+27 with an uncertain amount of resource,
Rt+1 in the battery. It is important to note that it
is precisely because Ct1 t+24St1 bt5 does not include the
revenue made in 4t1 t + 17 that allows us to show
the important structural property of monotonicity for
Ct1 t+2 in bt−1 (see Proposition 3).

We now provide some results regarding the struc-
ture of the contribution and value functions. The algo-
rithm (Monotone-ADP-Bidding) that we implement

bt–1 bt

E
Ct, t+2(St, bt) C (Rt+1, Lt+1, P(t+1, t+2], bt)

V*
t+1(St+1)

max E

t t+1 t+2 t+3

{C (Rt+2, Lt+2, P(t+2, t+3], bt+1+···}

Figure 3 Illustration of the Dynamic Programming Notation

to solve for the optimal value function is inspired by
the following monotonicity properties.

Proposition 3. The contribution function Ct1t+24St1bt5,
with St = 4Rt1Lt1bt−11P

S
t 5, is nondecreasing in Rt , Lt , b

−
t−1,

and b+

t−1.

Proposition 4. The optimal value function V ∗
t 4St5,

with St = 4Rt1Lt1 bt−11P
S
t 5, is nondecreasing in Rt , Lt ,

b−
t−1, and b+

t−1.

4. Algorithmic Technique
The traditional way to solve for the optimal value
function in (13) is by backward dynamic program-
ming. Because this technique requires us to visit every
state (which is computationally difficult), we propose
the use of approximate dynamic programming. We
first note that both methods require a finite state
space. Because R, L, and B were assumed to be finite,
we need to assume, in particular, that P is also finite
or that it is properly discretized.

The idea behind our ADP algorithm, which we call
Monotone-ADP-Bidding (see Jiang and Powell 2015),
is to iteratively learn the approximations V̄ n

t 4St5 (after
n iterations) of V ∗

t 4St5 that obey the structural prop-
erty of monotonicity. The algorithm is a form of asyn-
chronous (or approximate) value iteration, therefore
for each time t in iteration n, only one state Sn

t is
visited. In addition, at each step, we perform a mono-
tonicity preservation step to ensure the approxima-
tion is in a sense, structurally similar to V ∗

t . We show
experimentally that failure to maintain monotonicity,
despite the availability of convergence proofs, pro-
duces an algorithm that simply does not work in
practice.

4.1. Preliminaries
Let v̂n

t 4S
n
t 5 be an observation of the value of being in

state Sn
t at iteration n and time t. Define the noise term

wn
t 4S

n
t 5= v̂n

t 4S
n
t 5−max

bt∈B

{

Ct1 t+24S
n
t 1bt5+E4V̄ n−1

t+1 4St+15 �S
n
t 5
}

to be the difference between the observation and the
optimal value using the iteration n− 1 approximation.
We remark, for the sake of clarity, that this is not the
noise representing the deviation from the true value,
V ∗
t 4S

n
t 5. Rather, wn

t 4S
n
t 5 is the noise from an inability

to exactly observe the optimal value of the maximiza-
tion: maxbt∈B

8Ct1 t+24S
n
t 1 bt5 + E4V̄ n−1

t+1 4St+15 � Sn
t 59. Thus,
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we can rearrange to arrive at

v̂n
t 4S

n
t 5 = max

bt∈B

{

Ct1 t+24S
n
t 1 bt5+E4V̄ n−1

t+1 4St+15 � Sn
t 5
}

+wn
t 4S

n
t 50

Before we continue, let us define a partial order ´
on the state space S so that for s = 4r1 l1 b1 p5 and s′ =

4r ′1 l′1 b′1 p′5 where r , r ′ ∈ R, l, l′ ∈ L, b, b′ ∈ B, and p,
p′ ∈P, we have that s ´ s′ if and only if the following are
satisfied:

4r1 l1 b5≤ 4r ′1 l′1 b′5 and p = p′0

The values of any two states that can be related by ´
can be compared using Proposition 4. The main idea
of the algorithm is that every observation v̂n

t 4S
n
t 5 is

smoothed with the previous estimate of the value
of Sn

t , and the resulting smoothed estimate znt 4S
n
t 5 can

be used to generalize to the rest of the state space
by means of a monotonicity preserving operator, çM .
Let s ∈S be an arbitrary state that has a current esti-
mated value of v. After znt 4S

n
t 5 is known, çM adjusts

the value of s in the following way:

çM 4Sn
t 1 z

n
t 1 s1v5=



















znt if s = Sn
t 1

znt ∨ v if Sn
t ´ s1 s 6= Sn

t 1

znt ∧ v if s ´ Sn
t 1 s 6= Sn

t 1

v otherwise.

(14)

First, we note that if monotonicity is already sat-
isfied, then nothing changes because in the second
and third cases of (14), we get that znt ∨ v = v and
znt ∧ v = v, respectively. If, however, monotonicity is
violated, then the newly observed value znt prevails
and replaces the previous value of v. Figure 4 shows
an example of this operation for the two bids b−

t−1
and b+

t−1. In the illustration, assume that the obser-
vations are made for fixed values of Rt and Lt , but
note that when we run the algorithm, this adjust-
ment is made over all four dimensions. The figure
should be interpreted as a three-dimensional plot of
the value function, where all state variables aside
from bt−1 are fixed. Each bid pair bt−1 = 4b−

t−11 b
+

t−15
is associated with a z-coordinate value represented
by shades in gray scale (darker colors correspond to

∏M ∏M

b–
t–1

b
+ t–

1

: Observed values where <

Figure 4 Illustration of Monotonicity Preservation (Darker Colors= Larger Values)

Step 0a. Initialize V̄ 0
t 4s5= 0 for each t ≤ T − 1 and s ∈S.

Step 0b. Set V̄ n
T 4s5= 0 for each s ∈S and n≤N .

Step 0c. Set n= 1.
Step 1. Select an initial state Sn

0 .
Step 2. For t = 0111 0 0 0 1 4T − 15:

Step 2a. Sample a noisy observation:
v̂n
t 4S

n
t 5= maxbt∈B

8Ct1 t+24S
n
t 1 bt5

+E4V̄ n−1
t+1 4St+15 � Sn

t 59+wn
t 4S

n
t 5.

Step 2b. Smooth in the new observation with previous
value:

znt 4S
n
t 5= 41 −�n

t 4S
n
t 55V̄

n−1
t 4Sn

t 5+�n
t 4S

n
t 5v̂

n
t 4S

n
t 5.

Step 2c. Perform monotonicity projection operator. For
each s ∈S:

V̄ n
t 4s5=çM 4Sn

t 1 z
n
t 4S

n
t 51 s1 V̄

n−1
t 4s55.

