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Shape Constraints in Economics and
Operations Research
Andrew L. Johnson and Daniel R. Jiang

Abstract. Shape constraints, motivated by either application-specific as-
sumptions or existing theory, can be imposed during model estimation to
restrict the feasible region of the parameters. Although such restrictions may
not provide any benefits in an asymptotic analysis, they often improve fi-
nite sample performance of statistical estimators and the computational effi-
ciency of finding near-optimal control policies. This paper briefly reviews an
illustrative set of research utilizing shape constraints in the economics and
operations research literature. We highlight the methodological innovations
and applications, with a particular emphasis on utility functions, production
economics and sequential decision making applications.
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1. INTRODUCTION

This paper builds on prior surveys of shape con-
strained estimation in the economics literature by
Matzkin (1994), Yatchew (2003) and Chetverikov,
Santos and Shaikh (2018), and also surveys the op-
erations research literature for the first time. Although
length limitations prohibit a comprehensive survey, we
describe the important central themes and identify the
recent advances and applications and active research
directions in the literature.

One of the first papers published in the economics
literature is Hildreth (1954) who estimated the rela-
tionship between corn output and nitrogen fertilizer re-
stricting output to be a function of fertilizer that was
monotonically increasing and concave. Later, Brunk
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(1970) studied isotonic functions, or imposing a mono-
tonicity constraint on the function, and showed for iso-
tonic regression with a single regressor the consistency
and the rate of convergence. Barlow et al. (1972) were
the first to develop and organize fundamental results
in order restricted inference for isotonic regression.
Robertson, Wright and Dykstra (1988) summarized
one of the earliest conferences on shape constrained
functional estimation. Mammen (1991) considered the
two-step estimation of a smooth monotone function in
a single regressor setting and analyzed interchanging
the isotonization step and the smoothing step. Hall and
Huang (2001) considered the estimation of a mono-
tonic and convex/concave function with a single regres-
sor using kernel weighting methods with an additional
weigh vector to assure the function satisfied the shape
constraints. Villalobos and Wahba (1987), who consid-
ered the estimation of a smooth function with a set of
linear inequality constraints, provided a characteriza-
tion which could be solved using a nonlinear program-
ming algorithm.

Our survey is divided into a section on regression-
based estimation and a section on sequential decision
making. Within the regression-based estimator section,
we divide the relevant research into three subsections:
(1) the nonparametric least squares estimator; (2) ap-
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proximate global shape restrictions, ensemble meth-
ods and local weighting; and (3) single index mod-
els and alternative assumptions to global convexity. In
each subsection, we describe both a set of estimators
and an application that illustrates the estimators. For
Section 1, the application is utility function estima-
tion, whereas in Sections 2 and 3, the application is
production function estimation. In the sequential deci-
sion making section, the subsections are: 1—convexity
of the value function, 2—monotonicity and 3—policy
structure. Several examples are included throughout
the section. We refer readers interested in other rele-
vant topics and applications of shape constraint esti-
mation, for example, option pricing or stochastic ap-
proximation to see Aït-Sahalia and Duarte (2003) and
Kushner and Yin (2003), respectively. For testing, we
suggest Chernozhukov, Newey and Santos (2015) and
Chetverikov, Santos and Shaikh (2018) and the refer-
ences therein.

2. REGRESSION-BASED ESTIMATORS

Regression models allow the investigation of obser-
vational data to identify correlations among variables
to provide basic empirical evidence of the relationship
between variables. Here, we will review several re-
gression based methods for estimating these relation-
ship while imposing additional information which can
be stated as shape constraints on the regression mod-
els. We will begin in Section 2.1 with the widely used
nonparametric least squares estimator (LSE). Estimat-
ing the nonparametric LSE with shape constraints re-
sults in functional estimates that satisfy a set of global
axiomatic properties. We will describe the application
of using Afriat inequalities to test the generalized ax-
ioms of revealed preferences. Then in Section 2.2 we
will consider approximations to nonparametric estima-
tor with globally axiomatic properties. These estima-
tors will approximate either the axioms or the function
by only imposing weaker versions of the axiom or by
using parametric approximations. In some cases, these
approximations can be improved by ensemble methods
or local weighting, both of which will be discussed.
We will discuss applications related to production eco-
nomics where these estimators are used. Finally, in
Section 2.3, we will review single index models and al-
ternative shape restrictions. Single index models assure
predictor variables are aggregated to maintain proper-
ties such as linearity or convexity while allowing the
relationship between the dependent variable and the
aggregate predictor to remain general. These models

can be used to implement more complicated economic
models of production where convexity is maintained
between certain variables while more complicated rela-
tionships such as the S-shape can be imposed between
other variables. We will illustrate these models with
extensions developed in production economics appli-
cations.1

2.1 The Nonparametric Least Squares Estimator

One of the most widely used shape constrained
estimators is the nonparametric LSE of a multivari-
ate convex regression function (Groeneboom, Jong-
bloed and Wellner, 2001, Kuosmanen, 2008, Seijo and
Sen, 2011). Initial work on multivariate convex regres-
sion functions includes Matzkin (1991), Banker and
Maindiratta (1992) and Allon et al. (2007), who con-
sidered maximum likelihood estimators. The consis-
tency of the first two estimators is shown in Matzkin
(1991) and Sarath and Maindiratta (1997), respectively.
However, both estimators have had little practical im-
plementation because of the computational complexity
of the associated optimization problems. Allon et al.
(2007) described some of these complexities and used
the concept of entropic distance to develop a maximum
likelihood estimator that can be stated as a convex pro-
gramming problem, and thus can be solved for data sets
of up to 400 observations which was considered a large
instance. Many of the computational strategies for the
nonparametric LSE described below are directly appli-
cable to the Allon estimator, but they have not been
pursued in the literature. Alternatively, Beresteanu et
al. (2007) considered a sieve estimator with a least
squares loss function, and evaluated the metric entropy
of the space of shape-restricted functions.

Kuosmanen (2008) proposed the characterization of
the nonparametric LSE of a multivariate convex regres-
sion function. Unlike the previous estimators, this char-
acterization relaxes assumptions on the distribution of
the error term and the need for turning parameters.
To define the model, consider the set of observations
{(Xi , Yi) : i = 1,2, . . . , n} and a nonparametric shape
restricted regression satisfying

(2.1) Yi = f (Xi ) + εi.

Here, Xi ∈ R
d is an observed vector of predictors

where d ≥ 1. The noise term, εi satisfy E(εi |X) = 0,

1Throughout this section, we will use the mathematical notation
common in this literature which is to indicate matrices and vectors
by using a bold font and indicate scalar variables as nonbold font.
Other notation is introduced as it is used.
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and the real-valued regression function f is unknown
but obeys certain known restrictions. In the work de-
scribed to this point, the known restrictions were con-
vexity and in some cases also monotonicity. Thus, let
F denote the class of all regression functions sat-
isfying a particular set of restrictions. Letting θ∗ =
(f (X1), f (X2), . . . , f (Xn)), Y = (Y1, Y2, . . . , Yn)

and ε = (ε1, ε2, . . . , εn), rewrite the model (2.1) as

Y = θ∗ + ε.

Subject to the constraints imposed by the properties of
F , the estimation problem can be translated to con-
straints on θ∗ of the form θ∗ ∈ C . The set C contains
all possible θ∗ that can be generated by f , the set of
functions in the shape restriction class, given the ob-
served matrix X. Specifically,

C = {(
f (X1), f (X2), . . . , f (Xn)

) ∈ R
n : f ∈ F

}
is a closed subset of R

n. Now consider an estimator
of θ∗. Define the LSE estimator θ̂ of θ∗ for a shape-
restricted regression as the projection of Y onto the
set θ∗,

θ̂ = arg min
θ∗∈C

‖Y − θ‖2,

where ‖ · ‖ denotes the Euclidean norm in R
n. Gener-

ally, because C is a closed convex set, θ̂ ∈ C is unique
and it can be characterized by

〈Y − θ̂ , θ − θ̂〉 ≤ 0, for all θ ∈ C ,

where 〈·, ·〉 denotes the inner product in R
n. Consider

the specific case of convex regression when the restric-
tion on F is convexity. As discussed in Seijo and Sen
(2011), both primal and dual characterizations are pos-
sible for the LSE’s constraints. Pursuing the dual char-
acterization leads to the positive semidefinite quadratic
program:

(2.2)

minimize
θ ,β

n∑
k=1

(Yk − θk)
2

subject to 〈βk,Xj − Xk〉 ≤ θj − θk

∀k, j = 1,2, . . . , n.

