
This article was downloaded by: [132.174.255.116] On: 23 September 2020, At: 10:44
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Optimistic Monte Carlo Tree Search with Sampled
Information Relaxation Dual Bounds
Daniel R. Jiang, Lina Al-Kanj, Warren B. Powell

To cite this article:
Daniel R. Jiang, Lina Al-Kanj, Warren B. Powell (2020) Optimistic Monte Carlo Tree Search with Sampled Information
Relaxation Dual Bounds. Operations Research

Published online in Articles in Advance 11 Sep 2020

. https://doi.org/10.1287/opre.2019.1939

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2019.1939
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

OPERATIONS RESEARCH
Articles in Advance, pp. 1–20

http://pubsonline.informs.org/journal/opre ISSN 0030-364X (print), ISSN 1526-5463 (online)

Methods

Optimistic Monte Carlo Tree Search with Sampled Information
Relaxation Dual Bounds
Daniel R. Jiang,a Lina Al-Kanj,b Warren B. Powellb

aDepartment of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; bDepartment of Operations Research
and Financial Engineering, Princeton University, Princeton, New Jersey 08544
Contact: drjiang@pitt.edu, https://orcid.org/0000-0002-5388-8061 (DRJ); lalkanj@princeton.edu,

https://orcid.org/0000-0003-4429-4525 (LAK); powell@princeton.edu, https://orcid.org/0000-0002-4364-7555 (WBP)

Received: April 17, 2017
Revised: August 15, 2018; April 22, 2019;
July 20, 2019
Accepted: August 9, 2019
Published Online in Articles in Advance:
September 11, 2020

Subject Classifications: decision analysis:
sequential, dynamic programming
Area of Review: Stochastic Models

https://doi.org/10.1287/opre.2019.1939

Copyright: © 2020 INFORMS

Abstract. Monte Carlo tree search (MCTS), most famously used in game-play artificial
intelligence (e.g., the game of Go), is a well-known strategy for constructing approxi-
mate solutions to sequential decision problems. Its primary innovation is the use of a
heuristic, known as a default policy, to obtain Monte Carlo estimates of downstream
values for states in a decision tree. This information is used to iteratively expand the
tree toward regions of states and actions that an optimal policy might visit. However,
to guarantee convergence to the optimal action, MCTS requires the entire tree to
be expanded asymptotically. In this paper, we propose a new “optimistic” tree search
technique called primal-dual MCTS that uses sampled information relaxation upper
bounds on potential actions to make tree expansion decisions, creating the possibil-
ity of ignoring parts of the tree that stem from highly suboptimal choices. The core
contribution of this paper is to prove that despite converging to a partial decision tree
in the limit, the recommended action from primal-dual MCTS is optimal. The new
approach shows promise when used to optimize the behavior of a single driver
navigating a graph while operating on a ride-sharing platform. Numerical experiments
on a real data set of taxi trips in New Jersey suggest that primal-dual MCTS im-
proves on standard MCTS (upper confidence trees) and other policies while exhibit-
ing a reduced sensitivity to the size of the action space.

Keywords: Monte Carlo tree search • dynamic programming • information relaxation

1. Introduction
Monte Carlo tree search (MCTS) is a technique pop-
ularized by the artificial intelligence (AI) community
(Coulom 2007) for solving sequential decision prob-
lems with finite state and action spaces. To avoid
searching through an intractably large decision tree,
MCTS instead iteratively builds the tree and attempts
to focus on regions composed of states and actions
that an optimal policy might visit. A heuristic known
as the default policy is used to provide estimates of
downstream values, which serve as a guide for MCTS
to explore promising regions of the search space.
When the allotted computational resources have been
expended, the hope is that the best first-stage decision
recommended by the partial decision tree is a reason-
ably good estimate of the optimal decision that would
have been implied by the full tree. The adaptive
sampling algorithm by Chang et al. (2005), intro-
duced within the operations research (OR) commu-
nity, leverages a well-known bandit algorithm called
upper confidence bound (UCB) for solving Markov
decision processes (MDPs). The UCB approach is also

used extensively for successful implementations of
MCTS (Kocsis and Szepesvári 2006).
The applications of MCTS are broad and varied,

but the strategy is traditionally most often applied
to game-play AI (Chaslot et al. 2008). To name a few
specific applications, these include Go (Chaslot
et al. 2006, Gelly and Silver 2011, Gelly et al. 2012,
Silver et al. 2016), Othello (Hingston and Masek
2007, Nijssen 2007, Osaki et al. 2008, Robles et al.
2011), Backgammon (Van Lishout et al. 2007), Poker
(Maitrepierre et al. 2008, Van den Broeck et al. 2009,
Ponsen et al. 2010), 16 × 16 Sudoku (Cazenave 2009),
and even general game-playing AI (Méhat and Caze-
nave 2010). We remark that a characteristic of games
is that the transitions from state to state are deter-
ministic; because of this, the standard specification
for MCTS deals with deterministic problems. The
“Monte Carlo” descriptor in the name of MCTS
therefore refers to stochasticity in the default policy.
A particularly thorough review of both the MCTS
methodology and its applications can be found in
Browne et al. (2012).

1

http://pubsonline.informs.org/journal/opre
mailto:drjiang@pitt.edu
https://orcid.org/0000-0002-5388-8061
https://orcid.org/0000-0002-5388-8061
mailto:lalkanj@princeton.edu
https://orcid.org/0000-0003-4429-4525
https://orcid.org/0000-0003-4429-4525
mailto:powell@princeton.edu
https://orcid.org/0000-0002-4364-7555
https://orcid.org/0000-0002-4364-7555
https://doi.org/10.1287/opre.2019.1939

The OR community has generally not taken ad-
vantage of the MCTS methodology in applications,
with the exception of two recent papers. Bertsimas
et al. (2017) compare MCTS with rolling horizon
mathematical optimization techniques (a standard
method in OR) on two problems: the large-scale dy-
namic resource allocation problem of tactical wildfire
management and queuing network control. Al-Kanj
et al. (2016) apply MCTS to an information-collecting
vehicle routing problem, which is an extension of the
classic vehicle routing model where the decisions
depend on a belief state. Not surprisingly, both of these
problems are intractable via standard MDP tech-
niques, and results from these papers suggest that
MCTS could be a viable alternative to other approxi-
mation methods (e.g., approximate dynamic pro-
gramming). However, Bertsimas et al. (2017) find that
MCTS is competitive with rolling horizon techniques
only on smaller instances of the problems, and their
evidence suggests that MCTS can be quite sensitive
to large action spaces. In addition, they observe that
large action spaces are more detrimental to MCTS
than large state spaces. These observations form the
basis of our first research motivation: can we control
the action branching factor by making “intelligent
guesses” at which actions may be suboptimal? If so,
potentially suboptimal actions can be ignored.

Next, let us briefly review the currently available
work on convergence theory. The paper by Chang
et al. (2005) gives the first provably convergent al-
gorithm using the UCB idea in an MDP setting, with
the stages being solved sequentially in a “backward”
manner. The work of Kocsis and Szepesvári (2006)
uses the UCB algorithm to sample actions in MCTS,
resulting in an algorithm called upper confidence trees
(UCT). A key property of UCT is that every action is
sampled infinitely often; Kocsis and Szepesvári (2006)
exploit this to show that the probability of selecting a
suboptimal action converges to zero at the root of the
tree. Silver and Veness (2010) use the UCT result as a
basis for showing convergence of a variant of MCTS
for partially observed MDPs. Couëtoux et al. (2011)
extend MCTS for deterministic finite-state problems
to stochastic problems with continuous state spaces
using a technique called double progressive widening.
The paper by Auger et al. (2013) provides conver-
gence results for MCTS with double progressive
widening under an action sampling assumption. In
these papers, the asymptotic convergence of MCTS
relies on some form of exploring every node infinitely
often. However, given that the spirit of the algorithm
is to build partial trees that are biased toward nearly
optimal actions, we believe that an alternative line
of thinking deserves further study. Thus, our second
research motivation builds off the first motivation by
asking a theoretical question: can we design a version

of MCTS that asymptotically does not build the full
decision tree yet is still optimal?
Our use of optimistic estimates means that we no

longer have to sample every action. From a practical
perspective, this means that we are less vulnerable
to large action spaces. But we should also emphasize
that this is an important theoretical result that is
fundamentally different from the UCB-based proofs.
Ultimately, this is the core contribution of this paper.
A good default policy forMCTS can take significant

effort to construct. For example, consider the case of
AlphaGo, the first computer to defeat a human player
in the game of Go, of which MCTS plays a major role.
As Silver et al. (2016, p. 484) state, “The strongest
current Go programs are based on MCTS, enhanced
by policies that are trained to predict human expert
moves.” To be more precise, the default policy used
by AlphaGo is carefully constructed through several
steps: (1) a classifier to predict expert moves is trained
using 29.4 million game positions from 160,000
games on top of a deep convolutional neural network
(consisting of 13 layers); (2) the classifier is then
played against itself, and a policy gradient technique
is used to develop a policy that aims to win the game
rather than simply mimic human players; (3) another
deep convolutional neural network is used to ap-
proximate the value function of the heuristic policy;
and (4) a combination of the two neural networks,
dubbed the policy and value networks (also known as
actor and critic networks), provides an MCTS algo-
rithm with the default policy and the estimated
downstream values. This illustrates our third research
motivation: typically, researchers spend significant
effort designing the default policy and use it solely to
provide rough estimates of the value function, whereas
one could also extract additional value from the default
policy by using it to generate a dual upper bound.
In this paper, we address each of these questions by

proposing a novel optimistic MCTS method, called
primal-dual MCTS—the name is inspired by Andersen
and Broadie (2004)—that takes advantage of the in-
formation relaxation bound idea (also known as mar-
tingale duality) first developed by Rogers (2002) and
later generalized by Brown et al. (2010). The essence
of information relaxation is to relax nonanticipativity
constraints (i.e., allow the decision maker to use fu-
ture information) in order to produce upper bounds
(hence the “optimistic” descriptor) on the objective
value (assuming a maximization problem). To ac-
count for the issue that a naive use of future infor-
mation can produce weak bounds, Brown et al. (2010)
describe a method to penalize the use of future in-
formation so that one may obtain a tighter (smaller)
upper bound. This is called a dual approach, and it
is shown that the value of the upper bound can be
made equal to the optimal value if a particular penalty

Jiang et al.: Optimistic MCTS with Dual Bounds
2 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

function is chosen that depends on the optimal value
function of the original problem. Information relax-
ation has been used successfully to estimate the sub-
optimality of policies in a number of application
domains, including option pricing (Broadie and
Glasserman 1997, Andersen and Broadie 2004),
portfolio optimization (Brown and Smith 2011), val-
uation of natural gas (Lai et al. 2011, Nadarajah et al.
2015), optimal stopping (Desai et al. 2012), and ve-
hicle routing (Goodson et al. 2016). More specifically,
the contributions of this paper are as follows:

• We propose a new MCTS method called primal-
dual MCTS that uses the information relaxation
methodology of Brown et al. (2010) to generate dual
upper bounds. These bounds are used when MCTS
needs to choose actions to explore (this is known as
expansion in the literature). When the algorithm con-
siders performing an expansion step, we obtain sampled
upper bounds (i.e., in expectation, they are greater
than the optimal value) for a set of potential actions
and select an action with an upper bound that is better
than the value of the current optimal action. Corre-
spondingly, if all remaining unexplored actions have
upper bounds lower than the value of the current
optimal action, then we do not expand further. The
proposed procedure is related to branch-and-bound
(Land and Doig 1960) and alpha-beta pruning (Knuth
and Moore 1975), except using noisy bounds for
MDPs. This addresses our first research motivation
of reducing the branching factor in a principled way.

• The core contribution of this paper is a proof that
our method converges to the optimal action (and
optimal value) at the root node. This holds, even
though our proposed technique does not preclude the
possibility of a partially expanded tree in the limit.
By carefully using the upper bounds, we are able to
“provably ignore” entire subtrees, thereby reducing
the amount of computation needed. This addresses
our second research motivation, which extends the
current convergence theory of MCTS.