Step 2d. Choose the next state Sn
t+1 given Fn−1.

Step 3. If n<N , increment n and return Step 1.

Figure 5 Monotone-ADP-Bidding Algorithm for Training a Bidding
Policy

larger values). In the first and third plots, new obser-
vations arrive, and in the second and fourth plots, we
see how the çM operator uses monotonicity to gener-
alize the observed values to the rest of the state space.

The stepsize sequence used for smoothing in new
observations with the previous approximation is
denoted �n

t , which can be thought of as a (possibly
stochastic) sequence in n, for each t. Furthermore,
states that are not visited do not get updated unless
the update is made through the operator çM , so we
also define

�n
t 4s5= �n−1

t 18s=Snt 9
0

For notational purposes, let us also define the history
of the algorithm until iteration n by the filtration

Fn
= �84Sm

t 1w
m
t 4S

m
t 55m≤n1 t≤T 90

4.2. Algorithm Description and Convergence
The full description of the algorithm is given in
Figure 5.

Monotone-ADP-Bidding can be shown to converge;
we reproduce the set of assumptions and the resulting
theorem here.

Assumption 1. For all s ∈S and t ≤ T ,
�
∑

n=1

P4Sn
t = s �Fn−15= � a0s03
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i.e., every state is visited infinitely often (see the Extended
Borel–Cantelli lemma in Breiman 1992).

Assumption 2. The optimal value function V ∗
t 4s5 and

the observations v̂n
t 4S

n
t 5 are bounded above and below by

±Vmax, where Vmax is a positive constant.

Assumption 3. The noise sequence wn
t satisfies the rela-

tion E6wn+1
t 4s5 �Fn7= 0.

Assumption 4. For each t ≤ T and state s, suppose
�n
t ∈ 60117 is Fn-measurable and

(i)
∑�

n=0 �
n
t 4s5= � a.s.,

(ii)
∑�

n=0 �
n
t 4s5

2 <� a.s.

Theorem 1. Under Assumptions 1–4, for each t ≤ T
and s ∈S, the estimates V̄ n

t 4s5 produced by the Monotone-
ADP-Bidding Algorithm of Figure 5 converge to the opti-
mal value function V ∗

t 4s5 almost surely.

Proof. The proof is based on the result for a gener-
alized MDP with a monotone value function in Jiang
and Powell (2015).

4.3. Approximating the Expectation
Our algorithm can be applied to any model of
spot prices Pt , with the caveat that more com-
plex models generally require a higher dimensional
state space. These include diffusion models (i.e.,
Schwartz 1997, Cartea and Figueroa 2005, Coulon
et al. 2013), which often incorporate features such
as Ornstein–Uhlenbeck processes, jump terms, and
regime switching. Recently, there has also been inter-
est in structural models of electricity prices, where the
underlying supply, demand, and bid-stack behavior
is taken into account; see Carmona and Coulon (2014)
for a survey.

On one hand, the state space becoming larger or
higher dimensional is indeed a computational diffi-
culty that requires the availability of more powerful
computational resources, but the convergence of the
algorithm is unaffected (as long as P S

t is properly dis-
cretized). On the other hand, any model without finite
support (or finite, but with large cardinality) neces-
sitates the approximation of an expectation using
a sample mean in step 2a of the Monotone-ADP-
Bidding algorithm (see Figure 5). In other words,
because the expectation E4V̄ n−1

t+1 4St+15 � Sn
t 5 of step 2a

is, in general, impossible to compute, we must resort
to letting vn

t 4S
n
t 5 be the solution to the sample average

approximation (see Kleywegt et al. 2002) problem:

max
bt∈B

{

Ct1 t+24S
n
t 1 bt5+ J−1

J
∑

j=1

V̄ n−1
t+1 4S

j
t+15

}

1 (15)

where S
j
t+1 are samples drawn independently from the

distribution St+1 � Sn
t . Suppose we take the observation

v̂n
t 4S

n
t 5 to be the value of (15). By an interchange of the

conditional expectation and the max operator, we see
that:

E
[

max
bt∈B

{

Ct1t+24S
n
t 1 bt5+ J−1

J
∑

j=1

V̄ n−1
t+1 4S

j
t+15

}

∣

∣

∣

Sn
t

]

≥ max
bt∈B

{

Ct1t+24S
n
t 1 bt5+E

(

V̄ n−1
t+1 4St+15

∣

∣Sn
t

)

}

a.s.1

and thus, after conditioning on Fn−1 on both sides, we
see that E6wn

t 4S
n
t 5 � Fn−17 is biased upward from zero,

a contradiction of Assumption 3. When J is large,
we can certainly solve the sample average approxi-
mation problem in step 2a, apply the algorithm as
is, and expect an effective heuristic solution. Practi-
cally speaking, our informal tests (using J = 11000
on a diffusion price model) showed no significant
convergence issues. Even so, we cannot claim that
such an approximation produces a theoretically sound
and convergent algorithm because of the biased noise
term. This calls for us to propose another version of
Monotone-ADP, for which Assumption 3 can be easily
satisfied, without restricting to price process models
that facilitate an easily computable expectation of the
downstream value.

4.4. Post-Decision, Distribution-Free Approach
Using the idea of a post-decision state (see Powell
2011), we can make a small adjustment to the algo-
rithm so that Assumption 3 is satisfied. In the case
of the hourly bidding problem, the post-decision
state Sb

t is the state-action pair 4St1 bt5. Oftentimes,
post-decision states help simplify the computational
aspect of an MDP, but unfortunately, for this prob-
lem instance, the post-decision state space is higher
dimensional than is the predecision state space. Let
Sb
t = 4St1 bt5 ∈ Sb and define the post-decision value

function

V b
t 4S

b
t 5= V b

t 4St1 bt5= E4V ∗

t+14St+15 � Sb
t 50

Notice that we can rewrite Bellman’s optimality
equation as

V b
t−14S

b
t−15= E

[

max
bt∈B

{

Ct1 t+24St1 bt5+V b
t 4S

b
t 5
}

�Sb
t−1

]

0 (16)

Instead of attempting to learn V ∗
t , the idea now is to

algorithmically learn the post-decision value function
V b
t using the relation (16) and to implement the policy

by solving

b∗

t = arg max
bt∈B

{

Ct1 t+24St1 bt5+V b
t 4S

b
t 5
}

0

Not surprisingly, the post-decision value function V b
t

also satisfies a monotonicity property over six
dimensions.
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Proposition 5. The post-decision value function
V b
t 4S

b
t 5, with Sb

t = 4Rt1Lt1 bt−11 bt1P
S
t 5 is nondecreasing in

Rt , Lt , b
−
t−1, b+

t−1, b−
t , and b+

t .