Here, βk is the estimated subgradient at the point Xk .
In this paper, we refer to the constraints in (2.2) as the
Afriat inequalities (Afriat, 1967, 1972).

It has been noted that LSE achieves limited perfor-
mance near the boundaries of the domain (Seijo and
Sen, 2011, Lim and Glynn, 2012). Lim (2014) pro-
posed a refinement to include restricting the domain

of F and bounding the subgradients of f , resulting in
the set

F = {
f : [0,1]d →R : f is convex and

∣∣ξj
∣∣ ≤ C

for 1 ≤ j ≤ d,

where
(
ξ1, ξ2, . . . , ξd) ∈ ∂f (x) for x ∈ (0,1)d

}
,

where ∂f (x) is the subdifferential of f at x. This means
that additional constraints on the estimated subgradi-
ents can be added to (2.2):

(2.3) |βk| ≤ C ∀k = 1,2, . . . , n.

Let f̂ be an estimate of the function f computed using
(2.2) augmented with (2.3). Lim (2014) establishes a
rate of convergence result: for any ε > 0, there exists a
constant c, depending on C and ε, that satisfies

lim sup
n→∞

P

[(
1

n

n∑
j=1

(
f̂ (Xj ) − f (Xj )

)2

)1/2

≥ rnc

]
< ε,

where

rn =

⎧⎪⎪⎨
⎪⎪⎩

n−2/(4+d), if d < 4,

(logn)1/2n−1/4, if d = 4,

n−1/d, if d ≥ 4.

Juditsky and Nemirovski (2002) obtain a similar but
more general result by estimating the distance from an
unknown signal in a white-noise model to the convex
cones of the positive/monotone/convex function. The
authors showed that when the function belongs to a
Hölder class, the risk of estimating the Lr -distance,
1 ≤ r < ∞, from the signal to the cone is the same,
up to a logarithmic factor, as estimating the signal it-
self. The same risk result holds for testing if an un-
known signal is positive, monotonic and/or convex.
See Guntuboyina and Sen (2013, 2015) and Chatterjee,
Guntuboyina and Sen (2015) for other results related
to the rate of convergence. See Yagi et al. (2018a) for a
test of monotonicity and concavity/convexity.

2.1.1 Computation. Wu (1982) and Dykstra (1983)
published the initial work on computational issues for
the least squares estimator subject to convexity with a
single regressor. Goldman and Ruud (1993) considered
the multivariate problem and recognized that Dykstra’s
insight could be generalized from searching the inter-
section of a finite number of convex cones to search
over the intersection of a finite number of convex sets.
More recent operations research literature investigated
LSE’s computational issues. For example, Alizadeh
(2006) discussed the connection between shape con-
strained functional estimators and the corresponding
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semidefinite constraints on the programming problems
used to calculate LSE’s parameters.

Lee et al. (2013) noted that while (2.2) is in the class
of convex optimization and is thus polynomial-time
solvable, the number of constraints grows quadratically
with the size of the data set and can thus present prac-
tical challenges even for a few hundred observations.
The percentage of binding constraints at the optimal
solution is only 0.5–1% for typical problems in eco-
nomic applications, Lee et al. (2013). Therefore, the
authors proposed an estimation procedure which ini-
tially included only the constraints for observations
that are close to one another in terms of Euclidean
distance ‖Xi − Xj‖2 < C where C is prespecified pa-
rameter. Denoting the set of constraints implied by the
closeness criteria as V , the constraints are

〈βk,Xj − Xk〉 ≤ θj − θk

∀k, j ∈ V,β1,β2, . . . ,βn ∈ R
d, θ ∈ R

n.
(2.4)

To solve a series of smaller optimization problems,
Lee et al. (2013) proposed Algorithm 1 below, which
adds back violated constraints iteratively until satisfy-
ing the set of all Afriat constraints. The algorithm is
demonstrated for data sets of up to 1800 observations.

Alternatively, using a least absolute deviation loss
function, which can be formulated as an easily solv-
able linear program, Luo and Lim (2016) showed that
the estimator converges almost surely to the true func-
tion as n increases to infinity. Mazumder et al. (2015)
presented an Alternating Direction Method for Multi-
pliers (ADMM) algorithm for solving the nonparamet-
ric LSE of a multi-variate convex regression function.

Algorithm 1 Iterative algorithm proposed by Lee et al.
(2013)

(1) Let t = 0 and let V be a subset of the ordered
pairs of observations.

(2) Solve (2.2) replacing the Afriat inequalities with
the (2.4) to find an initial solution, (θ (0),β(0)).

(3) Do until (θ (t),β(t)) satisfies all the Afriat in-
equalities:
(a) Select a subset of the concavity constraints

that (θ (t),β(t)) violates and let V (t) be the
corresponding observation pairs.

(b) Set V = V ∪ V (t).
(c) Solve (2.2) replacing the Afriat inequalities

with the (2.4) and using V from (b) to obtain
solution (θ (t+1),β(t+1)).

(d) Set t = t + 1.

Although their algorithm calculates estimates for data
sets of 3500 observations in less than one hour, their
proposed ADMM algorithm has not been proven to
converge for all data sets. Specifically, the ADMM al-
gorithm requires dividing the variables into groups and
the algorithm alternates between fixing all but one of
the groups’ variables to their current best values and
optimizing only in terms of the selected group of vari-
ables. The ADMM algorithm has been proven to con-
verge for two groups of variables; however, Mazumder
et al. (2015) uses three groups of variables and the con-
verge properties of ADMM with three groups is still an
open question (Bertsekas, 1999a).

2.1.2 Application: Consumer preferences. Standard
approaches to analyze the demand-side of an economy
typically assume parametric functions for consumer
preferences and demand functions to develop models
which are then fitted to the observed data. An alterna-
tive approach called revealed preferences, proposed by
Samuelson (1938), used nonparametric methods, thus
avoiding parametric assumptions for both preferences
and demand. In this section, we present the concepts of
rational preferences and the generalized axiom of re-
vealed preferences (GARP). We explain how the Afriat
inequalities, the shape constraints mentioned above,
can be used to test GARP. We discuss several applica-
tions of shape constraints in the consumer preference
literature. We end by summarizing the literature that
describes how to estimate a demand functional while
imposing shape constraints that imply consumer ratio-
nality. For a book length treatment of this topic, see
Chambers and Echenique (2016).

Following the notation of Cherchye, De Rock and
Vermeulen (2007), under the assumption of a set of
T price-quantity pairs, denote the vectors of the prices
and quantities associated with observation t by pt and
qt , respectively, where pt ∈ R

N++ and qt ∈ R
N+ .2 The

observations describe how the price pt changes over
time and a rational consumer should adjust their con-
sumption qt accordingly.

DEFINITION 1 (Samuelson, 1950). Let S =
{(pt ,qt )}Tt=1 be a set of observations. A utility func-
tion U provides a rationalization of S if for each ob-
servation t , we have U(qt ) ≥ U(q) for all q with
p


t q ≤ p

t qt .

2We use R
N+ to refer to the N dimensional positive orthant in-

cluding the origin and R
N++ is the strictly positive orthant.
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Note p

t qt is the total that a consumer pays for quan-

tity qt . The definition states that for a utility func-
tion to be rational, if the consumer is willing to pay
more, p


t q ≤ p

t qt , then the utility should be larger,

U(qt ) ≥ U(q). And if the data set, S can be rational-
ized, then the consumer behaved rationally during the
observed time period.

Define the property, local nonsatiation, to mean that
for any bundle of goods there is always another bundle
of goods arbitrarily close that is preferable, that is, a
consumer always prefers more of or less of an item and
not a specific amount. Note strong monotonicity im-
plies local nonsatiation but not vice versa. The revealed
preferences literature has defined a locally nonsatiated
utility function that provides a rationalization of the set
of observations S if and only if the data satisfy the Gen-
eralized Axiom of Revealed Preferences (GARP).

In order to define GARP, we first introduce the no-
tions of strictly directly revealed preferred and re-
vealed preferred. The bundle of quantities qt is strictly
directly revealed preferred to q if p


t qt > p

t q. More-

over, qt is revealed preferred to q if

p

t qt ≥ p


t qu and

p

u qu ≥ p


u qv · · ·p

z qz ≥ p


z q,

for some sequence (t, u, . . . , z). The set of observa-
tions S satisfies GARP if for any t and s, the bun-
dle qt being revealed preferred to qs implies that qs is
not strictly directly revealed preferred to qt . With these
definitions, we can formalize the relationship between
GARP and the existence of a utility function that can
rationalize the data set S .