• Although there are many ways to construct the
dual bound, one special instance of primal-dual
MCTS uses the default policy (the heuristic for esti-
mating downstream values) to induce a penalty func-
tion. This addresses our third research motivation:
the default policy can provide actionable information
in the form of upper bounds, in addition to its orig-
inal purpose of estimating downstream values.

• Lastly, we present a model of the stochastic opti-
mization problem faced by a single driverwhoprovides
transportation for fare-paying customers while navi-
gating a graph. The problem is motivated by the need
for ride-sharing platforms (e.g., Uber and Lyft) to be
able to accurately simulate the operations of an en-
tire ride-sharing system/fleet. Understanding human
drivers’ behaviors is crucial to a smooth integration

of platform-controlled driver-less vehicles with the
traditional contractor model (e.g., in Pittsburgh, Penn-
sylvania). Our computational results show that primal-
dual MCTS dramatically reduces the breadth of the
search tree when compared with standard MCTS.
This paper is organized as follows. In Section 2, we

describe a general model of a stochastic sequential
decision problem and review the standard MCTS
framework along with the duality and information
relaxation procedures of Brown et al. (2010). We
present the primal-dual MCTS algorithm in Section 3
and provide the convergence analysis in Section 4.
The ride-sharing model and the associated numerical
results are discussed in Section 5, and we provide
concluding remarks in Section 6.

2. Preliminaries
In this section, we first formulate the mathematical
model of the underlying optimization problem as an
MDP. Because we are in the setting of decision trees and
information relaxations, we need to extend traditional
MDP notation with some additional elements. We also
introduce the existing concepts, methodologies, and
relevant results that are used throughout this paper.

2.1. Mathematical Model
As is common in MCTS, we consider an underlying
MDP formulation with a finite horizon t � 0, 1, . . . ,T,
where the set of decision epochs is 7 � {0, 1, . . . ,
T − 1}. Let 6 be a state space and ! be an action space,
and we assume a finite state and action setting: |6| <
∞ and |!| < ∞. The set of feasible actions for state s ∈ 6
is!s, a subset of!. The set8 � {(s, a) ∈ 6 ×! : a ∈ !s}
contains all feasible state–action pairs.
The dynamics from one state to the next depend

on the action taken at time t, written at ∈ !, and an
exogenous (i.e., independent of states and actions)
random process {Wt}Tt�1 on (Ω,^,P) taking values in a
finite space 0. For simplicity, we assume that Wt are
independent across time t. The transition function for
period t is given by ft : 6 ×! ×0 → 6. We denote the
deterministic initial state by s0 ∈ 6 and let {St}Tt�0 be
the random process describing the evolution of the
system state, where S0 � s0 and St+1 � ft(St, at,Wt+1).
To distinguish from the random variable St ∈ 6, we
shall refer to a particular element of the state space
by lowercase variables, for example, s ∈ 6. The con-
tribution (or reward) function at stage t < T is given
by ct : 6 ×! ×0 → R. For a fixed state–action pair
(s, a) ∈ 8, the contribution is the random quantity
ct(s, a,Wt+1), which we assume is bounded.
Because there are a number of other “policies” that

the MCTS algorithm takes as input parameters (to be
discussed in Section 2.2), we call the main MDP
policy of interest the operating policy. A decision

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 3

function πt : 6 → ! is a deterministic map from the
state space to the action space such that πt(s) ∈ !s for
any state s∈6. An admissible policy π� {π0,π2, . . . ,πT−1}
is a set of such decision functions, one for each time
period in 7 (the qualifier “admissible” refers to the
fact that these policies are nonanticipative and only
use information contained in the state s).We also letΠ
be the set of all admissible policies for the MDP. Fi-
nally, we define the optimal value function at time t
and state s, which is the maximum expected cumu-
lative contribution achieved over all policies:

V∗
t (s) � max

π∈Π E
∑T−1
τ�t

cτ Sτ, πτ Sτ(),Wτ+1() | St � s

[]
. (1)

The objective of the MDP is to find an operating
policy that achieves V∗

0(s0) for some initial state s0.
The optimal value function satisfies the standard Bell-
man optimality recursion

V∗
t (s) � max

a∈!s

E ct s, a,Wt+1() + V∗
t+1 St+1()[]

,

for all s ∈ 6, t ∈ 7,

V∗
T(s) � 0, for all s ∈ 6.

The state–action formulation of the Bellman recursion
is also necessary for the purposes of MCTS because
the decision tree contains both state and state–action
nodes. The state–action value function is defined as

Q∗
t(s, a) � E ct(s, a,Wt+1) + V∗

t+1 St+1()[]
,

for all (s, a) ∈ 8, t ∈ 7.

For consistency, it is also useful to let Q∗
T(s, a) � 0 for

all (s, a). It thus follows that V∗
t (s) � maxa∈!s Q

∗
t(s, a).

Likewise, the optimal policyπ∗ � {π∗
0, . . . ,π

∗
T−1} from the

set Π is characterized by π∗
t(s) � argmaxa∈!s

Q∗
t(s, a).

It is also useful for us to define the value of a
particular operating policy π starting from a state
s ∈ 6 at time t, given by the value function Vπ

t (s). If
we let Sπt+1 � ft(s, πt(s),Wt+1), then the following re-
cursion holds:

Vπ
t (s) � E ct(s, πt(s),Wt+1) + Vπ

t+1 Sπt+1
()[]

,

for all s ∈ 6, t ∈ 7,

Vπ
T (s) � 0, for all s ∈ 6. (2)

Note that V∗
t (s) � Vπ∗

t (s) for all s ∈ 6. Similarly, we
have

Qπ
t (s, a) � E ct(s, a,Wt+1) + Vπ

t+1 Sπt+1
()[]

,

for all (s, a) ∈ 6 ×!, t ∈ 7,

Qπ
T(s, a) � 0, for all (s, a) ∈ 6 ×!, (3)

the state–action value functions for a given operating
policy π.

Suppose that we are at a fixed time t. Because of
the notational needs of information relaxation, let

sτ,t(s, a,w) ∈ 6 be the deterministic state reached at
time τ ≥ t given that we are in state s at time t, im-
plement a fixed sequence of actions a � (at, at+1, . . . ,
aT−1), and observe a fixed sequence of exogenous
outcomes w � (wt+1,wt+2, . . . ,wT). For succinctness,
the time subscripts have been dropped from the
vector representations. Similarly, let sτ,t(s, π,w) ∈ 6
be the deterministic state reached at time τ ≥ t if
we follow a fixed policy π ∈ Π.
Finally, we need to refer to the future contributions

starting from time t, state s, and a sequence of ex-
ogenous outcomes w � (wt+1,wt+2, . . . ,wT). For con-
venience, we slightly abuse notation and use two
versions of this quantity, one using a fixed sequence
of actions a � (at, at+1, . . . , aT−1) and the other using a
fixed policy π:

ht(s, a,w) � ∑T−1
τ�t

cτ(sτ,t(s, a,w), aτ,wτ+1), ht(s, π,w)

� ∑T−1
τ�t

cτ sτ,t s, π,w), aτ,wτ+1).((

Therefore, if we define the random process Wt+1,T �
(Wt+1,Wt+2, . . . ,WT), then the quantities ht(s, a,Wt+1,T)
and ht(s, π,Wt+1,T) represent the random downstream
cumulative reward starting at state s and time t fol-
lowing a deterministic sequence of actions a or a
policy π. For example, the objective function to the
MDP given in (1) can be rewritten more concisely as
maxπ∈Π E [ht(s0, π,W1,T)].

2.2. Monte Carlo Tree Search
The canonical MCTS algorithm iteratively grows and
updates a decision tree using the default policy as a
guide toward promising subtrees. Because sequen-
tial systems evolve from a (predecision) state St, to
an action at, to a postdecision state or a state–action
pair (St, at), to new information Wt+1, and finally, to
another state St+1, there are two types of nodes in a
decision tree: state nodes (or predecision states) and
state–action nodes (or postdecision states). The layers
of the tree are chronological and alternate between these
two types of nodes. A child of a state node is a state–
action node connected by an edge that represents a
particular action. Similarly, a child of a state–action
node is a state node where the edge represents an
outcome of the exogenous information process Wt+1.
Because we are working within the decision tree

setting, it is necessary to introduce some additional
notation that departs from the traditional MDP style.
A state node is represented by an augmented state
that contains the entire path down the tree from the
root node s0:

xt � (s0, a0, s1, a1, s2 . . . , at−1, st) ∈ -t,

Jiang et al.: Optimistic MCTS with Dual Bounds
4 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

where a0 ∈!s0 ,a1 ∈!s1 , . . . ,at−1 ∈!st−1 , s1, s2, . . . , st ∈ 6,
and -t is the set of all possible xt (representing all
possible paths to states at time t). A state–action node
is represented via the notation yt � (xt, at), where
at ∈ !st . Similarly, let=t be the set of all possible yt.We
can take advantage of the Markovian property along
with the fact that any node xt or yt contains infor-
mation about t to write (again, a slight abuse of
notation)

V∗(xt) � V∗
t (st) and Q∗(yt) � Q∗

t(xt, at) � Q∗
t(st, at).

At iteration n of the MCTS, each state node xt is
associated with a value function approximation
V̄n(xt), and each state–action node (xt, at) is associated
with the state–action value function approximation
Q̄n(xt, at). Moreover, we use the following shorthand
notation:

P(St+1 � st+1 | yt) � P(St+1 � st+1 | xt, at)
� P(ft(st, at,Wt+1) � st+1).

There are four main phases in the MCTS algorithm:
selection, expansion, simulation, and backpropa-
gation (Browne et al. 2012). Often the first two phases
are called the tree policy because they traverse and
expand the tree; it is in these two phases that we will
introduce our new methodology. Let us now sum-
marize the steps of MCTS while employing the so-
called double progressive widening (DPW) tech-
nique (Couëtoux et al. 2011) to control the branching
at each level of the tree. As its name suggests, DPW
means that we slowly expand the branching factor of
the tree, in both state nodes and state–action nodes.
The following steps summarize the steps of MCTS
at a particular iteration n. See Browne et al. (2012,
figure 2) for an illustration of these steps.

Selection. We are given a selection policy, which
determines a path down the tree at each iteration.
When the algorithm encounters an iteration where
progressive widening is not used, it traverses the tree
until it reaches a leaf node (i.e., a state node that is not
fully expanded) and proceeds to the simulation step.
On a progressive widening iteration, the traversal is
performed until an expandable node (i.e., one for which
there exists a child that has not yet been added to the
tree) is reached. This could be either a state node or a
state–action node; the algorithm now proceeds to the
expansion step in order to add a node to the tree.

Expansion. We now use a given expansion policy to
decide which child to add to the tree. The simplest
method, of course, is to add an action at random or
add an exogenous state transition at random. As-
suming that expansion of a state–action node always
follows the expansion of a state node, we are now in
a leaf state node.

Simulation. The aforementioned default policy is
now used to generate a sample of the value function
evaluated at the current state node. The estimate is
constructed by running the default policy on a sim-
ulated future trajectory of the exogenous information
process. This step of MCTS is also called a rollout.
Backpropagation. The last step is to recursively up-

date the values up the tree until the root node is
reached: for state–action nodes, a weighted average is
performed on the values of its child nodes to update
Q̄n(xt, at), and, for state nodes, a combination of a
weighted average and maximum of the values of its
child nodes is taken to update V̄n(xt). These opera-
tions correspond to a backup operator discussed in
Coulom (2007) that achieves good empirical perfor-
mance. This concludes one iteration of MCTS, and the
next iteration begins at the selection step.
Once a prespecified number of iterations have been

run, the best action out of the root node is chosen for
implementation. After landing in a new state in the
real system,MCTS can be run againwith the new state
as the root node. A practical strategy is to use the
relevant subtree from the previous run of MCTS to
initialize the new process (Bertsimas et al. 2017).