Let V̄ b1n
t be the iteration n approximation of the

post-decision value function, Sb1n
t be the state visited

by the algorithm in iteration n, v̂b1n
t 4Sb1n

t 5 be an obser-
vation of V b

t 4S
b1n
t 5 using the iteration n − 1 approxi-

mation, wb1n
t 4Sb1n

t 5 be the observation noise, Fb1n be
a filtration defined analogously to Fn, and çb

M be
the monotonicity preservation operator on Sb defined
analogously to çM . More precisely,

v̂b1n
t 4Sb1n

t 5

= E
[

max
bt+1∈B

{

Ct+11 t+34St+11 bt+15+ V̄ b1n−1
t+1 4Sb

t+15
}

∣

∣Sb1n
t

]

+wb1n
t 4Sb1n

t 51

Fb1n
= �

{(

Sb1m
t 1wb1m

t 4Sb1m
t 5

)

m≤n1 t≤T

}

1 (17)

and

çb
M 4Sb1n

t 1 zb1nt 1 s1v5

=



















zb1nt if s = Sb1n
t 1

zb1nt ∨ v if Sb1n
t ´b s1 s 6= Sb1n

t 1

zb1nt ∧ v if s ´b Sb1n
t 1 s 6= Sb1n

t 1

v otherwise,

(18)

where s = 4r1 l1 b11 b21 p5 ´b s′ = 4r ′1 l′1 b′
11 b

′
21 p

′5 with
r1 r ′ ∈R, l1 l′ ∈L, b1, b′

1, b2, b′
2 ∈B, and p, p′ ∈P if and

only if

4r1 l1 b11 b25≤ 4r ′1 l′1 b′

11 b
′

25 and p = p′0

The new algorithm for post-decision states is shown
in Figure 6, and a set of analogous assumptions
are provided below. We remark that by definition,
V b
T−14S

b
T−15 = E6Cterm4ST 5 � Sb

T−17; thus, we only need to
loop until T − 2 in step 2.

Assumption 5. For all s ∈Sb and t ≤ T ,
�
∑

n=1

P4Sb1n
t = s �Fb1n−15= � a0s0

Assumption 6. The optimal post-decision value func-
tion V b

t 4s5 and the observations v̂b1n
t 4Sb1n

t 5 are bounded
above and below by ±Vmax.

Assumption 7. The noise sequence wb1n
t satisfies the re-

lation E6wb1n+1
t 4s5 �Fb1n7= 00

The advantage to applying this revised algorithm
is that even when we cannot compute the expectation
in step 2a and must rely on sample paths, we can
still easily satisfy Assumption 7 (the unbiased noise
assumption), unlike in the predecision case. To do so,
we simply use

v̂b1n
t 4Sb1n

t 5= max
bt+1∈B

6Ct+11t+34S
n
t+11 bt+15+V̄ b1n−1

t+1 4Sn
t+11 bt+1571

Step 0a. Initialize V̄ b10
t 4s5= 0 for each t ≤ T − 1 and s ∈Sb .

Step 0b. Set V̄ b1n
T 4s5= 0 for each s ∈Sb and n≤N .

Step 0c. Set n= 1.
Step 1. Select an initial state Sb1n

0 = 4Sn
0 1 b

n
0 5.

Step 2. For t = 01 0 0 0 1 4T − 25:
Step 2a. Sample a noisy observation:

v̂b1n
t 4Sb1n

t 5= E6maxbt+1∈B8Ct+11t+34St+11 bt+15+

V̄ b1n−1
t+1 4Sb

t+159 � Sb1n
t 7+wb1n

t 4Sb1n
t 5.

Step 2b. Smooth in the new observation with previous
value:
zb1nt 4Sb1n

t 5= 41 −�n
t 4S

b1n
t 55V̄ b1n−1

t 4Sb1n
t 5+

�n
t 4S

b1n
t 5v̂b1n

t 4Sb1n
t 5.

Step 2c. Perform monotonicity preservation operator.
For each s ∈Sb :
V̄ b1n

t 4s5=çb
M 4Sb1n

t 1 zb1nt 4Sb1n
t 51 s1 V̄ b1n−1

t 4s55.
Step 2d. Choose the next state Sb1n

t+1 given Fb1n−1.
Step 3. If n<N , increment n and return Step 1.

Figure 6 Monotone-ADP-Bidding Algorithm Using Post-Decision
States

where we transition from Sb1n
t to Sn

t+1 using a single
sample outcome of prices P4t1 t+17. Hence, the noise term
wb1n

t 4Sb1n
t 5 is trivially unbiased.

Along with allowing us to work with more complex
price models, the revised algorithm gives us another
important advantage, especially for implementation
in practice/industry. As long as historical data are
available, a model of the real-time prices is not required
to train the algorithm. We propose an alternative idea:
instead of fitting a stochastic model to historical data
and then sampling P4t1 t+17 from the model, we can
simply take a price path directly from historical data.
Since no specific knowledge regarding the distribu-
tion of prices is needed (besides the boundedness
assumption needed for the convergence of the ADP
algorithm), as previously mentioned, we refer to this
as a distribution-free approach, and the technique is
employed in §6. We now state the convergence theo-
rem for the post-decision state version of Monotone-
ADP-Bidding. Because the convergence theory for the
post-decision state version is not discussed in detail
in Jiang and Powell (2015), we provide a sketch of
the proof here. First, we define the following post-
decision Bellman operator that acts on a vector of val-
ues V ∈ �T ·�Sb � (any V , not necessarily corresponding
to the optimal value function) for Sb

t ∈Sb and t ≤ T :

4HV 5t4S
b
t 5

=



















E
[

max
bt+1∈B

{

Ct+11t+34St+11bt+15+Vt+14S
b
t+15

}

�Sb
t

]

for t=0111210001T −21

E6Cterm4St+15 �S
b
t 7 for t=T −10

(19)

Step 2a of the algorithm (Figure 6) can thus be rewrit-
ten as

v̂b1n
t 4Sb1n

t 5= 4HV̄ b1n−15t4S
b1n
t 5+wb1n

t 4Sb1n
t 50

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
0.

18
0.

24
7.

64
] 

on
 2

6 
A

ug
us

t 2
01

5,
 a

t 2
1:

16
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Jiang and Powell: Optimal Hour-Ahead Bidding in the Real-Time Electricity Market
534 INFORMS Journal on Computing 27(3), pp. 525–543, © 2015 INFORMS

Theorem 2. Under Assumptions 4–7, for each t ≤ T
and s ∈ Sb, the estimates V̄ b1n

t 4s5 produced by the post-
decision version of Monotone-ADP-Bidding Algorithm of
Figure 6 converge to the optimal post-decision value func-
tion V b

t 4s5 almost surely.