THEOREM 2.1 (Afriat, 1967, Diewert, 1973, Varian,
1982). For a set S = {(pt ,qt )}Tt=1 of observations
of price-quantity pairs, the following statements are
equivalent:

(1) There exists a utility function U , satisfying local
nonsatiation, that provides a rationalization of S .

(2) The set S satisfies GARP, as defined above.
(3) There exist U1, λ1,U2, λ2, . . . ,UT ,λT ∈ R

N++
such that the Afriat inequalities hold: for all t, r ∈
{1,2, . . . , T },

Ur − Ut ≤ λtp

t (qr − qt ).

(4) There exists a continuous monotonically increas-
ing and concave utility function U that satisfies
local nonsatiation and provides a rationalization
of S .

Condition (2) implies that GARP is necessary and
sufficient for rationalization of the data. While Condi-
tion (3) states that satisfying the Afriat inequalities is
equivalent to satisfying GARP. Further, Condition (3)
provides a test for GARP; specifically, if the Afriat in-
equalities are satisfied, then the set of observations S
satisfy GARP. The utility function referenced in (1) is
defined as the lower envelope of a set of hyperplanes,
specifically

U(x) = min
t

Ut + λtp

t (q − qt ).

Brown and Matzkin (1996) extended Afriat results to
other important economic models; specifically, they
identified restrictions on prices, incomes and endow-
ments for general equilibrium models. Testing is ad-
dressed in Varian (1985) and Epstein (1985).

GARP and the associated estimators are the work-
horses for the nonparametric analysis of demand func-
tions. Numerous extensions have been developed, such
as Matzkin (1991), who extended revealed preference
analysis to nonlinear budget sets while still impos-
ing concave utility functions. Blundell, Browning and
Crawford (2003) studied observational data and de-
veloped methods to detect revealed preference vio-
lations while considering the evolution of consumer
preferences over time modeled as an expansion path.
Blundell, Browning and Crawford (2008), who consid-
ered a case with a small number of market prices and a
large number of consumers within each market, used
consumer level data to estimate the bounds on con-
sumers’ responses to new relative prices.

Note that if the GARP test is applied across house-
holds, it is often rejected. This simply implies that
all households do not have the same utility func-
tion and thus have different demand functions. Often
economists are interested in estimating a consumer de-
mand equation, D(Zi ) + bi . Here, the demand func-
tion, D(·) is typically a function of the prices, total ex-
penditures and observable characteristics of household,
Zi , plus an individual-specific term bi . Lewbel (2001)
recognized that GARP should be applied to an individ-
ual’s demand function and not the aggregate demand
function that is part of the consumer demand equation.
Thus, Lewbel (2001) listed the conditions for the de-
mand function from the consumer demand equation to
satisfy utility function rationalization.

The analysis of heterogeneous demand using non-
parametric shape constrained methods has recently re-
newed in popularity. Examples include Dette, Hoder-
lein and Neumeyer (2016), who proposed a test for
downward sloping demand curves, and Hausman and
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Newey (2016), who considered unobserved individual
heterogeneity in utility functions and focused on re-
covering the relationship between demand and price
for a continuous consumption good. As with many
nonparametric shape constrained estimators, Hausman
and Newey (2016) did not achieve point-identification
rather they obtained bounds on the average welfare ef-
fect. Bhattacharya (2016) studied discrete demand with
general heterogeneity in customers and derived the av-
erage consumer surplus. Here, we just highlight a few
of the most recent contribution to the unobserved pref-
erence heterogeneity in reveal preference analysis. Ad-
ditional papers addressing this issue include Blundell
et al. (2012), Blundell et al. (2014), Blundell et al.
(2017), Cosaert (2018) and Hoderlein (2014).

2.2 Approximations to Global Shape Restrictions,
Ensemble Methods, and Local Weighting

There are two potential limitations of the nonpara-
metric shape constrained estimators described above:
(1) the estimators are computationally expensive and
often difficult to implement, and (2) they tend to over-
fit the observed sample. Below we review alternatives
to address these two potential limitations.

2.2.1 Approximation to global shape restrictions.
Gallant and Golub (1984) proposed imposing shape re-
strictions, such as convexity or quasi-convexity, for a
Fourier Functional Form (Gallant, 1981). The Fourier
functional form is an early example of a sieve esti-
mator, which approximates a sequence of parameter
spaces in which the parameter space increases as the
number of observations increases. In the limit, as the
number of observations n → ∞, the approximating pa-
rameter space is dense in the original space. Diewert
and Wales (1987) argued that economic theory implies
global curvature properties which are not guaranteed
by Gallant’s estimator. Diewert and Wales (1987) iden-
tified two functional forms, the generalized McFad-
den and the generalized Barnett cost functions, which,
when augmented with restrictions on the matrix of
second-order partial derivatives, assured globally con-
vexity and still maintained flexibility (Diewert, 1974).

Similar to Gallant and Golub (1984), methods to
impose some shape restrictions on estimators with-
out achieving global convexity have been introduced.
For example, Ryan and Wales (2000) considered im-
posing shape restrictions only at one point in the do-
main of the function. The authors argued that in many
cases it is sufficient to result in estimates that are
globally concave; they discussed examples of Translog

and Generalized Leontief cost functions with a sin-
gle regressor estimated with 25 observations that pro-
duce globally concave estimates. Alternatively, con-
sidering nonparametric shape constrained estimation,
Du, Parmeter and Racine (2013) proposed imposing
coordinate-wise concavity which, like Ryan and Wales
(2000), can be thought of as an approximation to global
concavity. However, for more complicated models, we
found very little empirical evidence that imposing con-
cavity at a point or coordinate-wise will result in glob-
ally concave estimates or something even close.

Other models that imposed approximations to global
shape restrictions include Pya and Wood (2015), who
considered a generalized additive model under first-
and second-order shape constraints. The estimator,
which is an extension of P-splines, facilitates effi-
cient estimation of the smoothing parameters as part
of the model estimation. The authors also developed
algorithms to calculate simulation-free approximate
Bayesian confidence intervals for the smooth compo-
nents. Similarly, Wu and Sickles (2018) proposed a
semiparametric estimator which uses penalized splines
and an integral transformation to impose monotonicity
and curvature constraints. The estimator is consistent
and the authors derived the asymptotic variance. Al-
ternatively, Chen and Samworth (2016) considered a
slightly more general model

Yi = f I (Xi) = f1
(
θ


1 Xi

) + · · · + fm

(
θ


mXi

) + c.

where the value of m ∈ N is assumed known, and Yi

is the response variable and follows an exponential
family distribution. The variable c ∈ R is the intercept
term, θ1, θ2, . . . , θm ∈ R

d are called the projection in-
dices, and f1, f2, . . . , fm : R → R are called the ridge
functions. Chen and Samworth (2016) generalizes the
class of generalized additive models by allowing each
function f to be a function of a linear aggregation of
X, specifically to the component m, θ
Xi . The benefit
of this model is that shape constraints can be imposed
on each of the single-dimensional functions f , making
the estimator scalable and reducing the computational
difficulty. The drawback is that shape are only imposed
coordinate-wise and global properties are not imposed.

2.2.2 Other shape constrained estimators and en-
semble methods. Hannah and Dunson (2011) proposed
Multivariate Bayesian Convex Regression (MBCR),
which approximated a general convex multivariate re-
gression function with the maximum value of a ran-
dom collection of hyperplanes. Additions, removals
and changes of proposed hyperplanes are done through
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a Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) algorithm (Green, 1995). One of MBCR’s at-
tractive features include the block nature of its param-
eter updating, which causes the parameter estimate au-
tocorrelation to drop to zero in tens of iterations in most
cases. In addition, MBCR spans of all convex multi-
variate functions without the need for any acceptance-
rejection samplers, scales to a few thousand observa-
tions, and relaxes the homoscedastic noise assumption.

Magnani and Boyd (2009) proposed an iterative fit-
ting scheme to select the covariate partitions creating
K random subsets and fitted a linear model for each
subset. They constructed a convex function by taking
the maximum over these hyperplanes; the hyperplanes
induce a new partition, which they used to refit the
function. The series of operations repeats until reach-
ing convergence. However, the iterative nature makes
the final estimate dependent on the initial partition.
Further, note the estimator is not consistent and there
are cases when the algorithm never converges.

