IE 3186: Approximate Dynamic Programming Fall 2018
Lecture 12: Q-Learning for Optimal Stopping

Lecturer: Danzel Jiang Scribes: Kamal Basulaiman, Jing Yang

References:

J. N. Tsitsiklis, B. Van Roy, Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to high-dimensional financial
derivatives, IEEE Transactions on Automatic Control, 1999.

D. P. Bertsekas, J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific,
Belmont, MA, 1996. (§6.8)

12.1 Approximate Q-Learning for Optimal Stopping

e Consider a Markov chain {i;} taking values in {1,2,...,n}, where n is large.
The original paper deals with stochastic process with i, € RY, but we will
examine the simpler case.

e Transition probabilities (p;;), where p;; is the probability of transitioning from
state ¢ to state j in one period. Suppose there is a steady state distribution

52 (517527”'7€n) > 0.

e Decisions: {stop, go}. If “stop,” pay cost c(i). If “go,” pay cost g(ig, 1)
Crucial point here is that decisions don’t affect 7.

e Applications:

1. Optimal replacement problems.
2. When to start a treatment to maximize patient quality of life?

3. When to exercise an option (finance)?

A compact formulation of the MDP is as follows:

Q" (ix) = E [g(ix, irt1) +ymin (c(ipr1), Q" (iky1))]

where Q*(iy,) is interpreted as the cost of continuing starting from state i;. The cost
of stopping is always E(g(ix, ix+1)), so we can write the MDP in a simple form. Goal:

12-1



Lecture 12: QQ-Learning for Optimal Stopping 12-2

design an approximate Q-learning algorithm that uses basis function approximations
specifically for this problem. Define Bellman operator:

(FQ)(3) =Z pij [9(i, §) +ymin (c(j), Q()))] < FQ = g+~Pf(Q),

where g(i) =3 py; (i, /), and £(Q)(i) = min{c(i), Q(i)}.

Proposition 12.1. F is contraction on || - ||« and Q* is the fized point.

Proposition 12.2. F' is contraction in the weighted Euclidean norm || - ||¢.
Proof. For all Q,Q’, we have
[FQE) = FQ'G)| <7 3 pul F(@6) = F(@)()
J
<7 Z pz‘j’@(i) - Q/(i)}
J

since | min(a, z) — min(a,y)| < |z — y|. Therefore |FQ — FQ'| < vP|Q — Q'| compo-
nentwise, so [[FQ — FQ'le < 7 P|Q — @|lle < 71|Q — @/[l¢ by the non-expansiveness
of P. O

Suppose that we take a basis function approach. Consider the algorithm ®ry., =
(ILF')(Pry), which has a fixed point since IIF is a contraction. Equivalently,

Trpi1 = arg mrin | Dr — (g + ’fo(@rk)) Hg

12.1.1 SGD Approach
Sample 7y ~ £ and 7543 ~ F;, . Consider this update:

oyt = T + ap D) [g(in) + 7S (Pr1) (ing1) — (Pre)(in)]

Some intuition (thought experiment):

e Suppose P(ig) > 0, then increasing r(1) will increase @ ~ Pr.

e If new estimate of () — current estimate of () > 0, then the current estimate
is too small. We should increase r(1) to increase the estimate. This is exactly
what the update will do.
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Define z and z:

2(iny ik, i) = P(in) (9(in) + 7 (Pre) (insr) — (Pra)(in)),

2ry) = El[z(in, g, )] =

so that rpy1 = 7% + agz(ig, igs1,7%). The j-component of z(ry) is

Zi(r) = E[@;(0) [glin) +7£(@r)(ix) — (@r) ()]
— E[®,(i) [glii) + 7P F(@r)(ix) — (@r)(in)]]
— B|®,(i) [(FOr)(ix) — (@r) ()]

- Z&[m (For)(i) - (@r)()]]
= ((I> For — or),
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Lemma 12.3. (r — r*)T z(r) < 0 for all r # r*, i.e., the update direction is correct

on average.

Proof. Note that:

(r—r")"2(r) = Z(T(j) —77(7)) (5, FOr — Pr)e
= Z(T(J’) Z &®;(i) [(FOr)(i) — (@) ()]

:Zsz«[z r(j) = (5)) ®j<z>[<F¢r><z>—<¢r><i>ﬂ

= S al@n) ) - @) @] [(Fer)) — (@r))]

(Or — Or*, For — &r),

(Or — @r*, FOr — [IF®r 4 [IFOr — &r),
(Or — Or*  IIFOr — Or),

(Or — Or*  IIFOr — IIF®r* + &r* — &r),
(Or — Or* IF®r — IIFOr*), — [|®r — &r*||
YIIOr = @rfle [|Or — Srfle — [|@r — r|g

/AN .
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=(y—1)||®r— CI)T*HE <0
0
< >0

where we used the Cauchy Schwarz inequality in the next to last line. O

Theorem 12.4. Under some additional conditions (see Tsitsiklis, Van Roy 1999 ),
o r, — r*wp. 1,

* * 1 * *
o [[&r" — Qe € == [IIQ" — Q";,

N

o Let J*(ip) = min(c(ig), Q*(ig)) and let J® (i) be the cost obtained by following
policy induced by Pr*. Then,

E[J* (io)] — E[J*(ip)] <

2 * *
S IQ” - @l

(EN s

where ig ~ &.

First part follows by SGD theorem and the above lemma. Second part is similar to
the policy evaluation theorem from a previous lecture. We now prove the third part.
Define a new operator:

00 = {45, Sl

Interpretation: take ®r*’s recommended decision, but evaluate cost-to-go using Q.
Define:

FQ=g+~PHQ.
Lemma 12.5. |[FQ — FQ'|¢ is y-contraction in ||.c.

Proof. There are two cases:

. [HQ—-HQ =0, if c(i) < (Pr7)(i),
10 = {1 e oo e o)

Therefore, we have | EQ — FQ'le <7 HQ — HQ'l < 10 — @'l 0
Lemma 12.6. Q = g+ ~vP J* is a fized point of F.
Proof. We have:

S feld), if e(i) < (@r7) (@),
(HQ)(i) = {(g + P J¥7)(i), otherwise.

This means H Q = J*" and the result FQ = Q follows. O
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Remark 12.7. F(®r*) = F(dr*).

Proof. We have:

(HOr) (i) = {C(i)’ if e(i) < (@r7)(0),

(Pr*)(i), otherwise.

Therefore, (H®r*)(i) = min(c(i), (Pr*)(i)) and (FQr*)(i) = g(i) + (P f(®r*))(i) =
(F®r*) (7). O

(7ii). Note ig ~ & and £ = EP.

E[J (io) = J"(i0)] < [B[(PT") (i) — (PT7) ()] |

2

- [ sl - o

< [ a(pr - pry
i=1
Pr* * 1 Pr* *
= [|PJ*" —PJ ||§=;||Q+VPJ —(g+vPJ) e
1 ~
= Q_Q* )
> I e

where we used convexity and Jensen’s inequality in the third line. Now,

1Q = Q" lle < 1Q" = Foor* + For* — Qlle
< Q" = For*|l¢ + | For* — FQlle
<@ = @rfle +7[1Q — ®rle
<AQ" = e +71Q = Q*lle + 7 1Q" — @r*l.

Therefore:
~ 2y 2y 1
19 = Qlle < 725 10" - ol < 17— Q" — '
Combining with the previous step, we have
* 2
E|J*" (i0) = J(io)] < I1Q" - Q.
(1 =7)v/1=7?2