Before discussing the proof, we state two necessary
lemmas (proofs available in the online supplement).
The idea of the first lemma is attributed to Tsitsiklis
(1994).

Lemma 1. Define deterministic bounding sequences Lk
t

and U k
t in the following way. Let U 0 = V ∗ +Vmax · e and

L0 = V ∗ −Vmax · e, where e is a vector of ones. In addition,
U k+1 = 4U k +HU k5/2 and Lk+1 = 4Lk +HLk5/2. Then for
each s ∈Sb and t ≤ T − 1,

Lk
t 4s5 → V b

t 4s51

U k
t 4s5 → V b

t 4s51

where the limit is in k.

Lemma 2. U k and Lk both satisfy the monotonicity
property: for each t, k, and s11 s2 ∈Sb such that s1 ´b s2,

U k
t 4s15 ≤ U k

t 4s251

Lk
t 4s15 ≤ Lk

t 4s250
(20)

Sketch of Proof of Theorem 2. With Lemmas 1
and 2, we can proceed to show convergence of the
post-decision state version of Monotone-ADP using
the general steps to prove convergence of Monotone-
ADP for predecision states taken in Jiang and Powell
(2015). The steps are as follows:

1. Given a fixed k and a state s ∈ Sb such that s
is increased finitely often by the monotonicity preser-
vation operator çb

M , we can show that for any suffi-
ciently large n,

Lk
t 4s5≤ V̄ b1n

t 4s5≤U k
t 4s50 (21)

There exists at least one such state, i.e., the minimal
state 40101 4bmin1 bmin51P

S
t 5. Repeat the argument for

states that are decreased finitely often by çb
M .

2. Next, we must show that states s that are affected
by çb

M infinitely often also satisfy (21). This leverages
the fact that the result has already been proven for
states that are affected finitely often. The idea is that
if all states immediately less than s (i.e., x is immedi-
ately less than y if x ´b y and there does not exist z
such that x ´b z´b y) satisfy (21), then s satisfies (21)
as well. Lemma 2 and an induction argument are used
in this part of the proof.

3. Finally, combining Lemma 1 along with the fact
that all post-decision states s ∈ Sb satisfy (21), it is
easy to see that from a type of squeeze argument,

V̄ b1n
t 4s5→ V b

t 4s51

for each t and s, as desired.

Note that both steps (1) and (2) require Assump-
tion 7, hence the focus that we have placed on it in
this paper.

4.5. Stepsize Selection
The selection of the stepsize �n

t , also known as a learn-
ing rate, can have a profound effect on the speed
of convergence of an ADP algorithm. A common
example of stepsize rule that satisfies Assumption 4
is simply

�n
t =

1
N4Sn

t 1n5
1

where N4Sn
t 1n5=

∑n
m=1 18Smt =Snt 9

is the number of visits
by the algorithm to the state Sn

t . The issue is that this
method weighs all observations equally, even though
we know that the error can be extremely large in early
iterations of any ADP algorithm. See Powell (2011,
Chap. 11) for an overview of the numerous available
stepsize rules.

After some experimentation, we found that the bias-
adjusted Kalman Filter (BAKF) developed in George
and Powell (2006), performed better than simpler
alternatives. The main idea behind BAKF is to choose
�n
t such that the mean squared error to the true value

function is minimized; we omit the details and refer
interested readers to the original paper.

5. Benchmarking on Stylized
Problems Using Predecision
Monotone-ADP

In this section, we present results of running
Monotone-ADP-Bidding and traditional approximate
value iteration on a tractable problem (i.e., the opti-
mal solution is computable) to show the advantages
of using çM . In this section, we consider both four-
and five-dimensional versions of the sequential bid-
ding problem. We first describe some simplifications
to make benchmarking possible.

To benchmark the algorithm against a truly optimal
solution, we make some simplifying assumptions (to
be relaxed in §6) so that backward dynamic program-
ming can be used to compute an optimal solution.
First, we suppose that Pt has finite support and that
M = 1, so the exact value of E4Vt+14St+15 � St5 can be
computed easily. When M is larger, we can only com-
pute an approximation to the expectation because an
exponential in M number of outcomes of the price
process need to be considered for an exact result.

In addition, in the numerical work of this paper, we
take the traditional approach and choose Cterm4s5= 0;
however, we remark that this may not always be the
best choice in practice. See §6.3 for further discus-
sion on the issue of selecting a terminal contribution
function.
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To test the approximate policies, we compute a
value of the policy in the following way. For a particu-
lar set of value function approximations V̄ , the set of
decision functions can be written as

B̄t4St5= arg max
bt∈B

[

Ct1 t+24St1 bt5+E4V̄t+14St+15 � St5
]

0

For a sample path � ∈ì, let

F 4V̄ 1�5=

T+1
∑

t=0

C
(

Rt+14�51Lt+14�51P4t+11t+274�51 B̄t4St5
)

be a sample outcome of the revenue. We report the
empirical value of the policy, which is the sample
mean of F 4V̄ 1�5 over 1,000 sample paths �.

5.1. Variation 1
First, we consider a four-dimensional variation of
the bidding problem, where St = 4Rt1Lt1 b

−
t−11 b

+

t−15.
In particular, we assume that the price process has
no state variables. Several versions of this problem
are explored by altering the parameter values: a typ-
ical size for the batteries under consideration for the
energy arbitrage application is Rmax = 6 MWh, but
we also allow values of Rmax = 12 MWh and Rmax =

18 MWh for variety. The decision space is fixed in the
following way: we set bmin = 15 and bmax = 85, and
discretized linearly between bmin and bmax for a total
of 30 possible values in each dimension of the bid.
The price process Pt has the form

Pt = S4t5+ �t1

where the sinusoidal (representing the hour-of-day
effects on price) deterministic component is

S4t5= 15 sin42�t/245+ 501

and �t ∈ 801±11±21 0 0 0 1±209, a sequence of mean
zero, independent, and identically distributed (i.i.d.)
random variables distributed according to the discrete
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(b) M-ADP, N = 1,000

Figure 7 (Color online) Visual Comparison of Value Function Approximations for t = 12 and Rt = 3

Table 1 Parameter Choices for Variation 1 Benchmark Problems

Distribution Cardinality
Problem T Rmax Lmax �4l5 of �t of S

A1 24 6 8 1 Pseudonormal 221320
B1 24 6 8 4l/851/6 Pseudonormal 221320
C1 36 6 8 1 Pseudonormal 221320
D1 24 12 12 4l/1251/6 Uniform 661960
E1 24 12 12 4l/1251/6 Pseudonormal 661960
F1 36 18 18 4l/1851/6 Pseudonormal 1501660

pseudonormal distribution with �2
X = 49 (a discrete dis-

tribution where the probability masses are defined by
the evaluating at the density function of N401�2

X5 and
then normalizing). We consider both the cases where
the battery age does and does not matter (by setting
�4l5= 1), in effect introducing an irrelevant state vari-
able. When aging does matter, the aging function we
use is �4l5= 4l/Lmax5

1/6, which provides a roughly lin-
ear decline in efficiency from 100% to around 70%,
followed by a much steeper decline. Lastly, in Prob-
lem 4, we considered a uniform distribution for the
noise, while the remaining problems used pseudonor-
mal noise. In line with the operation procedures of
the NYISO, the undersupply penalty parameter K is
set to 1 in our simulations—this means that if one
is unable to deliver energy to the market, then the
penalty is precisely the current spot price (essen-
tially, we are paying another generator to produce
the energy instead). The different problem instances,
labeled A1–F1, along with their state space cardinali-
ties are summarized in Table 1.