Alternatively, Hannah and Dunson (2013) proposed
a multivariate convex adaptive partitioning (CAP)
method to estimate locally linear estimates on adap-
tively selected covariate partitions. CAP uses the upper
envelope of the set of local linear estimates to con-
struct a flexible linear hyperplane approximation to the
underlying function. The estimator is computationally
feasible even for 10,000’s of observations and the au-
thors proved its consistency, but its asymptotic rate
of converagence is still unknown. Hannah and Dun-
son (2012) considered a set of ensemble methods such
as bagging and smearing which could be applied to
the CAP and the Magnani and Boyd (MB) estimators.
Bagging subsamples the data set with replacement tak-
ing subsample of size n repeated M times Breiman
(1996). Each subsample was used to create a new esti-
mate and then the M estimates are averaged. Smearing
adds i.i.d. mean zero noise to the observed dependent
variable Breiman (2000). A regression model is then
fitted to the new noisy data with the observed depen-
dent variables and the M regression estimates are aver-
aged. Hannah and Dunson (2012) implemented smear-
ing and bagging with both CAP and MB. The authors
note the significant benefits of bagging and smearing
for small sample sizes of 200 observations, and for
their large sample sizes of 5000 observations. In ap-
plication data, the MB method with either bagging or
smearing significantly outperformed (typically by an
order of magnitude on a variety of performance crite-
ria) CAP with no augmentations.

Yagi et al. (2018a) considers the multivariate local
polynomial kernel estimator with shape constraints.
Following their notation, define a set of m points,
x1, . . . ,xm, for evaluating constraints on the local
linear kernel estimator. Recall that {(Xi , Yi) : i =
1,2, . . . , n} is the set of observations. Yagi et al.
(2018a) define the Shape Constrained Kernel-weighted
Least Squares (SCKLS) estimator as

minimize
a,b

m∑
i=1

n∑
j=1

(
Yj − ai − (Xj − xi )


bi

)2

· K
(

Xj − xi

h

)

subject to l(xi ) ≤ ψ̂(s)(xi |a,b) ≤ u(xi ),

i = 1, . . . ,m,

where a = (a1, . . . , am)
 are functional estimates,
b = (b


1 , . . . ,b

m)
 are slope estimates at x, K(·) de-

notes a product kernel, h is a vector of bandwidths,3

ψ̂(s)(xi |a,b) is the sth derivative of the estimated
function ψ̂ , and l(xi ), u(xi) are the lower and upper
bounds, respectively. Specifically, the relationship be-
tween ψ̂ and the variables a and b is ψ̂(xi ) = ai and
ψ̂(1)(xi ) = bi .

Yagi et al. (2018a) showed that SCKLS is consis-
tent and its convergence rate nearly optimal (within
a log factor). Unlike other nonparametric estimators,
SCKLS uses local information to estimate the func-
tional at any particular point x, but requires bandwidth
selection. Compared to other kernel based shape con-
strained estimators, such as Hall and Huang (2001)
and Du, Parmeter and Racine (2013), SCKLS imposes
global convexity/concavity by taking the minimum of
a set of hyperplanes. A computational complexity anal-
ysis implies that SCKLS and Du, Parmeter and Racine
(2013) method should be similarly difficult to solve be-
cause both estimators are solving quadratic objective
functions relative to a convex solution spaces. How-
ever, practically speaking, SCKLS is usually easier
to solve, because the hyperplane structure leads to a
sparse constraint matrix, whereas the constraint matrix
to restrict the unconstrained kernel estimator is dense
making optimization more difficult.

Semiparametric models are common in economics
because standard interpretations apply for the linear
part. Consider a function f , although unknown, pos-
sesses shape properties such as homogeneity, concav-
ity, or monotonicity. Tripathi (2000) considered the

3See Li and Racine (2007) for more details.
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standard partially linear model, Y = X
β0 +f (Z)+ε,
where Y is the response variable, (X,Z) are the covari-
ates, β0 is a finite dimensional parameter of interest,
and ε is an unobserved random Gaussian variable. Tri-
pathi showed that in the class of n1/2 consistent regular
estimators of the parametric parameters β0, the con-
cavity and monotonicity of f do not improve the ef-
ficiency of the estimate β0 in finite samples. However,
homogeneity restrictions on f reduce the lower bounds
for the asymptotic variance of the n1/2 consistent reg-
ular estimators of β0.

2.2.3 Application: Production economics. Microe-
conomic theory, which can be interpreted as shape con-
straints, provides additional structure for modeling a
production or cost function. Consider a production pro-
cess that uses d different resources to produce a single
output, Y ∈ R. Call the quantity of the resources con-
sumed the inputs and use the notation, Xj ∈ R

d . Let-
ting n instances of the production process, each called
a production plan, lead to n pairs of input and output
data, {(Xj , Yj )}nj=1. Call the set of all technologically
feasible production plans the production possibilities
set and denote the set as T . Next, define the produc-
tion function as

Yj = g0(Xj ) + εj , for j = 1, . . . , n,

where εj is a random variable satisfying E(εj |Xj ) = 0.
Here, our primary interest is production function esti-
mation; examples of applications to estimate the dual
concept, the cost function, using nonparametric shape
constrained estimators include Beresteanu (2005) and
Michaelides et al. (2015).

Microeconomic theory often implies basic assump-
tions, for example, more input should lead to more out-
put (at least in the input range where the production
processes are observed). This particular assumption
implies that the production function increases mono-
tonically, specifically

if x1 ≤ x2, then g0(x1) ≤ g0(x2),

where the inequality is taken component-wise. Further,
for a given output level Y , define the set of input vec-
tors used to produce output level Y as the input require-
ment set (also referred to as the input set)

V (y) = {
x : (y,x) is in T

}
.

Here, the assumption is an optimal ratio or set of ratios
among the inputs exists and any deviation from the op-
timal ratio requires an increase in other inputs that is
more than proportional to the decrease in a particular

input. Given two input vectors x1 and x2 in V (y), then
λx1 + (1 − λ)x2 is in V (y) for all 0 ≤ λ ≤ 1. Thus,
V (y) is a convex set for any value y (Varian, 1992).
The boundary of the input set is referred to as the input
isoquant

IsoqV (y) = {
x : x ∈ V (y), λx /∈ V (y), λ < 1

}
.

The assumption of convex input sets can be strength-
ened. Define a production function f (x) = F(g(x)).
The production function is homothetic if: (1) Scale
function F : R → R is a strictly monotone increas-
ing function, and (2) Core function g : Rd → R is
a homogeneous of degree 1 function which implies
g(tx) = tg(x) for all t > 0. A production function that
does not have this property is referred to as nonhomo-
thetic.

The property, decreasing marginal benefit of inputs,
holds for a variety of production processes. Decreasing
marginal benefit of inputs implies that beyond some
output level, Y I , the additional output that can be pro-
duced from an additional unit of input decreases as the
input level increases:

f (λx) < λf (x) for all λ ≥ 1 and f (x) ≥ yI .

There are two primary reasons for this property.
First, for a particular production process certain inputs
are well matched or are the best inputs for that pro-
cess. Scarcity of inputs is the notion that as the scale
of production increases, less ideal inputs are used, and
so less output per unit of input is achieved. Second,
as a production process increases, the related activities
are harder to organize or control. Economists call this
the span of control. A production function with convex
input sets that satisfies decreasing marginal benefit of
inputs over the entire input space (i.e., yI = 0) is glob-
ally concave (Varian, 1984).

For multiproduct production, Mundlak (1963) de-
fined a multiproduct output vector y = (y1, y2, . . . ,

yq)
 ∈ R
q
+. For a given input vector x, define the set of

output vectors that can be produced as the producible
output set:

L(x) = {
y : (y,x) is in T

}
.

Mundlak (1963) argued that the producible output set
L(x) should also be convex. This leads naturally to an
implicit multi-input/multi-output production function,
also called the transformation function, defined as

f (y,x) = 0.

Under the assumption that the input requirement and
the producible output sets are convex and that the scal-
ing relationship between inputs and output increases
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monotonically with the decreasing marginal product,
Chambers (1988) shows the multi-input/multi-output
production technology T is globally convex. Further,
Chambers (1988) defined the the properties a multi-
input/multi-output production technology should sat-
isfy and Kuosmanen and Johnson (2017) provided
a nonparametric shape constrained estimator for this
technology.

