IE 3186: Approximate Dynamic Programming

Fall 2018

Lecture 12: Q-Learning for Optimal Stopping

Lecturer: Daniel Jiang Scribes: Kamal Basulaiman, Jing Yang

References:

J. N. Tsitsiklis, B. Van Roy, Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to high-dimensional financial derivatives, IEEE Transactions on Automatic Control, 1999.

D. P. Bertsekas, J. N. Tsitsiklis, *Neuro-Dynamic Programming*, Athena Scientific, Belmont, MA, 1996. (§6.8)

12.1 Approximate Q-Learning for Optimal Stopping

- Consider a Markov chain $\{i_k\}$ taking values in $\{1, 2, ..., n\}$, where n is large. The original paper deals with stochastic process with $i_k \in \mathbb{R}^d$, but we will examine the simpler case.
- Transition probabilities (p_{ij}) , where p_{ij} is the probability of transitioning from state i to state j in one period. Suppose there is a steady state distribution $\xi = (\xi_1, \xi_2, \dots, \xi_n) > 0$.
- Decisions: {stop, go}. If "stop," pay cost c(i). If "go," pay cost $g(i_k, i_{k+1})$. Crucial point here is that decisions don't affect i_k .
- Applications:
 - 1. Optimal replacement problems.
 - 2. When to start a treatment to maximize patient quality of life?
 - 3. When to exercise an option (finance)?

A compact formulation of the MDP is as follows:

$$Q^*(i_k) = \mathbf{E} \left[g(i_k, i_{k+1}) + \gamma \min \left(c(i_{k+1}), Q^*(i_{k+1}) \right) \right],$$

where $Q^*(i_k)$ is interpreted as the cost of continuing starting from state i_k . The cost of stopping is always $\mathbf{E}(g(i_k, i_{k+1}))$, so we can write the MDP in a simple form. Goal:

design an approximate Q-learning algorithm that uses basis function approximations specifically for this problem. Define Bellman operator:

$$(FQ)(i) = \sum_{j} p_{ij} \left[g(i,j) + \gamma \min \left(c(j), Q(j) \right) \right] \iff FQ = g + \gamma Pf(Q),$$

where $g(i) = \sum_{j} p_{ij} g(i, j)$, and $f(Q)(i) = \min\{c(i), Q(i)\}$.

Proposition 12.1. F is contraction on $\|\cdot\|_{\infty}$ and Q^* is the fixed point.

Proposition 12.2. F is contraction in the weighted Euclidean norm $\|\cdot\|_{\xi}$.

Proof. For all Q, Q', we have

$$|FQ(i) - FQ'(i)| \leq \gamma \sum_{j} p_{ij} |f(Q)(i) - f(Q')(i)|$$
$$\leq \gamma \sum_{j} p_{ij} |Q(i) - Q'(i)|$$

since $|\min(a,x) - \min(a,y)| \le |x-y|$. Therefore $|FQ - FQ'| \le \gamma P|Q - Q'|$ componentwise, so $|FQ - FQ'|_{\xi} \le \gamma |P|Q - Q'|_{\xi} \le \gamma ||Q - Q'|_{\xi}$ by the non-expansiveness of P.

Suppose that we take a basis function approach. Consider the algorithm $\Phi r_{k+1} = (\Pi F)(\Phi r_k)$, which has a fixed point since ΠF is a contraction. Equivalently,

$$r_{k+1} = \arg\min_{r} \|\Phi r - (g + \gamma P f(\Phi r_k))\|_{\xi}^2.$$

12.1.1 SGD Approach

Sample $i_0 \sim \xi$ and $i_{k+1} \sim P_{i_k}$. Consider this update:

$$r_{k+1} = r_k + \alpha_k \Phi(i_k) [g(i_k) + \gamma f(\Phi r_k)(i_{k+1}) - (\Phi r_k)(i_k)]$$

Some intuition (thought experiment):

- Suppose $\Phi(i_k) > 0$, then increasing r(1) will increase $Q \approx \Phi r$.
- If new estimate of Q current estimate of Q > 0, then the current estimate is too small. We should increase r(1) to increase the estimate. This is exactly what the update will do.