2.3. Information Relaxation Bounds
We next review the information relaxation duality
ideas from Brown et al. (2010); see also Brown and
Smith (2011) and Brown and Smith (2014). Here we
adapt the results of Brown et al. (2010) to our setting,
where we require the bounds to hold for arbitrary
subproblems of the MDP. Specifically, we state the
theorems from the point of view of a specific time t
and initial state–action pair (s, a). Also, we focus on
the perfect information relaxation, where one assumes
full knowledge of the future in order to create upper
bounds. In this case, we have

V∗
t (s) ≤ E max

a
ht s, a,Wt+1,T()

[]
,

which means that the value achieved by the optimal
policy starting from time t is upper bounded by the
value of the policy that selects actions using perfect
information. As we described previously, the main
idea of this approach is to relax nonanticipativity
constraints to provide upper bounds. Because these
bounds may be quite weak, they are subsequently
strengthened by imposing penalties for usage of fu-
ture information. To be more precise, we subtract
awayapenalty definedbya function zt so that the right-
hand side is decreased to E[maxa[ht(s,a,Wt+1,T) −
zt(s,a,Wt+1,T)]].
Consider the subproblem (or subtree) starting in

stage t and state s. A dual penalty zt is a function
that maps an initial state, a sequence of actions

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 5

a � (at, at+1, . . . , aT−1), and a sequence of exogenous
outcomes w� (wt+1, . . . ,wT) to a penalty zt(s, a,w) ∈ R.
As we did in the definition of ht, the same quantity
is written zt(s, π,w) when the sequence of actions is
generated by a policyπ. The set of dual feasible penalties
for a given initial state s are those zt that do not pe-
nalize admissible policies; it is given by the set

]t(s) �
{
zt : E zt(s, π,Wt+1,T)[] ≤ 0 ∀π ∈ Π

}
, (4)

where Wt+1,T � (Wt+1, . . . ,WT). Therefore, the only
“primal” policies (i.e., policies for the original MDP)
for which a dual feasible penalty z could assign a
positive penalty in expectation are those that are not
in Π.

We now state a theorem from Brown et al. (2010)
that illuminates the dual boundmethod. The intuition
is best described from a simulation point of view: we
sample an entire future trajectory of the exogenous
information Wt+1,T, and using full knowledge of
this information, the optimal actions are computed.
It is clear that after taking the average of many such
trajectories, the corresponding averaged objective
value will be an upper bound on the value of the
optimal (nonanticipative) policy. The dual penalty is
simply a way to improve this upper bound by pe-
nalizing the use of future information; the only property
required in the proof of Theorem 1 is the definition of
dual feasibility. The proof is simple, and we repeat it
here so that we can state a small extension later in the
paper (in Proposition 1). The right-hand side of the
inequality below is a penalized perfect information
relaxation.

Theorem 1 (Weak Duality, Brown et al. 2010, p. 787). Fix a
stage t ∈ 7 and initial state s ∈ 6. Let π ∈ Π be a feasible
policy, and let zt ∈]t(s) be a dual feasible penalty, as defined
in (4). It holds that

Vπ
t (s) ≤ E max

a
ht s, a,Wt+1,T() − zt s, a,Wt+1,T()[][]

, (5)

where a � (at, . . . , aT−1).
Proof. By definition, Vπ

t (s) � E [ht(s, π,Wt+1,T)]. Thus,
it follows by dual feasibility that

Vπ
t (st) ≤ E ht s, π,Wt+1,T() − zt s, π,Wt+1,T()[]

≤ E max
a

ht s, a,Wt+1,T() − zt s, a,Wt+1,T()[][]
.

The second inequality follows by the property that
a policy using future information must achieve a
higher value than an admissible policy. In other
words, Π is contained within the set of policies that
are not constrained by nonanticipativity.

Note that the left-hand side of (5) is known as the
primal problem and the right-hand side is the dual

problem, so it is easy to see that the theorem is analogous
to classical duality results from linear programming.
The next step, of course, is to identify some dual fea-
sible penalties. For each t, let νt : 6 → R be any function
and define

ν̄τ(s, a,w) � ντ+1(sτ+1,t(s, a,w))
− E ντ+1(ft(sτ,t(s, a,w), aτ,Wτ+1)). (6)

Brown et al. (2010) suggest the following additive
form for a dual penalty:

zνt (s, a,w) � ∑T−1
τ�t

ν̄τ(s, a,w), (7)

and they show that this form is indeed dual feasible.
We refer to this as the dual penalty generated by ν � {νt}.
However, in situations where the standard dual

upper bound is too weak, a good choice of ν can
generate tighter bounds. It is shown that if the optimal
value function V∗

τ is used in place of ντ in (6), then the
best upper bound is obtained. In particular, a form of
strong duality holds: when Theorem 1 is invoked using
the optimal policy π∗ ∈ Π and ντ � V∗

τ, the inequality
(5) is achieved with equality. The interpretation of
the case where ντ � V∗

τ for all τ is that ν̄τ can be thought
of informally as the “value gained from knowing the
future.” Thus, the intuition behind this result is as
follows: if one knows precisely how much can be
gained by using future information, then a perfect
penalty can be constructed so as to recover the optimal
value of the primal problem.
However, strong duality is hard to exploit in prac-

tical settings, given that both sides of the equation
require knowledge of the optimal policy. Instead, a
viable strategy is to use approximate value functions V̄τ

on the right-hand side of (6) in order to obtain “good”
upper bounds on the optimal value function V∗

t on the
left-hand side of (5). This is where we can potentially
take advantage of the default policy of MCTS to im-
prove upon the standard dual upper bound; the value
function associated with this policy can be used to
generate a dual feasible penalty. We now state a spe-
cialization of Theorem 1 that is useful for our MCTS
setting. □

Proposition 1 (State–Action Duality). Fix a stage t ∈ 7 and
an initial state–action pair (s, a) ∈ 6 ×!. Assume that the
dual penalty function takes the form given in (6) and (7)
for some ν � {νt}. Then it holds that

Q∗
t(s, a) ≤ E ct(s, a,Wt+1) +max

a
ht+1(St+1, a,Wt+2,T)[[

− zνt+1(St+1, a,Wt+2,T)]], (8)

where St+1 � ft(s, a,Wt+1) and the optimization is over the
vector a � (at+1, . . . , aT−1).

Jiang et al.: Optimistic MCTS with Dual Bounds
6 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

Proof. Choose a policy π̃ (restricted to stage t onward)
such that the first decision function maps to a and the
remaining decision functions match those of the opti-
mal policy π∗:

π̃ � a, π∗
t+1, π

∗
t+2, . . . , π

∗
T−1

()
.

Using this policy and the separability of zνt given in (7),
an argument analogous to the proof of Theorem 1 can
be used to obtain the result.

For convenience, let us denote the dual upper bound
generated using the functions ν by

uνt (s, a) � E ct(s, a,Wt+1) +max
a

ht+1(St+1, a,Wt+1,T)[[
− zνt+1(St+1, a,Wt+1,T)]].

Therefore, the dual bound can be simply stated as
Q∗

t(s,a) ≤uνt (s,a). For a state–action node yt � (s0,a0, . . . ,
st,at) in the decision tree, we use the notation uν(yt) �
uνt (st, at). The proposed algorithm will keep estimates
of the upper bound on the right-hand side of (8) in
order to make tree expansion decisions. As the algo-
rithm progresses, the estimates of the upper bound
are refined using a stochastic gradient method. □

3. Primal-Dual MCTS Algorithm
In this section, we formally describe the proposed
Primal-Dual MCTS algorithm. We assume that ct and
ft are known for each t and the ability to generate
samples of {Wt} from its true distribution. This could
be accomplished in practice either through the
availability of a black-box simulator or a large data set.1

The core of the algorithm is MCTS with double
progressive widening (Couëtoux et al. 2011), except
in our case the dual bounds generated by the func-
tions νt play a specific role in the expansion step.
Let - � ∪t -t be the set of all possible state nodes,
and let = � ∪t =t be the set of all possible state–
action nodes. After each iteration n ≥ 0, our tree T n �
(n,-n,=n, V̄n, Q̄n, ūn, vn, ln) is described by the set -n ⊆
-of expanded state nodes, the set=n ⊆ =of expanded
state–action nodes, the value function approxima-
tions V̄n : - → R and Q̄n : = → R, the estimated up-
per bounds ūn : = → R, the number of visits vn : - ∪
= → N ∪ {0} to expanded nodes, and the number
of information relaxation upper bounds, or “look-
aheads,” ln : = → N ∪ {0} performed on unexpanded
nodes. The term “lookahead” is used to mean a sto-
chastic evaluation of the dual upper bound given in
Proposition 1. In other words, we “lookahead” into
the future and then exploit this information (thereby
relaxing nonanticipativity) to produce an upper bound.

The root node of T n, for all n, is x0 � s0. Recall that
any node contains full information regarding the path

from the initial state x0 � s0. Therefore, in this paper,
the edges of the tree are implied and we do not need
to explicitly refer to them; however, we will use the
following notation. For a state node x ∈ -n, let =n(x)
be the child state–action nodes (i.e., already expanded
nodes) of x at iteration n (dependence on T n is sup-
pressed) and let =̃n(x) be the unexpanded state–action
nodes of x:

=n(x) � {(x, a′) : a′ ∈ !x, (x, a′) ∈ =n},
=̃n(x) � {(x, a′) : a′ ∈ !x, (x, a′) /∈ =n(x)}.

Furthermore, we write =̃n � ∪x∈-n=̃n(x).
Similarly, for y � (s0, a0, . . . , st, at) ∈ =n, let -n(y) be

the child state nodes of y and let -̃n(y) be the unex-
panded state nodes of y:

-n(y) � {(y, s) : s ∈ 6, (y, s) ∈ -n},
-̃n(y) � {(y, s) : s ∈ 6, (y, s) /∈ -n(y)}.

For mathematical convenience, we have V̄0, Q̄0, ū0, v0,
and l0 taking the value zero for all elements of their
respective domains. For each x ∈ -n and y ∈ =n, let
V̄n(x) and Q̄n(y) represent the estimates of V∗(x) and
Q∗(y), respectively. Note that although V̄n(x) is de-
fined (and equals zero) prior to the expansion of x, it
does not gain meaning until x ∈ -n. The same holds
for the other quantities.
Each unexpanded state–action node yu ∈ =̃n is as-

sociated with an estimated dual upper bound ūn(yu).
A state node x is called expandable on iteration n if
=̃n(x) is nonempty. Similarly, a state–action node y is
expandable on iteration n if -̃n(y) is nonempty. In
addition, let vn(x) and vn(y) count the number of times
that x and y are visited by the selection policy (so vn

becomes positive after expansion). The tally ln(y)
counts the number of dual look-aheads performed at
each unexpanded state–action node. We also need
step sizes αn(x) and αn(y) to track the estimates V̄n(x)
generated by the default policy πd for leaf nodes x and
ūn(y) for leaf nodes y ∈ =̃n.
Lastly, we define two sets of progressive widening

iterations, 1x ⊆ {1, 2, . . .} and 1y ⊆ {1, 2, . . .}. When
vn(x) ∈ 1x, we consider expanding the state node x
(i.e., adding a new state–action node stemming from
x), and when vn(y) ∈ 1y, we consider expanding the
state–action node y (i.e., adding a downstream state
node stemming from y). Note that the progressive
widening formula given in Couëtoux et al. (2011) is a
particular choice of 1x and 1y; they suggest frequent
widening in early iterations and reducing this fre-
quency as the algorithm progresses.

3.1. Selection
Let πs be a selection policy that steers the algorithm
down the current version of the decision tree T n−1.

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 7

Each call toπs is independent from the rest of the system
anddependsonlyon the currentnodeand its child nodes
in the decision tree. We use the same notation for both
types of nodes: for x ∈ -n−1 and y ∈ =n−1, we have

πs x,T n−1() ∈ =n−1 x() and πs y,T n−1() ∈ -n−1 y
()

.