Historically, much of the literature on production
functions concerned endogeneity. For example, man-
agement would determine input levels with knowledge
of its firm-specific characteristics and potentially par-
tial knowledge of random shocks. In the production
model, the assumption E(ε|X) is violated, leading to
biased and inconsistent estimates. A variety of solu-
tions have been proposed when the production function
is estimated parametrically (Griliches and Mairesse,
1995, Ackerberg, Caves and Frazer, 2015). Florens,
Racine and Centorrino (2018) considered estimating
a nonparametric shape constrained function using a
kernel-based approach with Landweber–Fridman reg-
ularization techniques using instrumental variables to
address endogeneity. Research which combines shape
constraints with treatment of endogenous variables
when estimating production functions is a promising
development.

2.3 Single Index Models and Alternative
Assumptions to Global Convexity

The desire to maintain convex (linear) input sets
while relaxing the concavity assumption for the rela-
tionship between the dependent variable and the re-
gressors leads naturally to single index models. Con-
sider the following single index regression model:

Y = m0
(
θ


0 X
) + ε.

Here, Xi ∈ R
d is an observed vector of predictors

where d ≥ 1, ε1, ε2, . . . , εn satisfy E(εi |Xi) = 0, θ0
are the parameters of a linear function to project X
to a single dimension, and m0 : Rd → R is an un-
known link function. The single index model averts
the curse of dimensionality typical of nonparametric
regression functions with a vector of predictors. This
specification states that the link function depends on
X only through a one-dimensional projection θ


0 X.
Shape restrictions are often placed on the link func-
tion m0. Balabdaoui, Durot and Jankowski (2016), who
studied this model under a monotonicity constraint
on m0, proved consistency of the least squares esti-
mator and Balabdaoui, Groeneboom and Hendrickx

(2017) establish n−1/2 consistency of a score estima-
tor. Kuchibhotla, Patra and Sen (2017) considered both
a Lipschitz constrained least squares estimator and the
penalized least squares estimator and found similar re-
sults for consistency and rate of convergence. The sin-
gle index model adds structure to the estimator, which
can be useful particularly when the data are limited.
However, assuming linear substitution between inputs
or goods, θ


0 X, can be overly restrictive for many pro-
duction or utility models.

2.3.1 Application: Production functions continued.
Convex input sets are typically a maintained assump-
tion in production economics, but alternative assump-
tions are available for the scaling law (or the rela-
tionship between output and expanding input levels).
While decreasing marginal product is a common char-
acteristic for large firms, economists often assume an
increase in marginal product for production at a small
scale, that is, increasing returns to scale. Thus, a pro-
portional increase in inputs leads to a more than pro-
portional increase in output

f (λx) > λf (x) for all λ ≥ 1.

Frisch (1964) proposed the Regular Ultra Passum
(RUP) production law. The law outlines when a firm
is operating at a small scale size it can achieve signifi-
cant increases in output for incremental increase in in-
put through specialization, learning, and the reduction
in change-over time when switching between compo-
nents of the production process. In contrast, as the scale
size becomes larger, a firm tends to face scarcity of
ideal production inputs and challenges related to in-
creasing span of control, thus the marginal benefits of
additional inputs decreases. Based on these concepts,
define the elasticity of scale,4 ε(x), relative to a pro-
duction function f (x):

(2.5) ε(x) =
d∑

k=1

∂f (x)

∂xk

xk

f (x)
,

and define the RUP law as follows.

DEFINITION 2 (Førsund and Hjalmarsson, 2004).
A production function f (x) obeys the regular ultra pas-
sum law if ∂ε(x)/∂xk < 0, and there exist input vectors

4This variable, formerly referred to as the passum coefficient in
the seminal work of Frisch (1964), is now commonly referred to as
the elasticity of scale.
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xa and xb where xb ≥ xa component-wise such that
ε(xa) > 1 while ε(xb) < 1.5

While the RUP law is often not referred to by name,
most introductory microeconomic textbooks introduce
the concept (Perloff, 2018). Further, researchers com-
monly assume that along a given ray, there exists only
a single inflection point; however, neither Førsund and
Hjalmarsson (2004) nor Frisch (1964) definition rules
out the possibility of multiple inflection points. To
make this concept rigorous, Yagi et al. (2018b) defined
an S-shape function.

DEFINITION 3 (Yagi et al., 2018b). For any vec-
tor v ∈ R

d+ and the associated ray from the origin
in input space αv with α > 0, a production function
f : Rd → R is S-shaped if there exists an x∗ such
that ∇2

vf (αv) > 0 for αv < x∗, and ∇2
vf (αv) < 0 for

αv > x∗, where ∇2
vf is the directional second deriva-

tive of f along v. This implies that for any ray from the
origin in the direction v, there exists a single inflection
point x∗ that ∇2

vf (x∗) = 0.

In defining an S-shape production function, Yagi et
al. (2018b) derived the relationship to the long standing
concept of the RUP law. Specifically, if a production
function f :Rd →R is twice-differentiable, monoton-
ically increasing, satisfies the RUP law, and has a single
inflection point, then f is S-shaped.

Yagi et al. (2018b) proposed an estimation algo-
rithm for a nonhomothetic production function satis-
fying both the S-shape definition and input convexity
without any further structural assumptions. The algo-
rithm has two steps: (1) Estimate input isoquants for a
set of output levels, and (2) estimate S-shape functions
on a set of rays from the origin. A CNLS-based estima-
tor is used for isoquant estimation and a SCKLS-based
estimators for the S-shape estimation. While this esti-
mator has a similar flavor as the single index model, re-
laxing the parameter structure for aggregating the vec-
tor of inputs necessitates a two step procedure. In the
nonhomothetic case, the performance of the estimator
can be improved by iterating between the two-steps.
However, if the production function is homothetic, the

5Note that this definition of the RUP law is slightly adapted from
Førsund and Hjalmarsson (2004) for clarity. Førsund and Hjalmars-
son (2004) definition generalizes Frisch (1964) original definition
by not requiring the passum coefficient to go below 0 implying
congestion. This generalization also allows for a monotonically in-
creasing production function. Further, a concave production func-
tion nests within this definition.

input isoquant can be estimated for just a single output
level as in Hwangbo, Johnson and Ding (2015).

In the future, the availability of shape constrained
nonparametric estimation techniques could allow
economists to develop alternative theories of produc-
tion and validate them empirically.

3. SEQUENTIAL DECISION MAKING

Making sequential decisions under uncertainty,
which has been studied extensively in both economics
and operations research, is formalized under dynamic
programming, optimal control, Markov decision pro-
cesses, and other topics (Stokey, Lucas and Prescott,
1989, Kamien and Schwartz, 1981, Puterman, 1994).
The typical setting consists of a decision maker who al-
ternates between making decisions and observing new
information, to inform future decisions:

choose decision � observe information

� choose next decision � · · · .

In a sequential setting where stochastic information is
revealed over time, the decision maker needs to find
the optimal policy that prescribes a decision for every
possible “state-of-the-world,” that is, every outcome of
the stochastic information process. The following ex-
ample, illustrates the well-known problem of multi-
stage inventory management (Clark and Scarf, 1960,
Scarf, 1960, Porteus, 2002).

Consider a firm managing its inventory control pol-
icy over a finite horizon of T periods. At time period t ,
the decision maker observes the current inventory state
st and places an order for xt additional units. Between
time t and time t + 1, a random demand Dt+1, inde-
pendent of the past, is realized. The cost function for
period t is given by

ct (st , xt ) = cxt + E
[
h(st + xt − Dt+1)

+

+ b(Dt+1 − st − xt )
+]

,
(3.1)

where c is the ordering cost, h is the holding cost, and b

is the backlogging cost (i.e., cost per unit of unsatisfied
demand). The inventory position at t + 1 is given by
st+1 = st +xt −Dt+1, where st < 0 represents unsatis-
fied or backlogged demand. The decision maker needs
to determine the optimal inventory ordering policy π∗

t

(a function mapping inventory states st to order quan-
tities xt ) that minimizes the expected cumulative cost
E[∑T −1

t=0 ct (st , πt (st ))].
At every period t , the decision maker needs to de-

termine an order quantity xt for each possible inven-
tory state st (a scalar quantity). This model is known
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as a finite-horizon Markov decision process (MDP)
(Puterman, 1994). If st takes on a finite number of val-
ues and the expected value is easy to compute (e.g.,
in the case where order quantities are integer-valued
and demands are integer-valued and bounded), then the
optimal decision in stage t , state s, denoted π∗

t (st ),
can be computed by simply enumerating the inven-
tory states and then applying a standard dynamic pro-
gramming method (Puterman, 1994, Bertsekas, 2012).
This amounts to solving a series of recursive equations
to compute the so-called optimal value functions. Let
VT (s) ≡ 0 and for each t < T , define the optimal value
function

Vt(st ) = min
xt

{
ct (st , xt )

+ E
[
Vt+1(st + xt − Dt+1)

]}
.