5.2. Numerical Results for Variation 1
We first evaluate the effectiveness of Monotone-
ADP-Bidding versus approximate value iteration,
a traditional ADP algorithm (exactly the same
as Monotone-ADP-Bidding with çM removed); the
results for Variation 1 are given in Table 2.

Figure 7 gives a quick visual comparison between the
two types of approximate value functions, generated
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Table 2 Percentage of Optimality for Policies Generated from the
M-ADP and AVI Algorithms for Variation 1

Problem (%)

Iterations Algorithm A1 B1 C1 D1 E1 F1

N = 11000 M-ADP 5809 6708 7305 6007 5608 4509
AVI 5307 4507 6606 2304 2408 708

N = 51000 M-ADP 8307 8208 8702 7308 6601 6401
AVI 6007 6703 8201 4308 5206 4900

N = 91000 M-ADP 8904 9306 9303 7602 7409 8606
AVI 7002 7508 8503 4607 5808 5703

N = 131000 M-ADP 9308 8909 9608 7908 8307 8805
AVI 7603 8301 8708 4908 6802 5708

N = 171000 M-ADP 9508 9604 9708 8207 8608 9104
AVI 7800 8501 9007 6202 7200 7006

N = 211000 M-ADP 9500 9804 9801 9005 8708 9207
AVI 8101 8707 9000 6100 7307 7603

N = 251000 M-ADP 9700 9805 9805 8907 9004 9408
AVI 8604 8904 9201 6000 7501 7600

by approximate value iteration and Monotone-ADP-
Bidding. We remark that after N = 11000 iterations,
the value function approximation in Figure 7(b) ob-
tained by exploiting monotonicity has developed a
discernible shape and structure, with a relatively wide
range of values. The result in Figure 7(a), on the other
hand, is relatively unusable as a policy.

We notice that as the cardinality of the state space
increases, the value of monotonicity preservation
becomes more pronounced. This is especially evi-
dent in problem F , where after N = 11000 iterations,
Monotone-ADP-Bidding achieves 45.9% optimality,
whereas traditional approximate value iteration does
not even reach 10%. Although this finite state, lookup
table version of approximate value iteration (for
lookup table) is also a convergent algorithm (see
Bertsekas and Tsitsiklis 1996, Proposition 4.6), its per-
formance is markedly worse, especially when the
state space is large. Because it exploits the monotone
structure, Monotone-ADP-Bidding has the ability to
quickly attain the general shape of the value func-
tion. Figure 8 illustrates this by showing the approx-
imations at early iterations of the algorithm. These
numerical results suggest that the convergence rate of
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Figure 8 (Color online) Value Function Approximations from Early Iterations of Monotone-ADP

the ADP algorithm is substantially increased through
the use of the monotonicity preserving operation.

With the effectiveness of Monotone-ADP-Bidding
on Variation 1 established, we now examine its
computational benefits over backward dynamic pro-
gramming. A comparison of CPU times between
Monotone-ADP-Bidding and backward dynamic pro-
gramming is shown in Figure 9, where the horizontal
axis is in log scale. Once again, we notice the order
of magnitude difference in computation time for the
exact solution and for the near-optimal ADP solution.
Indeed from Table 3, we see that we can achieve very
good solutions using an ADP approach while cutting
computational resources by more than 93%. In the
most drastic case, problem F (over 150,000 states), a
95% optimal solution is achieved using only 4% the
amount of computational power.

5.3. Variation 2
Briefly, we also consider a problem with a more com-
plex price process: a Markov regime-switching model
with two regimes denoted by the process Xt . We rep-
resent the normal regime as Xt = 0 and the spike
regime as Xt = 1. Let S4t5 be a deterministic seasonal
component, �t be discrete i.i.d. random variables rep-
resenting noise in the normal regime, and �st be dis-
crete i.i.d. random variables representing noise in the
spike regime. The price process can be written as

Pt = S4t5+ 18Xt=09 · �t + 18Xt=19 · �
s
t 0

Also, we define the transition probabilities of the
(time-inhomogeneous) Markov chain Xt :

pi1 j4t5= P4Xt+1 = j �Xt = i50

Because Xt only takes two states, let p4t5 = p0114t5
(the probability, at time t, of moving from the nor-
mal regime into the spike regime) and q4t5 = p1104t5
(the probability, at time t, of returning to the normal
regime). The state variable for this problem is five-
dimensional: St = 4Rt1Lt1 b

−
t−11 b

+

t−11Xt5. To generate a
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Figure 9 Computation Times of M-ADP vs. BDP for Variation 1

small library of test problems, we considered two ver-
sions of the seasonal component:

Si4t5= 15fi42�t/125+ 501

for i ∈ 81129 and f14x5 = sin4x5 and f24x5 = cos4x5. We
roughly model the fact that price spikes tend to occur
more frequently when demand is high. Since demand
is often modeled using sinusoidal functions, we use
the following for p4t5 (the probability of moving from
the normal regime to the spike regime) when the sea-
sonal component is Si4t5:

pi4t5= �p6fi42�t/125+ 17/21

for some parameter �p ≤ 1, representing the max-
imum probability of moving to the spike regime:

Table 3 Time Savings from BDP When Using M-ADP Near-Optimal Solution (%)

Problem

A1 B1 C1 D1 E1 F1

BDP CPU time (minutes) 14,112 24,392 18,720 19,448 20,256 56,968
M-ADP CPU time (mins.)/Percentage of Optimality (%) 1,003/95 1,077/94 1,167/96 1,264/90 1,506/90 2,470/95
CPU time savings (%) 93 96 94 94 93 96

Table 4 Parameter Choices for Variation 2 Benchmark Problem

Problem T Rmax Lmax �4l5 Trend �p �q Cardinality of S

A2 24 4 6 4l/651/6 S24t5 009 005 221320
B2 24 4 8 4l/851/6 S14t5 008 007 291760
C2 12 8 6 4l/651/6 S24t5 009 005 441640
D2 12 6 8 4l/851/6 S24t5 008 007 441640
E2 12 8 10 4l/1051/6 S14t5 009 005 741400
F2 12 10 8 4l/851/6 S24t5 008 007 741400

pt4t5 ∈ 601�p7. In these numerical results, q4t5, the
probability of returning to the normal regime, is
always modeled as a constant �q . Moreover, both �t
and �st have support 8−101−91−81 0 0 0 1+391+409 and
are distributed according to the discrete pseudonor-
mal distribution (with parameters 4�X1�X5 = 40175
and 4�X1�X5 = 4151205, respectively). The skewed
support allows us to model the preponderance of
upward spikes in electricity spot prices. The remain-
der of the parameters vary across the test problems
and are summarized in Table 4.