Let us emphasize that πs contains no logic for ex-
panding the tree and simply provides a path down the
partial tree T n−1. The most popular MCTS imple-
mentations (Chang et al. 2005, Kocsis and Szepesvári
2006) use the UCB1 policy (Auer et al. 2002) for πs

when acting on state nodes. TheUCB1 policy balances
exploration and exploitation by selecting the state–
ction node y by solving

πs x,T n−1()
∈ argmax

y∈=n−1(x)
Q̄n−1(y) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 ln

∑
y′∈=n−1(x) vn−1(y′)
vn−1(y)

√
. (9)

The second term is an exploration bonus that decreases
as nodes are visited. Other multiarmed bandit policies
may also be used; for example, wemay instead prefer to
implement an ε-greedy policy where we exploit with
probability 1 − ε and explore with probability (w.p.) ε:

πs x,T n−1()
�

argmax
y∈=n−1(x)

Q̄(y), w.p. 1 − ε,

a random element from =n−1(x), w.p. ε.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
When acting on state–action nodes, πs selects a down-
stream state node; for example, given yt � (s0, a0, . . . ,
st, at), the selection policy πs(yt,T n−1)may select xt+1 �
(s0, a1, . . . , st+1) ∈ -n−1(yt) with probability P(St+1 �
st+1 | yt), normalized by the total probability of
reaching expanded nodes -n(yt). We require the con-
dition that once all downstream states are expanded,
the sampling probabilities match the transition proba-
bilities of the original MDP. We now summarize the
selection phase of the primal-dual MCTS.

• Start at the root node and descend the tree using
the selection policy πs until one of the following is
reached: condition (S1), an expandable state node x
with vn(x) ∈ 1x, condition (S2), an expandable state–
action node ywith vn(y) ∈ 1y, or condition (S3), a leaf
state node x is reached.

• If the selection policy ends with conditions (S1)
or (S2), then we move on to the expansion step. Oth-
erwise, we move on to the simulation and backpro-
pagation steps.

3.2. Expansion
Case 1∎ First, suppose that on iteration n, the selec-

tion phase of the algorithm returns xnτe � (s0, a0, . . . , sτe)

to be expanded, for some τe ∈ 7. Given the possibly
large set of unexpanded actions, we first sample a subset
of candidate actions according sampling policy πa that
returns a random subset (e.g., each element of ! that
has not been expanded is independently included with
some probability):

πa xnτe ,T
n−1

()
⊆ a ∈ !xnτe

: xnτe , a
()

∈ =̃n xnτe

(){ }
.

Then, for each candidate, we perform a look-ahead
to obtain an estimate of the perfect information re-
laxation dual upper bound. The look-ahead is eval-
uated by solving a deterministic optimization prob-
lem on one sample path of the random process {Wt}.
In the most general case, this is a deterministic dy-
namic program. However, other formulations may
be more natural and/or easier to solve for some ap-
plications. If the contribution functions ct are linear,
then the deterministic problem could be as simple as a
linear program (e.g., the asset acquisition problem class
described in Nascimento and Powell (2009); see also
Al-Kanj et al. (2016) for an example where the infor-
mation relaxation is a mixed-integer linear program).
The resulting upper-bound estimate is then smoothed

with the previous estimate via a stepsize αn(xnτe , a),
which should be chosen to be a function of the number
of visits ln(xnτe , a). This smoothing process ensures con-
vergence to a true upper bound, even if any single es-
timate is noisy. We select the action with the highest
upper bound to expand, but only if the upper bound is
larger than the current best value function Q̄n. Other-
wise, we skip the expansion step because our estimates
tell us that none of the candidate actions are optimal. In a
typical MCTS implementation, a node is simply added
at random. The following steps comprise the expansion
phase of the primal-dual MCTS for xnτe .
• Let !˜n(xnτe) be an independent sample generated

by πa(xnτe ,T n−1). This is the subset of candidate un-
expanded actions that we will consider.
• Obtain a single sample pathwn

τe+1,T � (wn
τe+1, . . . ,w

n
T)

of the exogenous information process. For each can-
didate action a ∈ !˜n(xnτe), compute the optimal value of
the deterministic optimization “inner” problem of (8):

ûn xnτe , a
()

� cτe s, a,wn
τe+1

()
+max

a
hτe+1 Sτe+1, a,w

n
τe+1,T

()[
− zντe+1 Sτe+1, a,w

n
τe+1,T

()]
.

• For each candidate action a ∈ !˜n(xnτe), smooth the
newest observation of the upper bound with the
previous estimate via a stochastic gradient step:

ūn xnτe , a
()
� 1 − αn xnτe , a

()()
ūn−1 xnτe , a

()
+ αn xnτe , a

()
ûn xnτe , a
()

.

(10)

Jiang et al.: Optimistic MCTS with Dual Bounds
8 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

State–action nodes y elsewhere in the tree that are
not considered for expansion retain the same upper
bound estimates; that is, ūn(y) � ūn−1(y).

• Let an � argmaxa∈!̃n(xnτe) ū
n(xnτe , a)be the candidate

action with the best dual upper bound. If no candi-
date is better than the current best value, that is,
ūn(xnτe , an) ≤ V̄n−1(xnτe), then we skip this potential ex-
pansion and return to the selection phase to continue
down the tree.

• Otherwise, if the candidate is better than the
current best, that is, ūn(xnτe , an) > V̄n−1(xnτe), then we
expand action an by adding the node ynτe � (xnτe , an) as a
child of xnτe . We then immediately sample a down-
stream state xnτe+1 usingπ

s from the set -̃n(ynτe) and add
it as a child of ynτe (every state–action expansion
triggers a state expansion). After doing so, we are
ready to move on to the simulation and backpropagation
phase from the leaf node xnτe+1.
Case 2∎ Now suppose that we entered the expansion phase

via a state–actionnodeynτe . In this case,wesimply sample a
single state xnτe+1�(ynτe ,sτe+1) from -̃n(ynτe) such that

P Sτe+1 � sτe+1 | ynτe
()

> 0

and add it as a child of ynτe . Next, we continue to the sim-
ulation and backpropagation phase from the leaf node xnτe+1.

3.3. Simulation and Backpropagation
Weare nowat a leaf node xnτs � (s0, a0, . . . , sτs), for some
τs ≤ T. At this point, we cannot descend further into
the tree, so we proceed to the simulation and back-
propagation phase. The last two steps of the algorithm
are relatively simple: first, we run the default policy to
produce an estimate of the leaf node’s value and then
update the values “up” the tree via equations re-
sembling (2) and (3). The steps are as follows:

• Obtain a single sample pathwn
τs+1,T � (wn

τs+1, . . . ,w
n
T)

of the exogenous information process and, using the
default policy πd, compute the value estimate

V̂n xnτs

()
� hτs sτs , π

d,wn
τs+1,T

()
1{τs<T}. (11)

If τs � T, then the value estimate is simply the terminal
value of zero. The value of the leaf node is updated by
averaging the new observation with previous observations
according to the equation

V̄n xnτs

()
� V̄n−1 xnτs

()
+ 1

vn xnτs

() V̂n xnτs

()
− V̄n−1 xnτs

()[]
.

• After simulation, we backpropagate the infor-
mation up the tree. Working backward from the leaf
node, we can extract a path, or a sequence of state and
state–action nodes

xnτs ,y
n
τs−1, . . . , x

n
1 , y

n
0 , x

n
0 .

Each of these elements is a subsequence of the vector
xnτs � (s0, an0 , . . . , snτs), starting with s0. For t � τs − 1, τs −
2, . . . , 0, the backpropagation equations are

Q̄n ynt
() � Q̄n−1 ynt

() + 1
vn ynt
() ct snt , a

n
t ,w

n
t+1

()[
+ V̄n xnt+1

() − Q̄n−1 ynt
()]

, (12)
Ṽn xnt

() � Ṽn−1 xnt
() + 1

vn xnt
() Q̄n ynt

() − Ṽn−1 xnt
()[]

, (13)
V̄n xnt

() � 1 − λn() Ṽn xnt
() + λn max

yt
Q̄n yt

()
, (14)

where yt ∈ =n(xnt), and λn ∈ [0, 1] is a mixture pa-
rameter. Nodes x and y that are not part of the path
down the tree retain their values; that is,

V̄n(x) � V̄n−1(x) and Q̄n(y) � Q̄n−1(y). (15)
The first update (12) maintains the estimates of the
state–action value function as weighted averages of
child node values. The second update (13) similarly
performs a recursive averaging scheme for the state
nodes, and finally, the third update (14) sets the value
of a state node to be a mixture between the weighted
average of its child state–action node values and the
maximum value of its child state–action nodes.
The naive update for V̄n is to simply take the

maximum over the state–action nodes (i.e., following
the Bellman equation), removing the need to track Ṽn.
Empirical evidence fromCoulom (2007, p. 77), however,
shows that this type of update can create instability;
furthermore, the authors state that “the mean oper-
ator is more accurate when the number of simulations
is low, and the max operator is more accurate when
the number of simulations is high.” Taking this rec-
ommendation, we impose the property that λn ↗ 1 so
that asymptotically we achieve the Bellman update
yet allow for the averaging scheme to create stability
in the earlier iterations. The update (14) is similar to
the mix backup suggested by Coulom (2007) that
achieves superior empirical performance.
The end of the simulation and backpropagation

phase marks the conclusion of one iteration of the
primal-dual MCTS algorithm. We now return to the
root node and begin a new selection phase. Algo-
rithm 1 gives a concise summary of primal-dual
MCTS. Moreover, Figure 1 emphasizes several key
properties of the algorithm:
• The left tree shows that on some given itera-

tion n, state–action nodes of a state node (x0) may be
(1) added to the tree and have a fully expanded subtree,
(2) added to the tree and have a partially expanded
subtree, or (3) not added to the tree.
• The utilization of dual bounds allows entire

subtrees to be ignored, even in the limit (rightmost
node in the right tree), thereby providing potentially
significant computational savings.

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 9

• The optimal action at the root node (shown as the
second circle in the right tree) can be found without its
subtree necessarily being fully expanded.

Wewill analyze these properties in the next section,
but we first present an example that illustrates in
detail the steps taken during the expansion phase.

Algorithm 1 (Primal-Dual MCTS)

Input: An initial state node x0, a default policy πd, a
selection policy πs, a candidate sampling policy
πa, a step-size rule {αn}, a backpropagation
mixture scheme {λn}.

Output: Partial desicion trees {T n}.
for n � 1, 2, . . . do

1 run Selection phase with policy πs from x0 and
return either condition (S1) with xnτe , (S2) with
ynτe , or (S3) with xnτs .

if condition (S1) then
2 run Case 1 of Expansion phase with policy πa

at state node xnτe and return leaf node xnτs�xnτe+1.
else if condition (S2) then

3 run Case 2 of Expansion phase at state–action
node ynτe and return leaf node xnτs�xnτe+1.

end
4 run Simulation and Backpropagation phase from

leaf node xnτs .
end

Example 1 (Shortest Path with Random Edge Costs). In
this example, we consider applying the primal-Dual
MCTS to a shortest-path problem with random edge
costs (note that the algorithm is stated for maximiza-
tion, while the shortest path is a minimization prob-
lem). The graph used for this example is shown in
Figure 2(a). An agent starts at vertex 1 and aims to
reach vertex 6 at the minimum expected cumulative
cost. The cost for edge eij (from vertex i to j) is dis-
tributed 1(μij, σ2ij) and independent from the costs of

other edges and independent across time. At every de-
cision epoch, the agent chooses an edge to traverse out
of the current vertex without knowing the actual costs.
After the decision is made, a realization of edge costs is
revealed, and the agent incurs the one-stage cost asso-
ciatedwith the traversed edge. Vertex 6 is “absorbing” in
the sense that all subsequent transitions are costless, and
the agent stays at vertex 6. For this particular shortest-
path problem, the number of steps needed to reach
vertex 6 is either two, three, or four; thus, the problem
can be formulated as a finite-horizon MDP with T � 4.

The means of the cost distributions are also shown
in Figure 2(a), and we assume that σij � 0.25. The
optimal path is 1 → 4 → 6, which achieves an ex-
pected cumulative cost of 3.5. Consider applying
primal-dual MCTS at vertex 1, meaning that we are
choosing between traversing edges e12, e13, e14, and e15.
The shortest paths starting with e12, e13, e14, and e15 are
1 → 2 → 4 → 6 (cost of 4), 1 → 3 → 5 → 6 (cost of 5),
1 → 4 → 6 (cost of 3.5), and 1 → 5 → 6 (cost of 5.5),
respectively.Hence,Q∗(1,e12)�4,Q∗(1,e13)�5,Q∗(1,e14)�
3.5, and Q∗(1,e15) � 5.5.
In this example, let us assume for simplicity that the

sampling policy πa for the expansion step always
returns the set of all actions.We now illustrate several
consecutive expansion steps (thismeans that there are
nonexpansion steps in between that are not shown)
from the point of viewof vertex 1,where there are four
possible actions, e1i for i � 2, 3, 4, 5. On every expan-
sion step, we use one sample of exogenous information
(costs) to perform the information relaxation step and
compute a standard dual (lower) bound. For simplicity,
suppose that on every expansion step, we see the same
sampleof costs that are shown inFigure 2(b). Byfinding
the shortest paths in the graphwith sampled costs, the
sampled dual bounds are thus given by ūn(1, e12) �
3.58, ūn(1, e13) � 5.34, ūn(1, e14) � 3.81, and ūn(1, e15) �
5.28 (assuming that the initial step size for averaging

Figure 1. (Color online) Properties of the Primal-Dual MCTS Algorithm

Jiang et al.: Optimistic MCTS with Dual Bounds
10 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

the upper bounds αn is 1). Figure 3 illustrates the
expansion process.