(3.2)

Here, the optimal decision in state st at time t is an
xt that achieves the minimum of the right-hand-side
of (3.2). Thus, solving for the optimal policy π∗

t for
each t under the dynamic programming framework de-
pends on the decision maker’s ability to compute the
value functions, Vt . Although the recursive equations
may seem simple, realistic instances of the inventory
control problem can quickly become intractable for the
enumeration-based dynamic programming method dis-
cussed above. For example,

• Consider the case of a multiproduct inventory sys-
tem, as described in Evans (1967) or Aviv and Fed-
ergruen (2001). In this setting, the decision maker
needs to track the inventory states for all products;
thus, st becomes multidimensional. Even if the num-
ber of inventory states per product is enumerable, the
number of states across all products grows exponen-
tially with the number of products; this is an example
of the “curse of dimensionality.”

• The assumption that Dt+1 is independent of the
past is called stage-wise independence (Pereira and
Pinto, 1991, Shapiro, 2011). In practical applica-
tions, the distribution of the demand could depend
on factors such as weather, previous demands, or
market conditions represented by it . Consequently,
the optimal policy depends on both st and it , and is
written as π∗

t (st , it ). Computational difficulties eas-
ily arise when it is multi-dimensional, again due to
the curse of dimensionality.

• An unknown distribution for Dt+1 implies the in-
ability to compute the expectation in (3.1). This lim-
itation, which prevents the application of standard
dynamic programming techniques, forces the deci-
sion maker to use sample-based methods, usually
historical data or a simulator (generative model).

Approximate dynamic programming (ADP) and re-
inforcement learning (RL) refer to a set of methodolo-
gies and algorithms for approximately solving com-
plex sequential decision problems when the state
space is large and/or parts of the system are unknown
(Bertsekas and Tsitsiklis, 1996, Sutton and Barto,
1998, Powell, 2011, Bertsekas, 2012). For general
large-scale problems, unstructured approximations in-
cluding value iteration with linear approximations
(i.e., using basis functions) (Tsitsiklis and Roy, 1996,
Tsitsiklis and Van Roy, 1999, de Farias and Van
Roy, 2000, Geramifard et al., 2013), approximate
linear programming (de Farias and Van Roy, 2003,
Pucci de Farias and Van Roy, 2004, Desai, Farias
and Moallemi, 2012a), and nonparametric methods
are used (Ormoneit and Sen, 2002, Bhat, Farias and
Moallemi, 2012). Recently, RL with deep neural net-
works has become popular (Mnih et al., 2015, Silver et
al., 2016). Structured approximations can be incorpo-
rated when properties can be identified a priori.

The next section reviews the uses of shape con-
straints to enforce structure in the approximations used
throughout the course of ADP and RL. The primary
focus is on convexity of the value function, a particu-
larly well-studied shape constraint in sequential deci-
sion problems (Pereira and Pinto, 1991, Godfrey and
Powell, 2001, Philpott and Guan, 2008, Nascimento
and Powell, 2009, 2010), and the secondary focus is
monotonicity of the value function (Papadaki and Pow-
ell, 2002, Kunnumkal and Topaloglu, 2008a, Jiang
and Powell, 2015), which is useful when convexity
is not available. We conclude with a brief review of
how policy structure can be exploited (Kunnumkal and
Topaloglu, 2008b, Huh and Rusmevichientong, 2009,
Zhang, Chao and Shi, 2017). The notation we use will
largely follow the standards of the literature.

3.1 Convexity of the Value Function

In many problems, the value function Vt is convex in
the state variable, or, at least in certain dimensions of
the state variable, for each t . One benefit of the prop-
erty of convexity is the potential for algorithms to ex-
ploit this structure. Below, we survey several widely
used and powerful methodologies.

3.1.1 Stochastic decomposition. We begin with the
two-stage linear program with recourse (Birge and
Louveaux, 2011). The recourse decisions are made in
the second (and final stage) after uncertainties have
been realized. The interpretation is that the “mistakes”
made by the first-stage decision (e.g., inventory short-
age) can be corrected in the second stage. Let X be a
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convex, polyhedral set. Using the notation of Higle and
Sen (1991), formulate the problem as

minimize
x

f (x) = c
x + E
{
h(x, ω̃)

}
subject to x ∈X ,

where h(x,ω) is the optimal objective function value
of the second-stage problem

minimize
y

g
y

subject to Wy = ω − T x,

y ≥ 0.

Here, c is a cost vector and x is the first-stage deci-
sion, which must be chosen before the realization of
a random variable ω̃. The second-stage recourse costs
are given by g and the associated decision is y. The
recourse matrix is W and ω − T x is discrepancy that
is accounted for in the second stage by y. Assume that
value function h is finite. To illustrate the formulation,
in a production problem, x may represent raw material
order quantities from a supplier (at cost c) to produce
T x units of a product; ω is the realized demand and
ω − T x is a shortage; and y are the raw material or-
der quantities from an emergency supplier (at costs g),
which can produce Wy units of the product.

The stochastic decomposition (SD) algorithm pro-
posed by Higle and Sen (1991) exploits the convex-
ity and piecewise-linearity of h(x,ω) by combining
ideas from Bender’s decomposition and stochastic ap-
proximation (Kushner and Yin, 2003). The algorithm
constructs a necessarily convex approximation of the
objective function f by defining it as the maximum
of iteratively computed hyperplanes. The steps of the
stochastic decomposition method are summarized be-
low:

(1) Subproblem. Given xk on iteration k, compute the
solution to the second-stage problem for a single
sample ωk generated from the distribution of ω̃ by
using a dual formulation, with dual variables π

h
(
xk,ωk) = max

π

{
π
(

ωk − T xk)|W
π ≤ g
}
.

(2) Compute cut. Using all subproblem solutions gen-
erated until iteration k, estimate a support of f via
an affine function αk

t + (βk
t +c)x. This affine func-

tion is called a cut. See Higle and Sen (1991), Sec-
tion 2.2, for details on computing the parameters
αk

t and βk
t .

(3) Update old cuts. Reduce the influence of the old
cuts generated in past iterations t < k via the up-
dates

αk
t = (k − 1)αk−1

t /k and βk
t = (k − 1)βk−1

t /k.

(4) Update convex approximation. Compute the
piecewise-linear and convex approximation of the
objective function f (x) as a maximum of affine
functions:

fk(x) = max
t≤k

{
αk

t + (
βk

t + c
)
x
}
.

The iterate xk+1 is a solution to an approximate
first-stage problem given by maxx∈X fk(x).

THEOREM 3.1 (Higle and Sen, 1991). There exists
a subsequence of {xk} generated by SD, such that every
accumulation point of the subsequence is an optimal
solution, with probability one.

The formal statement of the SD algorithm also uses
the concept of an incumbent solution, which roughly
speaking, is an iterate which achieves a low objec-
tive value and is revisited by the algorithm. Such an
implementation improves the method’s empirical per-
formance and does not affect the convergence guaran-
tee. However, despite asymptotic guarantees, stopping
rules are critical for practical implementations (see,
e.g., Higle and Sen (1996), Mak, Morton and Wood
(1999)). The original SD algorithm was designed only
for two-stage problems, but more recently, Sen and
Zhou (2014) proposed a regularized, multistage exten-
sion.

3.1.2 Stochastic dual dynamic programming. The
stochastic dual dynamic programming (SDDP) algo-
rithm was first proposed by Pereira and Pinto (1991).
SDDP was proposed before SD, but both are based on
the idea of iteratively generating cuts to approximate
a piecewise-linear convex value function. The differ-
ence is that SDDP does not use stochastic approxima-
tion (i.e., the update old cuts step of SD), but requires
the subproblems to be solved for every scenario in each
iteration. SDDP is more general in the sense that it was
directly proposed for multistage problems.