We ran both Monotone-ADP-Bidding and tradi-
tional approximate value iteration for 10,000 itera-
tions on each of the test problems. The results of the
benchmarking are summarized in Table 5 (for brevity,
we omit plots of the approximate value function and
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Table 5 Percentage of Optimality for Policies Generated from the
M-ADP and AVI Algorithms for Variation 2

Problem (%)

Iterations Algorithm A2 B2 C2 D2 E2 F2

N = 21000 M-ADP 8204 8206 9406 9306 8208 8208
AVI 3103 3202 4306 6009 3300 4602

N = 41000 M-ADP 8607 8307 9601 9901 9302 9000
AVI 5304 4601 6201 7609 5400 6204

N = 61000 M-ADP 9306 8100 8803 9802 9002 9005
AVI 6408 5100 6903 8206 6305 7601

N = 81000 M-ADP 9503 8608 9202 9308 9304 8808
AVI 7704 6800 6705 7906 7700 7700

N = 101000 M-ADP 9404 8708 9508 9603 9502 9802
AVI 8401 5807 7709 7108 8403 6008

computation times and instead state that they are very
comparable to those of Variation 1). It is clear that,
once again, Monotone-ADP-Bidding provides signifi-
cantly better solutions than approximate value itera-
tion, particularly in the early iterations.

6. Case Study: Training and Testing
an ADP Policy Using Real
NYISO Data

In this section, we use the distribution-free, post-
decision state version of Monotone-ADP to produce
bidding policies for the New York City zone of the
NYISO, with the goal of demonstrating the idea of
training using only historical data as “sample paths.”
The case study uses two full years of five-minute real-
time price data obtained from the NYISO, for the
recent years of 2011 and 2012. See Figure 10 for a
visual comparison.

The concern with the historical prices is that we
must satisfy Assumption 6; i.e., we must assume that
the unknown stochastic process Pt is bounded. This
is not an unreasonable assumption if we allow the
bound to be high, say $3,000, which is consistent with
the prices in our data set. We remark again that, to
satisfy Assumption 7, we use

v̂b1n
t 4Sb1n

t 5= max
bt+1∈B

6Ct+11t+34S
n
t+11 bt+15+V̄ b1n−1

t+1 4Sn
t+11 bt+1571
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Figure 10 NYISO Real-Time, Five-Minute Prices Used for Training and Testing ADP Policies

in Step 2a of Figure 6, where the transition from Sb1n
t

to Sn
t+1 is accomplished using a single sample from

historical data. The remaining assumptions are satis-
fied for the same reasons as before.

6.1. ADP Policies
There are many sensible ways to choose training data
for a specific operating time horizon. In this paper,
we consider two commonsense methods: (1) using
historical samples from the same month of the pre-
vious year to train a policy for the current month
(“ADP Policy 1”) and (2) using samples from the pre-
vious month to train a policy for the current month
(“ADP Policy 2”). The rationale for the first method
is that the price process may behave similarly in the
same month across years (though factors like weather,
natural gas prices, etc., should be considered before
assuming that such a statement is true), and the ratio-
nale for the second method is simply using the most
recent data available. We train an hourly bidding pol-
icy that has a horizon of one day (T + 1 = 24) and
the post-decision state variable for this case study is
five-dimensional:

Sb
t = 4Rt1 b

−

t−11 b
+

t−11 b
−

t 1 b
+

t 5 ∈Sb1

where the bids are linearly discretized between
bmin = 0 and bmax = 150 into 15 grid points in each
dimension. Although it is difficult to discern from
Figure 10, 98.2% of the prices in our data set are
below $150. To have a lower dimensional state vari-
able for more reasonable runtimes, we elect to assume
P S
t = 8 9 and �4l5 = 1 (it is also not typical for a bat-

tery manufacturer to provide an expression for �4l5;
an accurate model for �4l5 would require estimation
from empirical data, which is outside the scope of
this paper). Conversations with industry colleagues
suggested that, for this application, it is reasonable
to model a 1 MW, 6 MWh battery. Because M = 12,
we choose Rmax = 72, giving us a state space of size
�Sb� = 306 million states, much larger than that of the
benchmark problems in §5. The remaining details are
summarized in the following list.
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1. Because the characteristics of the spot prices can
be very different on weekends (see, e.g., Coulon et al.
2013), we considered weekdays only. In a true appli-
cation, it would be important to train a separate pol-
icy for weekends.

2. To have a larger data set for our simulations, our
main assumption is that spot prices of a particular
hour are identically distributed across weekdays of
the same month, allowing us to train and test on a
large set of sample paths.

3. We train a daily value function for each month
of the year. In essence, we combine the data for the
weekdays of each month to produce a policy that is
valid for any given weekday of the same month.