1. In the first expansion, nothing has been expanded,
so we simply expand edge e12 because it has the lowest
dual bound. Note that this is not the optimal action;
the optimistic dual bound is the result of noise.

2. After some iterations, learning has occurred for
Q̄n(1, e12), and it is currently estimated to be 3.97. We
expand e14 because it is the only unexpanded action
with a dual bound that is better than 3.97. This is the
optimal action.

3. In the last step of Figure 3, no actions are ex-
panded because their dual bounds indicate that they
are no better than the currently expanded actions
using solid lines to indicate expanded actions and
dotted lines to indicate unexpanded actions.

Before we move on to the convergence analysis, we
pointout that, inprinciple, ouralgorithmcouldhaveused
any valid upper bound on the value function. For ex-
ample, under the assumption that a stochastic model of
the system is known, Chen and Farias (2013) derive a
certainty equivalent upper bound for a dynamic pricing
problem based on Jensen’s inequality. Unlike the in-
formation relaxation method, this particular bound is
not easily applicable if the decisionmaker does not have
access to the true distributions of random quantities in
the system. Hence, our paper focuses specifically on
integrating the noisy sampled information relaxation
bounds into MCTS and proving the consistency of the
new algorithm.

4. Analysis of Convergence
Let T ∞ be the limiting partial decision tree as iterations
n → ∞. Similarly, we use the notation -∞, -∞(y),
-̃∞(y), =∞, =∞(x), and =̃∞(x) to describe the random
sets of expanded and unexpanded nodes of the tree
in the limit, analogous to the notation for a finite it-
eration n. Given that there are afinite number of nodes
and that the cardinality of these sets is monotonic
with respect to n, it is clear that these limiting sets are
well defined.
Recall that each iteration of the algorithm generates

a leaf node xnτs , which also represents the path down
the tree for iteration n. Before we begin the conver-
gence analysis, let us state a few assumptions.

Assumption 1. Assume that the following hold:
a. There exists an εs > 0 such that given any tree T

containing a state node xt ∈ - and a state–action node yt �(xt, at) with at ∈ !xt , it holds that P(πs(xt,T) � yt) ≥ εs.
b. Given a tree T containing a state–action node yt, if

all child state nodes of yt have been expanded, then

P(πs(yt,T) � xt+1) � P St+1 � st+1 | yt
()

,

where xt+1 � (yt, st+1). This means that sampling
eventually occurs according to the true distribution of
St+1.
c. There exists an εa > 0 such that, given any tree T

containing a state node xt ∈ - and action at ∈ !xt , it holds
that P(at ∈ πa(xt,T)) ≥ εa.
d. There are an infinite number of progressive widening

iterations: |1x| � |1y| � ∞.

Figure 2. Shortest-Path Problem with Random Edge Costs

Note. (a) Mean costs; (b) sample costs.

Figure 3. (Color online) Expansion Steps for the Example Problem

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 11

e. For any state node xt ∈ - and action at, the step size
αn(xt, at) takes the form

αn(xt, at) � α̃n 1{xt∈xnτs } 1{vn(xt)∈1x} 1{at∈πa(xt,T n−1)},

for some possibly random sequence {α̃n}, with the notation
xt ∈ xnτs used to indicate that xt is a path contained in xnτs .
Thus, whenever the dual look-ahead update (10) is not
performed, the step size is zero. In addition, the step-size
sequence satisfies

∑∞
n�0

αn(xt, at) � ∞ a.s. and

∑∞
n�0

αn(xt, at)2 < ∞ a.s.,

the standard stochastic approximation assumptions.
f. As n → ∞, the backpropagation mixture parameter

λn → 1.

An example of a step-size sequence that satisfies
Assumption 1(e) is 1/ln(xt, at). We now use various
aspects of Assumption 1 to demonstrate that ex-
panded nodes within the decision tree are visited
infinitely often. This is, of course, crucial in proving
convergence, but because of the use of dual bounds,
we only require that the limiting partial decision tree be
visited infinitely often. Previous results in the liter-
ature require this property on the fully expanded tree.

Lemma 1. Under Assumption 1, the following statements
hold:

a. Let x ∈ - be a state node such that P(x ∈ -∞) > 0.
Then vn(x) → ∞ a.e. on {x ∈ -∞}.

b. Let y ∈ = be a state–action node such that P(y ∈
=∞) > 0. Then vn(y) → ∞ a.e. on {y ∈ =∞}.

c. Also, let y′ ∈ = be such that P(y′ ∈ =̃∞) > 0. Then
ln(y′) → ∞ a.e. on {y′ ∈ =̃∞}; that is, the dual look-ahead
for the unexpanded state–action node y′ ∈ =̃∞(x′) is per-
formed infinitely often.

Proof. See Appendix A.

The next lemma reveals the central property of
primal-dual MCTS (under the assumption that all
relevant values converge appropriately): for any ex-
panded state node, its corresponding optimal state–
action node is expanded. In other words, if a particular
action is never expanded, then it must be suboptimal.

Lemma 2. Consider a state node xt ∈ -. Consider the event
on which xt ∈ -∞ and the following hold:

a. Q̄n(yt) → Q∗(yt) for each expanded yt ∈ =∞(xt).
b. ūn(y′t) → uν(y′t) for each unexpanded y′t ∈ =̃∞(xt).
Then, on this event, there is a state–action node y∗t �(xt, a∗t) ∈ =∞(xt) associated with an optimal action a∗t ∈

argmaxa∈! Q∗
t(st, a).

Sketch of Proof. The essential idea of the proof is as
follows. If all optimal actions are unexpanded and the
assumptions of the lemma hold, then, eventually, the
dual bound associated with an unexpanded optimal
action must upper-bound the values associated with
the expanded actions (all of which are suboptimal).
Thus, given the design of our expansion strategy to
explore actions with high dual upper bounds, it follows
that an optimal action must eventually be expanded.
Appendix A gives the technical details of the proof.

We are now ready to state the main theorem, which
shows the consistency of the proposed procedure.
We remark that it is never required that -∞

t � -t or
=∞

t � =t. In other words, an important feature of
primal-dual MCTS is that the tree does not need to be
fully expanded in the limit, as we alluded to earlier
in Figure 1.

Theorem 2. Under Assumption 1, the primal-dual MCTS
procedure converges at the root node (initial state) in two
ways:

V̄n(x0) → V∗(x0) a.s. and lim sup
n→∞

argmax
y∈=n(x0)

Q̄n(y)

⊆ argmax
y0�(x0,a)

Q∗(y0) a.s.,

meaning that the value of the node x0 converges to the
optimal value and that an optimal action is both expanded
and identified.

Sketch of Proof. The proof of the main theorem places
the results established in the previous lemmas in an
induction framework that moves up the tree, starting
from state nodes xT ∈ -T. We first establish the fol-
lowing convergence results:

Q̄n(yt) → Q∗(yt) 1{yt∈=∞
t } a.s.,

ūn(yt) → uν(yt) 1{yt∈=̃∞
t } a.s.,

after which Lemma 2 can be invoked to conclude
V̄n(xt) → V∗(xt) 1{xt∈-∞

t } a.s. The full details are given in
Appendix A.

In addition, let us comment that Assumption 1(e)
could also be replaced with an alternative condition
on the selection policy; for example, if the visits
concentrate on the optimal action asymptotically,
then the average over the state–action values would
converge to the optimal value. Chang et al. (2005) take
this approach by using results from the multiarmed
bandit literature (Bubeck andCesa-Bianchi 2012). The
Chang et al. (2005) method, although similar toMCTS
(and indeed serving as inspiration for MCTS), differs
from our description of MCTS in a crucial way: the
levels or stages of the tree are never updated together.
The algorithm is a one-stage method that calls itself in

Jiang et al.: Optimistic MCTS with Dual Bounds
12 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

a recursive fashion starting from t � T. When nodes
at a particular stage t are updated, the value function
approximation for stage t + 1 has already been fixed;
hence, results from the multiarmed bandit literature
can be directly applied. Unfortunately, this is not the
case for MCTS, where updates to every level of the
tree are made at each iteration (because all nodes
along a specific path to a leaf node are updated).

5. Driver Behavior on a
Ride-Sharing Platform

In this section, we show numerical results of applying
primal-dual MCTS on a model of driver behavior on
a ride-sharing platform (e.g., Uber and Lyft). Our
motivation for studying this problem is because of the
importance of incorporating the aspect of driver
decisions into fleet simulation models. Such large-
scalemodels of the entire system operations can aid in
making platform-level decisions, including (1) spatial
dynamic pricing for riders (Uber’s “surge pricing”),
(2) dynamic wages/incentives for drivers (Uber’s
“earnings boost”), and (3) the integration of auton-
omous vehicles with traditional human drivers (e.g.,
in Pittsburgh, Pennsylvania). Because optimal de-
cisions from the driver’s point of view intimately
depend on parameters (e.g., prices) determined by the
platform,we envision that the problem studied here is
a crucial building block within a higher-level simu-
lation model. Experimental testing suggests that the
new version of MCTS produces deeper trees and
reduced sensitivity to the size of the action space.

5.1. MDP Model
The operating region is represented as a connected
graph consisting of a set of locations+ � {1, 2, . . . ,M}.
Adjacent locations i, j ∈ + are connected by an edge.
Let Lt ∈ + be the location of the driver at time t. The
units of time (decision epoch) are in increments of a
“minimum trip length,” where a trip between adja-
cent nodes requires one time increment. A trip request
is an ordered pair r � (i, j), where i is the starting lo-
cation and j is the destination location. The status σt
of the driver can take several forms: “idle,” “empty
car moving toward destination j,” “en route to trip
r � (i, j),” and “with passenger, moving toward des-
tination j.” Respectively, these statuses are encoded
as σt � (0,Ø), σt � (0, j), σt � (1, (i, j)), and σt � (2, j).
The second element of σt is interpreted as the current
“goal” of the driver.

An idle driver advances through the following
sequence of events: (1) at the beginning of period t, the
driver observes a random set of requested trips 5t;
(2) the decision ismade to either accept one of the trips
in 5t or reject all of them and move to a new location
in a set of locations +(Lt) surrounding Lt; and (3) the

driver’s status is updated. If the driver is not idle
(i.e., σt �� (0,Ø)), then there is no decision to be made,
and the current course is maintained. We assume that
the stochastic process describing the sets of trip re-
quests {5t} is independent across time and that
|5t| ≤ 5max. Thus, the state variable of the MDP is
St � (Lt, σt,5t), which takes values in a state space 6.
The set of available decisions is given by

!St �
+(Lt) ∪5t, if σt � (0,Ø),
Ø, otherwise.