We introduce the multistage stochastic linear pro-
gramming model using the notation of Philpott and
Guan (2008), while noting that it is a direct extension
of the two-stage model discussed in the previous sec-
tion. Let 
t be a finite set of random outcomes for
state t , where outcome ωti has probability pti . The
random variables ωt ∈ 
t are independent across time
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(termed stagewise independence). Let QT +1 ≡ 0 and
define Qt (xt−1) = ∑

i ptiQt(xt−1,ωti), where

(3.3)

Qt(xt−1,ωti)

= min
xt

ctxt +Qt+1(xt )

subject toAtxt = ωt − Bt−1xt−1,

xt ≥ 0,

and write the first-stage problem as

Q1 =min
xt

c1x1 +Q2(x1)

subject toA1x1 = b1,

x1 ≥ 0.

Once again, the value functions Qt (x) are piecewise-
linear convex (Pereira and Pinto, 1991), so the approx-
imation used in SDDP is a maximum of hyperplanes.
Let Qk

t be the approximation of Qt at iteration k and
suppose Qk

T +1 = QT +1 for all k. The main steps of it-
eration k of the algorithm are as follows:

(1) Forward pass. For each time period t = 1,2, . . . ,

T , select a trial decision x̂k
t . There are a vari-

ety of ways to do this, but the original proposal
from Pereira and Pinto (1991) is to simulate one
sample of the decisions generated by the current
policy, that is, the one induced by solving (3.3)
where Qt+1 is replaced with the current approxi-
mate value function Qk−1

t+1 . From a theoretical point
of view, we also refer readers to Philpott and Guan
(2008) for details regarding the so-called forward
pass sampling property, which requires all scenar-
ios to be sampled infinitely often on the forward
pass.

(2) Backward pass. SDDP now moves backward,
starting from t = T . At the trial decision x̂k

t , loop
through all possible outcomes of the random vari-
able ωt and for each outcome ωti , solve the prob-
lem (3.3) with Qk

t+1 replacing Qt+1 and ωti re-
placing ωt . Compute a cut and use it to update the
approximation for time t , resulting in Qk

t (which
is used in the subproblem solved in at t − 1). Note
that the convexity of Qt is again exploited by ap-
proximating it as the maximum of a series of affine
cuts.

The convergence of the SDDP algorithm has been
studied by Linowsky and Philpott (2005) and further
generalized by Philpott and Guan (2008). Note that the
improvement of the convergence result here compared
to the one for SD is because all scenarios are being
considered when computing the cuts.

THEOREM 3.2 (Philpott and Guan, 2008). Under
some technical assumptions on the forward pass, the
SDDP algorithm converges to an optimal solution of
the first-stage problem in a finite number of iterations.

Two algorithms closely related to SDDP are the cut-
ting plane and partial sampling algorithm of Chen
and Powell (1999) and the abridged nested decom-
position algorithm of Donohue and Birge (2006). No-
tably, the convergence of both methods follows from
Philpott and Guan (2008). The stagewise indepen-
dence assumption of the random process was relaxed
in Löhndorf, Wozabal and Minner (2013) and Asamov
and Powell (2018). Asamov and Powell (2018) also
proposed a regularized version of SDDP to improve
performance. Extensions of SDDP for risk-averse
problems were explored in Philpott and de Matos
(2012), Shapiro et al. (2013), and Philpott, de Matos
and Finardi (2013). All of these methods enforce a
convex “shape constraint” on the value function ap-
proximation via a piecewise-linear function.

EXAMPLE (Hydrothermal Planning). Hydrother-
mal operations planning has a long history in the op-
erations research literature (Pereira and Pinto, 1991,
Pritchard, Philpott and Neame, 2005, Philpott and de
Matos, 2012, Shapiro et al., 2013, Maceira et al., 2015).
The objective is to find an operational strategy that
satisfies energy demand at every location in the sys-
tem while achieving minimal expected cost. Below, we
summarize the major features:

• The overall system contains a set of reservoirs whose
storage levels are tracked by the state variable.
From period to period, the reservoir is subjected to
stochastic inflows and potential losses due to evapo-
ration.

• Water stored in the reservoirs can be used for (free)
energy production. Thermal generators used to com-
plement the hydroelectric production are expensive
to operate, that is, each generator has an associated
generation cost function.

• Energy can be interchanged between two locations
via transmission lines. This feature emphasizes the
influence of the underlying network structure.

Discretization and standard dynamic programming
cannot be used, because of the increased number of
states as the number of reservoirs increases. Instead,
SDDP is used to provide approximations of the optimal
policy for problems ranging in size from 22 reservoirs
(Pereira and Pinto, 1991) to 69 reservoirs (Shapiro et
al., 2013).
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3.1.3 Separable, projective approximation routine.
As proposed by Powell, Ruszczyński and Topaloglu
(2004), the separable, projective approximation rou-
tine (SPAR), was motivated by the need for integer so-
lutions in certain applications (e.g., consider the case
of ordering a discrete number of items per period). The
term “separable approximation” means that a multidi-
mensional convex function is approximated by a sum
of one-dimensional convex functions, which unfortu-
nately implies that the algorithm does not converge
to an optimal solution in general. However, its em-
pirical performance is strong. Nascimento and Pow-
ell (2013) extended theory in Powell, Ruszczyński and
Topaloglu (2004) to a multistage setting for the (one-
dimensional convex) problem of lagged asset acquisi-
tion. The SPAR algorithm relies on stochastic approx-
imation theory and bears a strong resemblance to the
Q-learning algorithm (Watkins and Dayan, 1992) in
the reinforcement learning literature (Sutton and Barto,
1998). Below, we describe a single period setting.

Using the notation of Powell, Ruszczyński and
Topaloglu (2004), consider maximization of a
piecewise-linear concave function f̄ (x) = E{f (x,ω)}
with integer breakpoints on a domain [0,M]. If l ≤
x < l + 1, write function f̄ as

f̄ (x) = f̄ (0) +
l∑

s=1

v̄s + v̄l+1 · (x − l),

where v̄s = f̄ (s) − f̄ (s − 1) are the slopes of f̄ . The
idea of the SPAR algorithm is to iteratively construct
approximations of f̄ using noisy observations while
employing a concavity preservation step to ensure that
v̄s are nonincreasing in s. The steps of iteration k,
where the current approximation of the true slope v̄k

s

is vk
s are as follows:

(1) Noisy observation. Sample a “state” sk from {1,2,

. . . ,M} and observe (from data or a simulator) an
unbiased estimate ηk of the slope v̄sk .

(2) Update approximation. Compute an intermediate
approximation zk , with zk

sk = (1 − αk)v
k
s + αkη

k

and zk
s = vk

s for all other s. This step simply
smoothes the new observation with the current es-
timate.

(3) Enforce concavity. Let V be the set of vectors v̄

that represent concave functions f̄ , that is, those
that satisfy v̄s+1 ≤ v̄s for each s. The SPAR algo-
rithm enforces concavity by projecting zk to the
set V

vk+1 = argmin
{∥∥v − zk

∥∥2 : v ∈ V
}
,

which can be computed via a straightforward pro-
cedure. This step can be thought of as correcting
any nonconcavity introduced by the noisy update.

THEOREM 3.3 (Powell, Ruszczyński and Topaloglu,
2004). Under some technical conditions, the approx-
imations vk produced by the SPAR method converge
almost surely to v̄.

The SPAR procedure can be used within an approx-
imate dynamic programming setting for multistage de-
cision making, as analyzed in Nascimento and Powell
(2009). Related algorithms that make use of stochastic
approximation to update piecewise linear approxima-
tions can be found in Cheung and Powell (2000) and
Godfrey and Powell (2001). This class of techniques is
more amenable to the distribution-free setting, where
sampling can be done with respect to the true distribu-
tion or from real data, whereas SDDP requires either
a presampled model (with a finite number of scenar-
ios per stage) or the assumption that the true distribu-
tion has finite support and is known (Shapiro, 2011).
SPAR’s limitations are its requirement for a separa-
ble approximation for multidimensional problems, and
the unavailability of lower bounds for the minimization
case. See Asamov, Salas and Powell (2016) for a thor-
ough empirical comparison of SPAR versus SDDP for
the case of optimizing grid-level energy storage; the
authors concluded that each algorithm has benefits in
certain contexts.