Define z and \bar{z} :

$$z(i_k, i_{k+1}, r_k) = \Phi(i_k) \Big(g(i_k) + \gamma f(\Phi r_k) (i_{k+1}) - (\Phi r_k) (i_k) \Big)$$

$$\bar{z}(r_k) = \mathbf{E} \Big[z(i_k, i_{k+1}, r_k) \Big] = \begin{pmatrix} \bar{z}(r_1) \\ \bar{z}(r_2) \\ \vdots \\ \bar{z}(r_n) \end{pmatrix},$$

so that $r_{k+1} = r_k + \alpha_k z(i_k, i_{k+1}, r_k)$. The j^{th} -component of $\bar{z}(r_k)$ is

$$\begin{split} \bar{z}_{j}(r_{k}) &= \mathbf{E}\Big[\Phi_{j}(i_{k})\big[g(i_{k}) + \gamma f(\Phi r)(i_{k}) - (\Phi r)(i_{k})\big]\Big] \\ &= \mathbf{E}\Big[\Phi_{j}(i_{k})\big[g(i_{k}) + \gamma P f(\Phi r)(i_{k}) - (\Phi r)(i_{k})\big]\Big] \\ &= \mathbf{E}\Big[\Phi_{j}(i_{k})\big[(F\Phi r)(i_{k}) - (\Phi r)(i_{k})\big]\Big] \\ &= \sum_{i} \xi_{i}\Big[\Phi_{j}(i)\big[(F\Phi r)(i) - (\Phi r)(i)\big]\Big] \\ &= \langle \Phi_{j}, F\Phi r - \Phi r \rangle_{\xi} \end{split}$$

Lemma 12.3. $(r - r^*)^T \bar{z}(r) < 0$ for all $r \neq r^*$, i.e., the update direction is correct on average.

Proof. Note that:

$$\begin{split} (r-r^*)^T \bar{z}(r) &= \sum_{j=1}^m (r(j)-r^*(j)) \ \langle \Phi_j, F\Phi r - \Phi r \rangle_\xi \\ &= \sum_{j=1}^m (r(j)-r^*(j)) \ \sum_{i=1}^n \xi_i \Phi_j(i) \big[(F\Phi r)(i) - (\Phi r)(i) \big] \\ &= \sum_i \xi_i \Big[\sum_j (r(j)-r^*(j)) \ \Phi_j(i) \big[(F\Phi r)(i) - (\Phi r)(i) \big] \Big] \\ &= \sum_i \xi_i \big[(\Phi r)(i) - (\Phi r^*)(i) \big] \big[(F\Phi r)(i) - (\Phi r)(i) \big] \Big] \\ &= \sum_i \xi_i \big[(\Phi r)(i) - (\Phi r^*)(i) \big] \big[(F\Phi r)(i) - (\Phi r)(i) \big] \Big] \\ &= \langle \Phi r - \Phi r^*, F\Phi r - \Phi r \rangle_\xi \\ &= \langle \Phi r - \Phi r^*, F\Phi r - \Pi F\Phi r + \Pi F\Phi r - \Phi r \rangle_\xi \\ &= \langle \Phi r - \Phi r^*, \Pi F\Phi r - \Pi F\Phi r^* + \Phi r^* - \Phi r \rangle_\xi \\ &= \langle \Phi r - \Phi r^*, \Pi F\Phi r - \Pi F\Phi r^* + \Phi r^* - \Phi r \rangle_\xi \\ &= \langle \Phi r - \Phi r^*, \Pi F\Phi r - \Pi F\Phi r^* \rangle_\xi - \|\Phi r - \Phi r^*\|_\xi^2 \\ &\leqslant \gamma \|\Phi r - \Phi r^*\|_\xi \|\Phi r - \Phi r^*\|_\xi - \|\Phi r - \Phi r^*\|_\xi^2 \end{split}$$