{
Suppose that there is a well-defined choice of a
shortest path between any two locations i and j given
by a sequence of locations along the path p(i, j) �
(pk(i, j))d(i,j)k�1 ∈ +d(i,j), where pk(i, j) ∈ + is the kth location
along the path and d(i, j) is the distance of the shortest
path between i and j. Naturally, pd(i,j)(i, j) � j. Let at ∈
!St be the decision made at time t. The transition
model of the driver’s location is

Lt+1 � fL(St, at)

�
p1(Lt, at), if σt � (0,Ø), at ∈ +(Lt),
p1(Lt, i), if σt � (0,Ø), at � (i, j) ∈ 5t or

σt � (1, (i, j)),
p1(Lt, j), if σt � (0, j) or σt � (2, j).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Similarly, we can write the transition model for the
driver’s status as

σt+1 � fσ(St, at)

�

(0,Ø), if [σt � (0, j) or σt � (2, j)] and
d(Lt, j) � 1,

(0,Ø), if σt � (0,Ø), at∈+(Lt), d(Lt, j)�1,
(0, j), if σt � (0,Ø), at∈+(Lt), d(Lt, j)>1,
(1, (i, j)), if [σt � (0,Ø), at � (i, j) ∈ 5t or

σt � (1, (i, j))] and d(Lt, i) > 1,
(2, j), if [σt � (0,Ø), at � (i, j) ∈ 5t or

σt � (1, (i, j))] and d(Lt, i) � 1,
(2, j), if σt � (2, j), d(Lt, j) > 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Suppose that the base fare is wbase and that the cus-
tomer pays a random location-dependent wdist(i) per
unit distance traveled. The driver is profit maximiz-
ing and the contribution function is revenue with per
mile travel costs c (e.g., gas, vehicle depreciation)
subtracted whenever the driver moves locations:

ct(St, at) � wbase + wdist(i) d(i, j)
[] · 1{σt�0, at � (i,j) ∈5t}
− c · 1{Lt ��fL(Lt,at)}.

The objective function is the previously stated (1),
with ct(St, π(St)) replacing the contribution function

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 13

ct(St, π(St),Wt+1). Let s � (l, σ,5), and the correspond-
ing Bellman optimality condition is

V∗
t (s) � max

a∈!s

E ct(s, a) + V∗
t+1(fL(s, a), fσ(s, a),5t+1)[]

,

for all s ∈ 6, t ∈ 7,

V∗
T(s) � 0, for all s ∈ 6.

Intuitively, the aim of the driver is to position the ve-
hicle in the city and accept trip requests so that reve-
nues can be collected without significant travel costs.

5.2. Numerical Results
Our problem setting is a region in New Jersey, and the
experiments are performed on a data set of all trips
taken in one day throughout the state on a particular
taxi service. We consider the situation where each
unit of time corresponds to 15 minutes, that is, the
time it takes to travel the distance between any two
adjacent locations. The driver is assumed to work for
5 hours a day, giving us T � 20. Over this time ho-
rizon, the data set contains a total of 850 trips. The
graph is built using realistic geography; each location
in our model represents a 0.5 × 0.5 square mile area
over a region of approximately 40 × 60 squaremiles in
New Jersey. At each time step, the requests shown to
the driver in the next time period 5t+1 are sampled
uniformly from the data set. The fare parameters are
wbase � 2.40 and c � 0.05. For most locations i, we set
wdist(i) � 0.25, but for some high-density locations, we
mimic surge pricing by letting wdist(i) be randomly
drawn between 0.25 and 5.0. We created a range
of MDP problem instances of varying difficulty by
changing the size of the action space; these are labeled
D10, D15, . . . , D100, where Dx is a problem with x ac-
tions per period.2 For instances Dx with x ≤ 50, we
used an action space of Rmax � x sampled trips,
whereas for x > 50, we used an action space compris-
ing Rmax � 50 sampled trips and x − 50 nearby loca-
tions for relocation with an empty car.

Given the size of the problem, standard MDP
techniques for computing the optimal policy are in-
tractable, evenwith the availability of a simulator. On
each of the 19 problem instances Dx, we compare the
performances (total profit) of four policies:

• Closest-E. The first policy, called closest-explore, is
designed to be simple so that it can be used as the
default policy in tree search. A naive strategy is for the
driver to simply accept the closest trip in order to
minimize the cost of driving to the starting location of
the trip. This is motivated by the closest driver policy
for the case where drivers are fully controlled by the
platform (Ozkan and Ward 2017). We added an ex-
ploration component to this policy so that, 10% of the
time, a random trip is selected. We did not allow the
policy to reject all trips andmove to a nearby location;

thus, even for x > 50, the policy will always return
a trip.
• S-RH. The next policy we consider is a sampled

rolling horizon (S-RH) approach, much in the spirit
of the resolving/reoptimization policies found in
Chand et al. (2002), Jasin and Kumar (2012), Chen and
Farias (2013), and Bertsimas et al. (2017), where a
deterministic approximation of the future is solved
in each period, and the first decision is implemented.
However, in many of these models, certain aspects of
the transition model are used in the deterministic
model (e.g., stochastic elements are replaced with
their means). Our approach, within the black-box
simulator assumption, where the transition model
is not known, solves a deterministic dynamic pro-
gram given a sample of future ride requests and then
implements the first decision.
• UCT. The upper confidence trees (UCT) algorithm

of Kocsis and Szepesvári (2006) is our “baseline”
version of MCTS. The selection policy πs is chosen to
be UCB1, as given in (9). The default policy πd is the
closest-E policy discussed earlier. The UCT policy is
run for 100 iterations per time period. Because we
limited the number of iterations per period, we set
λn � 0 and allowed expansions on every iteration:
1x � 1y � N.
• PD and PD-0. Lastly, we show two versions of the

primal-dual version of MCTS proposed in this paper,
one with and one without the penalty, PD and PD-0,
respectively. For both versions, any parameters that
overlapwith UCT’s parameters are kept the same (see
above). In particular, 100 iterations are used per time
period, and we again use the closest-E default policy.
For PD, the penalty function in the information re-
laxation is computed by approximating the value
function associated with the closest-E policy: we
build regression models to the results of many sim-
ulations of the default policy to obtain ντ ≈ Vπd

τ . The
expected value in (6) is estimated using an unbiased
sample average approximationwithfive sampled sets
of trip requests; see Brown et al. (2010, proposition
2.3(iv)), which shows the validity of this method. Full
details of the regression are given in Appendix B.
Note that these value function approximations are
not necessarily realizable by any particular policy and
are simply approximations of Vπd

t , similar to the
approach of Haugh and Kogan (2004). A more direct
approach, along the lines of Andersen and Broadie
(2004), is to run online simulations of the default
policy whenever the penalty is computed; however,
this would dramatically increase the computation
time of the tree search. See Brown et al. (2010) and
Desai et al. (2012) for further discussion on these
approaches. Furthermore, πa samples each unex-
panded action with probability 0.1, and the step size
αn(xt, at) is chosen to be 1/ln(xt, at).

Jiang et al.: Optimistic MCTS with Dual Bounds
14 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

Each of the four policies was run 50 times on each
of the 19 problem instances. As discussed earlier, the
three tree search methods are compared using a fixed
number of iterations. Table 1 shows the average profits
along with standard errors for each combination. We
then estimated upper bounds based on the dual ap-
proach for each instance. Figure 4 shows the fraction
of the upper bound achieved by each of the three look-
ahead policies and the associated 95% confidence
intervals for D10, D20, . . . , D100 (we exclude half the
benchmark problems and the closest-E results from
Table 1 from the plot for presentation purposes).

5.3. Discussion
The relatively good performance of the four look-
ahead policies (PD, PD-0, S-RH, and UCT), as shown
in Table 1 and Figure 4, demonstrates that a non-
myopic approach is worthwhile for our class of
MDPs. Although closest-E performs poorly on its
own, it is clear that it can serve as a useful default
policy for a tree search algorithm (PD, PD-0, or UCT).
Figure 5 illustrates the percentage improvement of
the three tree search methods over closest-E, the default
policy for all three, via a simple ratio estimate (ratio of the
means) across the problem instances. We notice that the
tree search methods start with approximately 100%
improvement for the smaller problems D10 and D15.
However, we see that the penalized PD algorithm is
best equipped to handle the larger problems.

The same trend can be seen when directly com-
paring PD versus either PD-0 or UCT in Figure 4.
For problemswith fewer than 30 actions, the methods
behave similarly, with UCT even occasionally

outperforming the other two. This is not necessarily
surprising because all methods are able to explore the
tree in some depthwhen the number of actions is small.
When there are 60 actions or more, the ability to ignore
actions via the dual bounds (and thus reduce the tree’s
branching factor) seems to become particularly im-
portant, and the difference in performance becomes
noticeable. For most cases (with a few exceptions),
PD-0 outperforms UCT, suggesting that even a loose
upper bound can be beneficial.
Next, we comment on the performance of S-RH

versus UCT seen in Figure 4. In smaller problems,
UCT is superior, but its advantage over S-RH de-
grades quickly as the problem size increases. The
crucial point seems to be that with limited iterations
and a large action space, UCT is unable to explore
deep decision trees, so the weaknesses of the default
policy become pronounced. By contrast, the infor-
mation relaxation approach of S-RH allows it to ex-
plore a decision tree until the end of the horizon
(albeit a tree with an incomplete view of the future).
These observations match the findings of Bertsimas
et al. (2017), who also provided comparisons show-
ing that a rolling horizon approach works better than
an MCTS approach on problems with large action
spaces. The takeaway here is that the MCTS method
can be augmented with sampled dual bounds to
become competitive (and even outperform) a par-
ticular rolling horizon method.
The central processing unit (CPU) time required for

one iteration of UCT is very low, at around 0.005
second, whereas the deterministic dynamic programs
solved for the information relaxation bound in PD

Table 1. Profit Statistics over 50 Independent Runs of Each Policy

PD PD-0 UCT S-RH Closest-E

Instance Mean SE Mean SE Mean SE Mean SE Mean SE

D10 124.41 8.37 136.44 21.21 120.73 7.88 98.84 9.58 61.54 1.83
D15 128.64 9.31 115.35 19.60 131.57 10.48 101.19 9.20 61.84 1.74
D20 108.09 9.56 133.75 19.87 123.44 9.56 88.99 8.41 59.95 1.79
D25 122.77 9.51 127.28 20.48 112.99 9.38 108.39 10.39 58.40 1.06
D30 121.82 10.02 132.45 18.10 112.84 10.09 97.63 10.72 63.05 2.13
D35 135.88 10.86 123.95 19.28 107.13 9.88 90.03 8.53 62.40 3.10
D40 135.40 11.18 102.02 18.50 122.85 12.17 100.12 10.42 61.03 1.65
D45 139.66 11.13 115.66 20.72 106.73 9.60 110.46 9.76 60.74 1.61
D50 139.57 10.43 117.10 21.69 105.90 10.36 86.69 8.23 64.12 3.45
D55 123.40 10.31 120.27 21.40 109.07 10.90 98.20 8.89 61.00 1.92
D60 141.16 10.96 116.72 20.60 93.44 10.18 110.38 10.45 61.10 1.77
D65 143.54 11.18 98.41 18.27 98.51 9.16 100.76 9.81 60.67 1.62
D70 133.51 11.77 112.65 18.72 89.50 8.62 103.02 10.03 62.71 2.40
D75 141.71 11.87 108.62 20.84 91.24 10.22 118.41 11.75 63.08 2.21
D80 137.60 11.34 104.02 19.47 94.32 10.90 114.75 10.84 61.86 2.04
D85 118.68 11.59 118.17 19.07 106.94 10.77 95.75 9.69 61.35 1.79
D90 155.02 11.20 95.13 18.81 92.16 10.85 110.73 10.82 62.58 2.14
D95 141.02 11.38 109.53 19.94 86.74 8.78 114.61 10.30 60.16 1.37
D100 139.39 10.85 109.15 18.34 89.23 9.92 125.36 10.86 62.30 1.94

Note. SE, standard error.

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 15

and PD-0 increase the CPU time to approximately
0.035 second per iteration (assuming that the penalty
function has been precomputed offline).3 Certainly,
the proposed method is not competitive with UCT in
terms of CPU time, and in general, its effectiveness
when measured in terms of CPU time will be highly
problem dependent. It is important to note that our
experimental setup has a fast default policy along
with a fast simulator for generating trip request tra-
jectories (because it simply samples from a data set). In
otherwords, the fixed cost per iteration ofMCTS is low,
so the time needed to compute the information re-
laxation computation dominates the total CPU time.

However, we anticipate that in real, practical sce-
narios where the “fixed cost per iteration of MCTS”
might be large—say, either (1) the default policy is
complex and expensive to evaluate or (2) sampling
from the simulator is expensive—our proposed dual
bound approach can be especially valuable because
the overhead of computing dual bounds is relatively
diminished. In these situations where the dual bound
approach is warranted, the CPU time required for
computing the upper bounds can be furthermitigated

via parallelization. For example, several search threads
can be simultaneously executed on the same tree, as
is done in Silver et al. (2016) (with special care taken
for the backpropagation steps). Alternatively, we can
use a standard tree search with the dual bounds up-
dated in a separate background process. Because the
primary focus of this paper is to introduce and ana-
lyze a new algorithmic strategy, we leave the inves-
tigation ofmore sophisticated implementation details
to future work.