4. As before, we set the undersupply penalty para-
meter K to 1.

The real-time prices from 2011 are used as train-
ing data and the prices from 2012 are used simulta-
neously as training and test data: for each month of
2012, we generate two policies: one trained using data
from the same month in 2011 and the other trained
using data from the previous month. The revenues
generated by these policies are given in Table 6, where
the evaluation method from §5 is used. The results
correspond to running the algorithm for N = 1001000
iterations. Note that because the post-decision version
does not compute an expectation, each iteration is sig-
nificantly faster than that of the pre-decision version
but in general requires more iterations. The results
show that ADP Policy 1 (training on data from the
same month of the previous year) narrowly outper-
forms ADP Policy 2 (training on data from the pre-
vious month) in most cases. Although our MDP only
optimizes for revenue in expectation, we neverthe-
less report that the (0.05-quantile, 0.95-quantile) of
daily revenue for ADP Policy 1 is ($60.37, $474.24)
with a median of $174.55. For ADP Policy 2, we

Table 6 Performance of Monotone-ADP-Bidding Policy Trained and
Tested on Real Data

ADP Policy 1 ADP Policy 2

Training Training
Test data set data set Revenue ($) data set Revenue ($)

January-12 January-11 61539000 December-11 71857069
February-12 February-11 11966002 January-12 21061099
March-12 March-11 51810070 February-12 51511007
April-12 April-11 41147060 March-12 41223085
May-12 May-11 91030054 April-12 81296017
June-12 June-11 111465039 May-12 101934007
July-12 July-11 111323050 June-12 91042077
August-12 August-11 61277031 July-12 61206056
September-12 September-11 51754093 August-12 51561024
October-12 October-11 31693001 September-12 31623033
November-12 November-11 71228085 October-12 21768000
December-12 December-11 31275084 November-12 31160028
Yearly revenue: 761512068 691247002

have a (0.05-quantile, 0.95-quantile) of daily revenue
of ($44.13, $453.30) with a median of $154.12. These
results confirm that the policies consistently generate
revenue.

6.2. Comparison to Standard Trading Policies
This section compares the ADP policies to several
other rule-based policies developed from both the lit-
erature and discussions with industry. Because of the
existence of (and lack of access to) proprietary trading
strategies, we cannot claim to be comparing against
the best; however, we do believe that the basic strate-
gies surveyed in this paper are involved in a sig-
nificant portion of high performing trading/bidding
policies. Trading Policies A and B are based on deter-
mining peak and off-peak hours using historical price
data and inspired by strategies considered in the
paper by Walawalkar et al. (2007) and the technical
report by Byrne and Silva-Monroy (2012), but adapted
to our bidding setting. Trading Policy C uses the idea
of bidding at certain quantiles and is attributed to
ideas given to us by our industry colleagues. Policies
subscripted by 1 (i.e., A1, B1, and C1) use historical
price data from the same month of the previous year,
and policies subscripted by 2 use data from the pre-
vious month.

Policies A1 and A2: Taking advantage of the trend
that lower prices occur at night, we split the operat-
ing day hours into two intervals 1 to h∗ and h∗ + 1
to 24, with h∗ > 6. The intervals are then sorted using
average historical prices. If hour h of the first inter-
val has one of the six lowest prices, then it is desig-
nated a buy interval. Similarly, if hour h of the sec-
ond interval has one of the six highest prices, then
it is a sell interval. All other hours are idle intervals.
When placing a bid bt , we consider the hour h corre-
sponding to 4t + 11 t + 27: if hour h is a buy interval,
we choose bt = 4bmax1 bmax5; if hour h is a sell inter-
val, we choose bt = 4bmin1 bmin5; and if hour h is an idle
interval, we choose bt = 4bmin1 bmax5. This policy essen-
tially guarantees (with the possible exception of spike
situations where prices exceed bmax) that we fill up the
battery in the interval from 1 to h∗ and then empty it
in the interval from h∗ + 1 to 24. With some tuning,
we found that h∗ = 12 provided the highest valued
policies.

Policies B1 and B2: The second set of policies is
again based on the idea of pairing periods of low
prices with periods of high prices, but with more flex-
ibility than Policies A1 and A2. Instead, we sort all
hours of a given day using average historical prices
and designate the k∗ lowest priced hours as buy inter-
vals, corresponding to bt = 4bmax1 bmax5 and the k∗

highest priced hours as sell intervals, corresponding to
bt = 4bmin1 bmin5. The remaining hours are idle intervals,
meaning we set bt = 4bmin1 bmax5. Again using historical
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prices, at time t, we estimate the level of resource R̂t+1

at the beginning of the next hour as the average of the
outcomes of Rt+1 over historical sample paths. When
encountering a buy interval with R̂t+1 > 60 (nearly
full battery) or a sell interval with R̂t+1 < 12 (nearly
empty battery), we place the idle bid instead. Finally,
if we detect that we have more energy in storage than
can be sold in the time left until the end of horizon,
we place sell bids thereafter. We report results for the
tuned parameter k∗ = 10.

Policies C1 and C2: Let � < 005 be the parameter to
our final set of policies. For each hour h, we compute
the empirical quantiles of the historical prices at � and
1−�, denoted q� and q41−�5, respectively (note the sup-
pressed dependence on h). When bidding at time t,
we again estimate R̂t+1 using historical data. For times
when the battery is estimated to be nearly full, we
place the bid bt = 4bmin1 q41−�55. Similarly, if the battery
is nearly empty, we place the bid bt = 4q�1 bmax5. For
anything in between, we simply bid bt = 4q�1 q41−�55,
with the hope of consistently buying low and sell-
ing high. We implement the same logic for when we
hold more energy than the maximum that can be sold
in the time remaining and initiate a sell-off. In the
numerical results below, we use � = 001. Smaller val-
ues of � correspond to the notion of reserving the
battery for only the highest valued trades.

The results of running Policies Ai, Bi, and Ci are
given in Table 7.

Given that they were afforded more nuanced actions
than simply buy and sell, perhaps not surpris-
ingly, Policies Ci outperformed the rest. However,
we also notice that, unlike the other policies, Pol-
icy C2 generated large negative revenues in July-12
and November-12. Comparing Policy C1 against ADP
Policy 1 and comparing Policy C2 against ADP Pol-
icy 2, we see the revenues generated are still a dis-
appointing 6805% and 5503%, respectively, of the ADP

Table 7 Performance of Standard Trading Policies Trained and Tested on Real Data

Revenue ($)

Test data set Policy A1 Policy A2 Policy B1 Policy B2 Policy C1 Policy C2

January-12 31078056 31539068 31182007 31445084 11901089 81461097
February-12 707002 404068 397038 43490515 11503052 11487059
March-12 21380097 21343057 11837057 21154049 41744029 61214073
April-12 702084 11247013 205012 11078062 31403025 31412050
May-12 51855013 31564074 41888052 31797041 61944026 51013073
June-12 31449075 41742000 41511081 31427011 71329025 71618000
July-12 61871067 41488028 61940068 61781036 81003043 4710660455
August-12 11278066 11482063 11824057 11273028 41724014 41908008
September-12 11438039 11638063 315094 11665022 31868075 41336050
October-12 701091 751093 633058 321080 21879064 21750099
November-12 11585050 11938098 11354096 11359001 41438000 4112700905
December-12 11240097 11012026 424056 431005 21703046 21445046
Yearly revenue: 291291036 271154052 261516076 251385068 521443088 381312020

revenues, suggesting that it is difficult, even after tun-
ing, for simple rule-based heuristics to perform at
the level of a well-trained ADP policy that consid-
ers downstream value. Moreover, the months of July-
12 and November-12 (during which Policy C2 posted
negative revenues) suggest that the ADP strategy is
more robust to the differences in training data when
compared to Policy Ci. A possible driving force behind
Policy C2’s failure to generate revenue during these
months is that the training data from June-12 and
October-12 has largely differing characteristics (e.g.,
many spikes) from the testing data in July-12 and
November-12 (see Figure 10).