EXAMPLE (Cash Balance). The mutual fund cash
balance problem (Nascimento and Powell, 2010), is an
updated version of the stochastic cash balance problem
(Neave, 1970). Consider the decision problem of a mu-
tual fund manager, who requires a policy to decide the
cash quantity of the fund’s assets kept in each period.
Several trade-offs need to be considered:

• A mutual fund needs to meet shareholder redemp-
tions. There is redemption demand from retail
(small) investors and institutional (large) investors,
who are treated slightly differently. If there is not
enough cash on hand to satisfy the redemption of a
large investor, the fund manager takes out short-term
loans to immediately meet the demand.

• In the case of a retail investor, the fund manager pays
a cost to liquidate a portion of the individual’s illiq-
uid assets. Generally, the cost is smaller than the in-
terest on the short-term loans.

• If too much cash is kept on hand, the fund manager
foregoes the portfolio return on the portion of excess
cash.
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The authors formulated the above problem as an
MDP and proved that the optimal value function was
piecewise-linear concave in the cash level for each
environmental state. Given that the problem is one-
dimensional and that the two exogenous stochastic
processes (portfolio return and interest rate) have un-
known distributions, SPAR is an ideal solution algo-
rithm.

3.2 Monotonicity

Some studies have exploited monotone structure in
sequential decision making. In the scalar case, the
discussion above shows that enforcing concavity is
equivalent to enforcing monotonicity in the slopes vk

s .
Similar methods have been designed for this set-
ting. See Papadaki and Powell (2002) for an exam-
ple of the SPAR-like procedure adapted to exploit
monotonicity in the stochastic batch service problem.
Kunnumkal and Topaloglu (2008a) proposed a mono-
tone Q-learning for the setting of scalar state vari-
ables in an infinite horizon setting; for convergence
analysis, it requires a different proof technique from
the finite horizon setting of Nascimento and Pow-
ell (2013). However, for a multidimensional state,
Kunnumkal and Topaloglu (2008a) suggest arbitrar-
ily selecting a dimension in which monotonicity is en-
forced.

Jiang and Powell (2015) proposed monotone-ADP,
extending previous work to the multidimensional state
space setting. More generally, the algorithm applies
when monotonicity is preserved over partially or-
dered states. Consider a dynamic programming setting
similar to (3.2), where the value functions Vt(s) sat-
isfy

Vt(s) ≤ Vt

(
s′) for all s � s′,

where � is a partial order over the state space.
Monotone-ADP is useful in the setting of s = (x1, x2,

. . . , xd) and s′ = (x′
1, x

′
2, . . . , x

′
d) with monotonic-

ity in the value function whenever xi ≤ x′
i for all i.

The steps of the algorithm are analogous to those
of SPAR, except in a multistage setting. For exam-
ple, in iteration k, there is a state sk

t , an updated
value zk

t , and a current value function approxima-
tion V k

t . Here, we focus on a new operator �M ,
which depends on sk

t , zk
t and V k

t , where there is
an arbitrary state s and the output is the updated
value of state s after accounting for the new obser-
vation at sk

t and the monotone structure. Define it

as

�M

(
sk
t , zk

t , V
k
t

)
(s)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zk
t if s = sk

t ,

zk
t ∨ V k

t (s) if sk
t � s, s �= sk

t ,

zk
t ∧ V k

t (s) if sk
t � s, s �= sk

t ,

Vt (s) otherwise,

where a ∨ b = max(a, b) and a ∧ b = min(a, b). The
first condition says that the value of sk

t is updated to
zk
t regardless of the other values, which is a depar-

ture from SPAR. The second condition says that if s

is greater than sk
t , then its value should be the maxi-

mum of zk
t and V k

t under the monotonicity condition.
The third condition similarly covers the case of s less
than sk

t . The fourth condition leaves the “incompara-
ble” states unchanged, because there is only a partial
order over the states.

THEOREM 3.4 (Jiang and Powell, 2015). Under
some technical assumptions, the approximation V k

t (s)

generated by monotone-ADP converges to the value
function Vt(s) almost surely for each stage t and
state s.

Since the theoretical basis of the monotone-ADP al-
gorithm is stochastic approximation, this theorem em-
phasizes that the monotone shape constraint does not
affect its convergence properties.

EXAMPLE (Optimal Stopping). Perhaps the most
fundamental problem class in sequential decision mak-
ing concerns the question of optimal stopping or opti-
mal replacement (Pierskalla and Voelker, 1976,
Rust, 1987, Tsitsiklis and Van Roy, 1999, Kurt and
Maillart, 2009, Kurt and Kharoufeh, 2010, Desai,
Farias and Moallemi, 2012b). The trade-off in the case
of optimal stopping is whether the decision maker
should accept the reward now (e.g., sell a house), or
wait until a future period (e.g., wait for a higher of-
fer). Similarly, optimal replacement problems model
the trade-off between the cost of replacement now ver-
sus the possibility of failure in the future.

Although such problems do not feature convex value
functions, they often contain many exogenous infor-
mation states, which impose significant computational
challenges. Fortunately, monotonicity can sometimes
hold. For example, Kurt and Maillart (2009) and Kurt
and Kharoufeh (2010) showed that under certain con-
ditions, the value function of an optimal replacement
model was nondecreasing in both the system state
(health of the system to be replaced) and the environ-
mental state, that is, an opportunity for monotone shape
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constraints to be utilized was provided. Jiang and Pow-
ell (2015), who applied the monotone-ADP algorithm
to problems of this type, showed significant empirical
improvements when monotonicity was enforced.

3.3 Policy Structure

The final goal of sequential decision making prob-
lems is to discover the optimal policy. Computing the
optimal value function is one approach, but it is also
possible to directly search for the optimal policy π∗

t (s).
Consider the well-known policy gradient methods of
reinforcement learning (Sutton et al., 2000). In opera-
tions research, the structure of optimal policies are of-
ten known a priori for many foundational models. Be-
low, we give an example of using shape constraints in
the policy space.

It is well known that the optimal policy to the in-
ventory control application discussed above is of base-
stock form (e.g., see Porteus, 2002) meaning that opti-
mal basestock levels {rt } exist such that if the current
inventory level is st , then it is optimal to place an order
for xt = [rt − st ]+ units of inventory. In other words, if
st is below rt , the decision maker orders up to rt , and
if st is above rt , it does not order.

Kunnumkal and Topaloglu (2008b) proposed an
algorithm that directly searches within the class of
all basestock policies, in effect imposing a “bases-
tock shape constraint” throughout the search. The au-
thors considered a stochastic approximation approach,
where {rk

t } denotes the estimated basestock levels at
iteration k. The two steps are as follows:

(1) Demand observations. Observe either from data or
within a simulated setting, a trajectory of demand
realizations

Dk = (
Dk

1,Dk
2, . . . ,Dk

T

)
.

Note that demand is exogenous to the inventory
system.

(2) Basestock update. Using the current basestock lev-
els {rk

t } and the demand observations Dk , compute
an estimated basestock adjustment �k

t to improve
the performance of the basestock policy. The up-
date is given by

rk+1
t = rk

t − αk�k
t ,

for some stepsize or learning-rate αk .

Because no value function approximation is stored, the
calculation of �k

t is nontrivial and requires a novel re-
cursive computation derived from the Bellman equa-
tion (Kunnumkal and Topaloglu, 2008b, Section 3).

THEOREM 3.5 (Kunnumkal and Topaloglu, 2008b).
Under various technical conditions, the sequence of
basestock policies generated by the method above
is asymptotically optimal: rk

t → rt almost surely for
each t .

A basestock shape constraint was also used in the
online convex optimization approach of Huh and Rus-
mevichientong (2009). A related paper by Zhang, Chao
and Shi (2017), used the basestock shape constraint in
a perishable inventory setting to discover good, but not
necessarily optimal, policies.

4. DISCUSSION

The economics and operations research communi-
ties continue to propose, test and debate new appli-
cations of shape constrained estimation. This paper
briefly surveys several significant applications of shape
constraints, including revealed preferences, production
economics and several operational problems that in-
volve sequential decision making. To our knowledge,
this survey is the first to review the operations research
literature on shape constraints.

Shape constraints, including monotonicity, convex-
ity/concavity and S-shapes, have attracted research
from both practical and theoretical perspectives. The
additional structure provided by imposing shape con-
straints allows for estimation with smaller samples, and
in the case of sequential decision making applications,
structured versions of approximate dynamic program-
ming algorithms enables practitioners to address large-
scale problems. We expect that new methodologies will
be developed to address other important problem struc-
tures, which will in turn facilitate the growth of the
fields of economics and operations research.
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