6. Conclusion
In this paper, we study a new algorithm called primal-
dual MCTS that attempts to address (1) the fact that
convergence of MCTS requires the full expansion
of the decision tree and (2) the challenge of apply-
ing MCTS on problems with large action spaces
(Bertsimas et al. 2017). To do so, we introduce the idea
of using samples of an information relaxation upper
bound to guide the tree expansion procedure of
standard MCTS. It is shown that primal-dual MCTS
converges to the optimal action at the root node, even
if the entire tree is not fully expanded in the limit (an

Figure 5. (Color online) Improvement of Tree Search Policy over Default Policy

Figure 4. (Color online) The 95% Confidence Intervals of % Optimality

Jiang et al.: Optimistic MCTS with Dual Bounds
16 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

assumption typically required byMCTS convergence
results). We also introduce the application of opti-
mizing a single driver operating on a ride-sharing
network subject to a real data set of taxi rides oc-
curring over a day in New Jersey. The empirical re-
sults indicate that the primal-dual MCTS approach
outperforms a UCT policy, a sampled rolling horizon
policy, and a simple myopic policy based on the
closest trip.

Acknowledgments
The authors are very grateful to the area editor, the associ-
ate editor, and the reviewers for their valuable comments
throughout the review process. Their detailed readings of the
paper have helped to improve its presentation, clarity, and
notation in many ways; the review team also helped to
identify several issues that were overlooked. The first two
authors contributed equally to this work.

Appendix A. Proofs

Proof of Lemma 1. First, because all iterations of MCTS
begin at the root node, it is clear that x0 ∈ -∞ and vn(x0) → ∞
(the base case). We assume that for some t, part (a) holds for
any xt ∈ -t (induction hypothesis). To prove the result by
induction, we must show the following: (1) for any yt ∈ =t,
parts (b) and (c) of the lemma hold, and (2) for any xt+1 ∈ -t+1,
part (a) holds.We show the proof of (1) for part (b) of the lemma.

Let yt � (xt, at) ∈ =t, where P(yt ∈ =∞) > 0. Define9(xt) to
be the random set of iterations at which xt is visited.We also
let η(yt) be the iteration number at which yt is added to
the tree. Note that a subset of the event {yt is visited on
iteration n} is {n∈9(xt), vn(xt) �∈1x, πs(xt,T n−1) � yt}, which
is interpreted as (1) a visit to xt on an iteration that is not an
expansion step and (2) the independent call to the selection
policy πs resulting in yt. The two events are not equal be-
cause another way to visit yt is when vn(xt) ∈ 1x, but the
potential expansion step is skipped after the dual bound
update, and yt is selected afterward.

Consider a fixed j > 0 at which yt is added to the tree and
an iteration n > j. Let^n−1 � σ(T 0,T 1, . . . ,T n−1). By the fact
that xt exists in the tree by iteration n (if yt is added at j, then
xt must have been added prior to j), we can repeatedly apply
Assumption 1, (a) and (b), down the tree to conclude that
the probability of n ∈ 9(xt) can be lower-bounded by some
positive constant (note that by Case 2 of the expansion step,
we know that only states that can be reached with positive
probability are added). Applying Assumption 1(a) and the
independence of the sampling policyπs, we can deduce that
whenever vn−1(xt) + 1 �∈ 1x, there exists some constant δ > 0,
where

P n∈9 xt(), vn xt() /∈1x, π
s xt,T n−1()� yt |η yt

()� j,^n−1()
> δ.

Because vn−1(xt) + 1 �∈ 1x occurs infinitely often by the in-
duction hypothesis, it follows that∑∞

n�j+1
P n ∈ 9 xt(), vn xt() /∈ 1x, π

s xt,T n−1()(
� yt | η yt

() � j,^n−1) � ∞.

Applying the extended Borel–Cantelli lemma (see
Breiman 1992, corollary 5.29) with the probability mea-
sure P(· | η(yt) � j), we can conclude that yt is visited in-
finity often; that is, vn(yt) → ∞ a.e. on the event {η(yt) � j}.
The event that yt is expanded can be written {yt ∈ =∞} �⋃

j{η(yt) � j}, so the preceding argument can be repeated
for each j, and we conclude that vn(yt) → ∞ on {yt ∈ =∞}.
We omit the proofs of (1) part (c) and (2) because they
can be shown using analogous arguments and Assump-
tion 1(c). □

Proof of Lemma 2. Consider any ω in the event defined in
the statement of the lemma, and fix this ω throughout this
proof. Suppose for this sample path ω that there is an opti-
mal state–action node that is never expanded; that is, y∗t �(xt, a∗t) ∈ =̃∞. By Lemma 1, we know that ln(y∗t) → ∞, and let
us denote the set of iterations for which y∗t ∈ πa(xt,T n−1) by
1x(xt, y∗t) ⊆ 1x (i.e., iterations for which it is a candidate ac-
tion). Then because this optimal action was never expanded,
it must hold true that for any iteration n ∈ 1x(xt, y∗t), the
dual bound approximation does not exceed the current value
approximation (i.e., current best):

ūn(y∗t) ≤ 1 − λn−1()
Ṽn−1(xt) + λn−1 max

yt∈=n−1(xt)
Q̄n−1(yt).

Because |1x(xt, y∗t)| � ∞, we may pass to the limit and use
conditions (a) and (b) in the statement of the lemma along
with Assumption 1(e) to obtain uν(y∗t) ≤ maxy∈=∞(xt) Q∗(y).
Because we have made the assumption that=∞(xt) does not
contain an optimal action,

uν(y∗t) ≤ max
yt∈=∞(xt)

Q∗(yt) < V∗(xt). (A.1)

By contrast, applying Proposition 1 to the optimal state–
action pair y∗t , we see that

uν(y∗t) ≥ Q∗(y∗t) � V∗(xt),

a contradiction with (A.1). Thus, we conclude that our
original assumption was incorrect, and it must be the case
that an optimal state–action node is expanded in the limit
for ourfixedω. Because the sample pathωwas arbitrary, the
conclusion holds for any ω ∈ A. □

Proof of Theorem 2. Before moving on to the main proof, we
state a result that will be useful later on. Let yt ∈ =. For any k0 ∈ N,
let αk

k0 (yt) be a step size where

∑∞
k�k0+1

αk
k0 (yt) � ∞ and

∑∞
k�k0+1

αk
k0 yt
()()2

< ∞ a.s.

For any initial value Q̄k0
k0
(yt), consider the iteration

Q̄k+1
k0 (yt) � Q̄k

k0 (yt) + αk+1
k0 (yt) V̄k((yt, St+1)) − Q̄k

k0 (yt)
[]

,

for k ≥ k0, (A.2)

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 17

where St+1 ∼ P(· |yt) and V̄k(y) → V∗(y) a.s. for every y. We
can write

V̄k((yt, St+1)) − Q̄k
k0 (yt)

� Q∗(yt) − Q̄k
k0 (yt) + V∗((yt, St+1)) −Q∗(yt)

+ V̄k((yt, St+1)) − V∗((yt, St+1)).
Because V̄k((yt, St+1)) − V∗((yt, St+1)) → 0 a.s. and E [V∗((yt,
St+1)) −Q∗(yt) | yt] � 0, it follows by Kushner and Yin (2003,
theorem 2.4) that

Q̄k
k0 (yt) → Q∗(yt) a.s. (A.3)

The conditions of Kushner and Yin (2003, theorem 2.4) are
not difficult to check given our setting with bounded
contributions.

With this auxiliary result in mind, we move on to the
proof of Theorem 2. We aim to show via induction that, for
any xt+1 ∈ -t+1,

V̄n(xt+1) → V∗(xt+1) 1{xt+1∈-∞
t+1} a.s. (A.4)

This means that convergence to the optimal value function
occurs on the event that the node is expanded. Otherwise,
the value function approximation stays at its initial value of
zero. We proceed by backward induction from t + 1 � T.
The base case is clear by (11) and because V∗(xT) � 0 for
xT ∈ -T . The induction hypothesis is that (A.4) holds for an
arbitrary t + 1.

In order to complete the inductive step, our first goal is to
show that the state–action value function converges on the
event that the node yt � (xt, at) ∈ =t is expanded:

Q̄n(yt) → Q∗(yt) 1{yt∈=∞
t } a.s. (A.5)

We will give an ω-wise argument. Let us fix ω ∈ Ω. If
yt �∈ =∞

t , then Q̄n(yt) is never updated and thus converges
to zero. Now suppose that the node is expanded; that is,
yt ∈ =∞

t . Let α
n
v(yt) � 1/vn(yt) 1{yt∈ xnτs }, where the notation y ∈

xnτs is used to indicate that y is visited on iteration n. Thus,
we can rewrite (12) and (15) in the form of a stochastic
approximation step as follows:

Q̄n(yt) � Q̄n−1(yt) +αn
v(yt) V̄n πs yt,T

n−1()()− Q̄n(yt)
[]

. (A.6)
Wewill analyze the tail of this iteration. Because vn(yt) → ∞
by Lemma 1 and |6| is finite, it is clear that there exists an
iteration N∗ (depending on ω) after which all state nodes
xt+1 � (yt, st+1), where st+1 is reachable with positive prob-
ability, are expanded. By Assumption 1(c), the tail of the
iteration (A.6) starting at N∗ is equivalent to

Q̄n+1
N∗ (yt)
� Q̄n

N∗ (yt) + αn+1
v (yt) V̄n((yt, St+1)) − Q̄n

N∗ (yt)
[]

, for n ≥ N∗,

where Q̄N∗
N∗ (yt) � Q̄N∗ (yt). Define ηi(yt) as the ith iteration for

which that yt is visited. By Lemma 1, we know that
(η1(yt), η2(yt), η3(yt), . . .) is a subsequence of (1, 2, 3, . . .) that
goes to∞. Let i∗ be the smallest i such that ηi(yt) > N∗. Hence,∑∞

n�N∗+1
αn
v(yt) �

∑∞
i�i∗

α
ηi(yt)
v (yt) �

∑∞
i�i∗

1/i � ∞.

Similarly,
∑∞

n�N∗+1(αn
v(yt))2 < ∞. Because (yt, St+1) ∈ -∞

t+1 for
every realization of St+1, by the induction hypothesis, it
holds that V̄n(yt, St+1) → V∗(yt, St+1). Thus, by the auxiliary
result stated in (A.3), it follows that Q̄n

N∗ (yt) → Q∗(yt), and so
we can conclude that

Q̄n(yt) → Q∗(yt) (A.7)
for when our choice ofω is in {yt ∈ =∞

t }, which proves (A.5).
The next step is to examine the dual upper bounds.

Analogously, we would like to show that

ūn(yt) → uν(yt) 1{yt∈=̃∞
t } a.s. (A.8)

The averaging iteration (10) can be written as

ūn(y′t) � ūn−1(y′t) − αn(y′t) ūn−1(y′t) − ûn(y′t)
[]

,

where E [ûn(y′t)] � uν(y′t). There is no bias term here. Under
Lemma 1, Assumption 1(d), and our finite model and
bounded contributions, an analysis similar to the case of (A.5)
allows us to conclude (A.8).

Finally, we move on to completing the inductive step,
that is, (A.4) with t replacing t + 1. Consider xt ∈ -t, and
again let us fix an ω ∈ Ω. If xt �∈ -∞

t , then there are no up-
dates, and we are done, so consider the case where xt ∈ -∞

t .
The conditions of Lemma 2 are verified by (A.5) and (A.8),
so the lemma implies that an optimal action a∗t ∈ argmaxa∈!
Q∗(xt, a) is expanded. Consequently, it follows by (A.5) that

max
yt∈=∞(xt)

Q̄n(yt) → Q∗(y∗t) � V∗(xt).

ByAssumption 1(e) and the backpropagation update (13),
we see that V̄n(xt) → V∗(xt), which proves (A.4). We have
shown that all value function approximations converge
appropriately for expanded nodes in the random limiting
tree T ∞.