6.3. Additional Insights
Applying Monotone-ADP-Bidding to real data from
the NYISO has given us several insights into the topic
of energy arbitrage. First, we note that for both ADP
Policy 1 and ADP Policy 2 (see Table 6), the largest
revenues were generated in the months of May, June,
and July, presumably because of changes in weather.
The difference between the revenues generated in
the months of highest and lowest revenue, June and
February, is more drastic than one might expect:
Jun Revenue−Feb Revenue = $91499037 for ADP Pol-
icy 1 and Jun Revenue − Feb Revenue = $81872008 for
ADP Policy 2. These results suggest that perhaps
energy arbitrage should not be a year-round invest-
ment but rather one that is active only during months
with potential for high revenue. As Sioshansi et al.
(2009) conclude, when it comes to the value of energy
storage, it is important to consider various revenue
sources.

Costs of energy storage can be as low as $160 kWh−1

today, and it is reasonable to expect that they will
continue to decrease. As mentioned earlier, with opti-
mal storage control strategies and decreased capital
costs, energy arbitrage can soon become profitable
on its own; as it currently stands, storage costs are
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Figure 11 Empirical Distribution of Storage Level Using ADP Policies 1 and 2

still relatively high compared to potential revenue.
Therefore, it is also imperative that the precise stor-
age needs of our trading/bidding policies are well
understood; it may be the case that in some months,
one would choose to dedicate the entire battery to fre-
quency regulation, whereas in high revenue months,
the better strategy may be to use some of the capac-
ity toward arbitrage. It is clear that some policies,
such as Policies Ai, are designed with fully utilizing
the available storage in mind, but for more complex
policies such as those generated by Monotone-ADP-
Bidding, the usage profiles are not obvious. Figure 11
shows the empirical distribution for the storage level
of the battery (on an hourly basis) throughout the test
data set. Note that for presentation purposes we have
scaled the plot so that the bar at Rt = 0 is cut off;
because of its designation as the initial state (and final
state as well for most sample paths), its probability is
skewed to 0.09 and 0.10 for the two plots, respectively.
The high probability at 1 MWh is likely because it cor-
responds to full hourly charge, the minimum amount
of energy needed to avoid the possibility of an under-
supply penalty. The 0.9- and 0.95-quantiles for ADP
Policy 1 occur at 3.00 MWh and 3.75 MWh, and for
ADP Policy 2, they are 3.16 MWh and 3.75 MWh. This
means for our (relatively short) daily trading hori-
zon, a 6 MWh battery is unnecessary—a 33% smaller
device with 4 MWh storage would have sufficed and
delivered similar results at a steep discount in capital
cost. However, if a longer trading horizon, say, weekly
(allowing us to take into account the low prices on the
weekends), is desired, it would be necessary to train
a policy using a sufficiently large battery and then
using simulation to determine the effective amount
of storage needed by the policy. In summary, with
today’s substantial capital costs, it would be prudent
to do an analysis of a policy’s storage needs.

Finally, we discuss the issue of choosing Cterm4s5 in
a practical implementation of the algorithm. Because
of the daily cycles present in the real-time market,
there is likely to be little additional value in expend-
ing computational resources toward developing a bid-
ding policy whose horizon lasts much longer than

a few days or a week. In fact, from our conver-
sations with industry colleagues, we envision that
a bidding policy such as ours has a daily horizon
that is used repeatedly day after day, with the pol-
icy retrained periodically (perhaps weekly). For such
a usage scenario, it is important to correctly choose
Cterm4s5 because leftover energy has value that can be
capitalized on even after the true horizon of the pol-
icy. We suggest the following practical methods for
determining the functional form of Cterm4s5.

1. Given the knowledge that the same policy is to
be reused, in an effort to prevent the forced “sell-off”
type behavior that is expected when Cterm4s5=0, it is
reasonable to choose Cterm4s5 to structurally resem-
ble V ∗

0 4s5 (i.e., up to constant shifts). One strategy for
accomplishing this is to first compute V ∗

0 4s5 using a
zero terminal contribution, and then re-solving the
dynamic program using the previously computed V ∗

0
as the terminal contribution. This process can be
iterated until the resulting policies (not the value
functions themselves) are observed to converge. Our
(informal) implementation of this procedure shows
that the desired behavior of not forcing the storage to
zero at the end of the time horizon is indeed attained.

2. After training an initial policy, we can deter-
mine, by inspecting the resource paths, a point in time
where the storage level is empty or very low (e.g.,
immediately after a period of high prices). The hori-
zon of the problem can then be redefined so that T
corresponds to this point in time and a new pol-
icy (with zero terminal contribution) can be trained.
Essentially, we hope that the forced sell-off is trans-
lated to a point in time where a natural sell-off would
have likely occurred.

7. Conclusion
In this paper, we describe an hour-ahead bidding
and battery arbitrage problem for a real-time elec-
tricity market (e.g., NYISO’s real-time market). We
then formulate the problem mathematically as an
MDP and show that the optimal value function sat-
isfies a monotonicity property, a structural result that
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can be exploited in order to accelerate the conver-
gence of ADP algorithms. The algorithm that we
employ is called Monotone-ADP-Bidding and uses
monotonicity to infer the value of states nearby an
observed state. When benchmarked against a tra-
ditional approximate value iteration algorithm, we
found that the improvements in terms of solution
quality were drastic. Furthermore, the ADP algorithm
can reach near-optimal solutions without the need
for significant computational time and power (which
an exact solution technique like backward dynamic
programming certainly requires). In fact, our empir-
ical results show that near-optimal solutions can be
generated using less than 10% of the computational
resources necessary for backward dynamic program-
ming. We also describe and sketch the proof of con-
vergence for a distribution-free method where we can
train value functions with Monotone-ADP-Bidding
using historical spot prices—this removes the need
for us to perform the difficult task of specifying and
fitting an accurate stochastic model of spot prices. In
our case study, the method is tested on two large
data sets: the five-minute real-time prices from the
NYISO from the years of 2011 and 2012. The poli-
cies from Monotone-ADP-Bidding help us conclude
that energy arbitrage may be most valuable if prac-
ticed in a select few, high revenue months. Finally,
the ADP policies consistently generated more revenue
than several rule-based heuristic strategies that we
considered, confirming that an ADP approach that
approximates future value is worthwhile.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/ijoc.2015.0640.
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