Now we move on to the second part of the theorem,
which concerns the action taken at the root node. If the
optimal action is unique (i.e., there is separation between the
best action and the second- best action), then (A.4) allows us
to conclude that the limit of the set of maximizing ac-
tions argmaxy∈=n(x0) Q̄

n(y) is equal to argmaxy0�(x0 ,a) Q
∗(y0).

However, if uniqueness is not assumed (which we have
not), thenwemay conclude that each accumulation point of
argmaxy∈=n(x0) Q̄

n(y) is an optimal action at the root node:

lim sup
n→∞

argmax
y∈=n(x0)

Q̄n(y) ⊆ argmax
y0�(x0 ,a)

Q∗(y0) a.s.

The proof is complete. □

Appendix B. Penalty Function
We follow the value function approximation approach of
Brown et al. (2010) to design the dual penalty; see (6) and (7).
Specifically, we let ντ be an approximation of the value
function associated with the closest-E policy. The approach
for computing this is relatively straightforward; however,
choosing the feature vector for approximation required
some experimentation because the dimension of the state

Jiang et al.: Optimistic MCTS with Dual Bounds
18 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

variable depends on the number of available trips. The steps
are as follows:

1. We randomly sample initial driver conditions si �
(ti, li, σi,5i) (i.e., time, location, idle status, and available trip
requests).

2. We run the closest-E starting from each si until the end
of the problem horizon. Let the cumulative profit of the ith
simulation be denoted yi.

3. Let5i � {(aij, bij, cij, dij)}j be the set of trips offered for si,
where (aij, bij) are the coordinates of the starting location for
trip j and (cij, dij) are the coordinates of the ending location for
trip j. We compute the centroids of the starting locations and
the ending locations: (āi, b̄i) and (c̄i, d̄i). Using the driver lo-
cation li as a reference, we then compute the angle θstart

i and
distance rstarti to (āi, b̄i). Similarly, we can define (θend

i , rendi) to
be the angle and distance to (c̄i, d̄i) starting from li. The
compact state is defined as s′i � (ti, li, θstart

i , rstarti , θend
i , rendi).

4. The feature vector for each state φ(si) consists of all
degree 2 (or less) monomials generated by the components of
s′i . The value function approximation is then generated by
regressing the yi values against the features φ(si).

Endnotes
1Because MCTS is a look-ahead technique, it is typically applied in
large-scale planning settings, where a simulator is available and at
least some aspects of the model are known.
2The smaller problems are certainly more realistic in the context of
a ride-sharing platform, but the larger instances allow for compre-
hensive numerical testing of the various algorithms.
3On a machine with a 4-GHz Intel Core i7 processor and 8 GB of
random-access memory for the D100 instance.

References
Al-Kanj L, Powell WB, Bouzaiene-Ayari B (2016) The information-

collecting vehicle routing problem: Stochastic optimization for
emergency storm response. Preprint, submittedMay 18, https://
arxiv.org/abs/1605.05711.

Andersen L, Broadie M (2004) Primal-dual simulation algorithm for
pricing multidimensional American options. Management Sci.
50(9):1222–1234.

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite time analysis of the
multiarmed bandit problem. Machine Learn. 47(2–3):235–256.

Auger D, Couëtoux A, Teytaud O (2013) Continuous upper confi-
dence trees with polynomial exploration—consistency. Proc.
Joint Eur. Conf. Machine Learn. Knowledge Discovery Databases
(Springer, Berlin, Heidelberg), 194–209.

Bertsimas D, Griffith JD, Gupta V, Kochenderfer MJ, Mišić VV (2017)
A comparison of Monte Carlo tree search and rolling horizon
optimization for large-scale dynamic resource allocation prob-
lems. Eur. J. Oper. Res. 263(2):664–678.

Breiman L (1992) Probability (Society of Industrial and Applied
Mathematics, Philadelphia, PA).

Broadie M, Glasserman P (1997) Pricing American-style securities
using simulation. J. Econom. Dynam. Control. 21(8–9):1323–1352.

Brown DB, Smith JE (2011) Dynamic portfolio optimization with
transaction costs: Heuristics and dual bounds.Management Sci.
57(10):1752–1770.

Brown DB, Smith JE (2014) Information relaxations, duality, and
convex stochastic dynamic programs.Oper. Res. 62(6):1394–1415.

BrownDB, Smith JE, Sun P (2010) Information relaxations and duality
in stochastic dynamic programs. Oper. Res. 58(4):785–801.

Browne C, Powley E, Whitehouse D, Lucas S, Cowling PI, Rohlf-
shagen P, Tavener S, Perez D, Samothrakis S, Colton S (2012) A
survey of Monte Carlo tree search methods. IEEE Trans. In-
telligence AI Games. 4(1):1–49.

Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations Trends
Machine Learn. 5(1):1–122.

Cazenave T (2009) Nested Monte-Carlo search. Proc. 21st Internat.
Joint Conf. Artificial Intelligence, Pasadena, CA, 456–461.

Chand S,HsuV, Sethi S (2002) Forecast, solution, and rolling horizons
in operations management problems: A classified bibliography.
Manufacturing Service Oper. Management 4(1):25–43.

Chang HS, Fu MC, Hu JQ, Marcus SI (2005) An adaptive sampling
algorithm for solving Markov decision processes. Oper. Res.
53(1):126–139.

Chaslot G, Saito JT, Uiterwijk JWHM, Bouzy B, van den Herik HJ
(2006)Monte-Carlo strategies for computer go. Proc. 18th Belgian-
Dutch Conf. Artificial Intelligence, 83–90.

Chaslot G, Bakkes S, Szita I, Spronck P (2008) Monte-Carlo tree
search: A new framework for Game AI. Proc. 4th Artificial In-
telligence Interactive Digital Entertainment Conf., 216–217.

Chen Y, Farias VF (2013) Simple policies for dynamic pricing with
imperfect forecasts. Oper. Res. 61(3):612–624.

Couëtoux A, Hoock JB, Sokolovska N, Teytaud O, Bonnard N (2011)
Continuous upper confidence trees. Proc. Internat. Conf. Learn.
Intelligent Optim., 433–445.

Coulom R (2007) Efficient selectivity and backup operators in Monte-
Carlo tree search. Comput. Games 4630:72–83.

Desai VV, Farias VF, Moallemi CC (2012) Pathwise optimiza-
tion for optimal stopping problems. Management Sci. 58(12):
2292–2308.

Gelly S, Silver D (2011) Monte-Carlo tree search and rapid action
value estimation in computer Go. Artificial Intelligence 175(11):
1856–1876.

Gelly S, Kocsis L, Schoenauer M, Sebag M, Silver D, Szepesvári C,
Teytaud O (2012) The grand challenge of computer Go: Monte
Carlo tree search and extensions. Comm. ACM 55(3):106–113.

Goodson JC, Thomas BW, Ohlmann JW (2016) Restocking-based
rollout policies for the vehicle routing problem with stochastic
demand and duration limits. Transportation Sci. 50(2):591–607.

Haugh MB, Kogan L (2004) Pricing American options: A duality
approach. Oper. Res. 52(2):258–270.

Hingston P, Masek M (2007) Experiments with Monte Carlo Othello.
IEEE Congress Evolutionary Comput., Singapore, 4059–4064.

Jasin S, Kumar S (2012) A re-solving heuristic with bounded revenue
loss for network revenue management with customer choice.
Math. Oper. Res. 37(2):313–345.

Knuth DE, Moore RW (1975) An analysis of alpha-beta pruning.
Artificial Intelligence 6(4):293–326.

Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning.
Proc. 17th Eur. Conf. Machine Learn. (Springer, Berlin), 282–293.

Kushner HJ, Yin GG (2003) Stochastic Approximation and Recursive
Algorithms and Applications (Springer, New York).

Lai G, Wang MX, Kekre S, Scheller-Wolf A, Secomandi N (2011)
Valuation of storage at a liquefied natural gas terminal.Oper. Res.
59(3):602–616.

Land AH, Doig AG (1960) An automatic method of solving discrete
programming problems. Econometrica 28(3):497–520.

Maitrepierre R, Mary J, Munos R (2008) Adaptive play in Texas
Hold’em Poker. Ghallab M, Spyropoulos CD, Fakotakis N,
Avouris N, eds. Proc. 18th Eur. Conf. Artificial Intelligence (ECAI
2008) (IOS Press, Amsterdam), 458–462.

Méhat J, Cazenave T (2010) Combining UCT and nested Monte Carlo
search for single-player general game playing. IEEE Trans.
Comput. Intelligent AI Games 2(4):271–277.

Jiang et al.: Optimistic MCTS with Dual Bounds
Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS 19

https://arxiv.org/abs/1605.05711
https://arxiv.org/abs/1605.05711

Nadarajah S, Margot F, Secomandi N (2015) Relaxations of ap-
proximate linear programs for the real option management of
commodity storage. Management Sci. 61(12):3054–3076.

Nascimento JM, Powell WB (2009) An optimal approximate dynamic
programming algorithm for the lagged asset acquisition prob-
lem. Math. Oper. Res. 34(1):210–237.

Nijssen JPAM (2007) Playing Othello using Monte Carlo. Working
paper, Maastricht University, Maastricht, Netherlands.

Osaki Y, Shibahara K, Tajima Y, Kotani Y (2008) An Othello evalu-
ation function based on temporal difference learning using
probability of winning. IEEE Sympos. Comput. Intelligence Games,
205–211.

Ozkan E,WardA (2017) Dynamicmatching for real-time ridesharing.
Working paper, Koç University, Istanbul, Turkey.

Ponsen M, Gerritsen G, Chaslot G (2010) Integrating opponent
models with Monte-Carlo tree search in Poker. Interactive De-
cision Theory and Game Theory (Association for the Advancement
of Artificial Intelligence, Menlo Park, CA), 37–42.

Robles D, Rohlfshagen P, Lucas SM (2011) Learning non-random
moves for playing Othello: Improving Monte Carlo tree search.
IEEE Conf. on Computational Intelligence and Games, Seoul, 305–312.

Rogers LC (2002) Monte Carlo valuation of American options. Math.
Finance 12(3):271–286.

Silver D, Veness J (2010) Monte-Carlo planning in large POMDPs.
Adv. in Neural Inform. Processing Systems, vol 23 (Curran Asso-
ciates, Red Hook, NY), 2164–2172.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den
Driessche G, Schrittwieser J, et al. (2016) Mastering the game
of Go with deep neural networks and tree search. Nature
529(7587):484–489.

Van den Broeck G, Driessens K, Ramon J (2009) Monte-Carlo tree
search in Poker using expected reward distributions. Adv. in
Machine Learn. (Springer, Berlin, Heidelberg), 367–381.

Van Lishout F, Chaslot G, Uiterwijk JWHM (2007) Monte-Carlo tree
search in Backgammon. Working paper, University of Liège,
Montefiore Institute, Liège, Belgium.

Daniel R. Jiang is an assistant professor in the Department
of Industrial Engineering at the University of Pittsburgh. His
research interests are in the areas of approximate dynamic
programming, reinforcement learning, and Bayesian opti-
mization, with applications in energy, the sharing economy,
and public health.

Lina Al-Kanj is an associate research scholar in the Op-
erations Research and Financial Engineering Department
at Princeton University. Her research interests include se-
quential stochastic optimization, look-ahead approximations,
and reinforcement learning with applications in energy,
communication, and transportation systems.

Warren B. Powell is a professor in the Department of
Operations Research and Financial Engineering at Princeton
University, where he has taught since 1981. He is the founder
and director of CASTLE Labs, which develops models and
algorithms in stochastic optimization, with applications in
energy systems, transportation, medical research, business
analytics, and the laboratory sciences. He pioneered the use
of approximate dynamic programming in freight transporta-
tion. He is an INFORMS Fellow.

Jiang et al.: Optimistic MCTS with Dual Bounds
20 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS

	Optimistic Monte Carlo Tree Search with Sampled Information Relaxation Dual Bounds
	Introduction
	Preliminaries
	Primal-Dual MCTS Algorithm
	Analysis of Convergence
	Driver Behavior on a Ride-Sharing Platform
	5.Discussion
	Conclusion