$$= \underbrace{(\gamma - 1)}_{<0} \underbrace{\|\Phi r - \Phi r^*\|_{\xi}^2}_{>0} < 0$$

where we used the Cauchy Schwarz inequality in the next to last line. \Box

Theorem 12.4. Under some additional conditions (see Tsitsiklis, Van Roy 1999),

- $r_k \rightarrow r^* w.p. 1$,
- $\|\Phi r^* Q^*\|_{\xi} \leqslant \frac{1}{\sqrt{1 \gamma^2}} \|\Pi Q^* Q^*\|_{\xi}$
- Let $J^*(i_0) = \min(c(i_0), Q^*(i_0))$ and let $J^{\Phi r^*}(i_0)$ be the cost obtained by following policy induced by Φr^* . Then,

$$\mathbf{E}[J^{\Phi r^*}(i_0)] - \mathbf{E}[J^*(i_0)] \leqslant \frac{2}{(1-\gamma)\sqrt{1-\gamma^2}} \|\Pi Q^* - Q^*\|_{\xi}$$

where $i_0 \sim \xi$.

First part follows by SGD theorem and the above lemma. Second part is similar to the policy evaluation theorem from a previous lecture. We now prove the third part. Define a new operator:

$$(HQ)(i) = \begin{cases} c(i), & \text{if } c(i) \leq (\Phi r^*)(i) \\ Q(i), & \text{otherwise.} \end{cases}$$

Interpretation: take Φr^* 's recommended decision, but evaluate cost-to-go using Q. Define:

$$\tilde{F}Q = q + \gamma P HQ.$$

Lemma 12.5. $\|\tilde{F}Q - \tilde{F}Q'\|_{\xi}$ is γ -contraction in $\|.\|_{\xi}$.

Proof. There are two cases:

$$(HQ)(i) = \begin{cases} HQ - HQ' = 0, & \text{if } c(i) \leq (\Phi r^*)(i), \\ HQ - HQ' = Q - Q', & \text{if } c(i) > (\Phi r^*)(i). \end{cases}$$

Therefore, we have $\|\tilde{F}Q - \tilde{F}Q'\|_{\xi} \leq \gamma \|HQ - HQ'\|_{\xi} \leq \|Q - Q'\|_{\xi}$.

Lemma 12.6. $\tilde{Q} = g + \gamma P J^{\Phi r^*}$ is a fixed point of \tilde{F} .

Proof. We have:

$$(H\tilde{Q})(i) = \begin{cases} c(i), & \text{if } c(i) \leq (\Phi r^*)(i), \\ (g + \gamma P J^{\Phi r^*})(i), & \text{otherwise.} \end{cases}$$

This means $H\tilde{Q}=J^{\Phi r^*}$ and the result $\tilde{F}\tilde{Q}=\tilde{Q}$ follows.

Remark 12.7. $\tilde{F}(\Phi r^*) = F(\Phi r^*).$

Proof. We have:

$$(H\Phi r^*)(i) = \begin{cases} c(i), & \text{if } c(i) \leqslant (\Phi r^*)(i), \\ (\Phi r^*)(i), & \text{otherwise.} \end{cases}$$

Therefore, $(H\Phi r^*)(i) = \min(c(i), (\Phi r^*)(i))$ and $(\tilde{F}Qr^*)(i) = g(i) + \gamma(Pf(\Phi r^*))(i) = (F\Phi r^*)(i)$.

(iii). Note $i_0 \sim \xi$ and $\xi = \xi P$.

$$\mathbf{E} \left[J^{\Phi r^*}(i_0) - J^*(i_0) \right] \leqslant \left| \mathbf{E} \left[(PJ^{\Phi r^*})(i_0) - (PJ^*)(i_0) \right] \right|$$

$$= \sqrt{\left| \sum_{i=1}^n \xi_i \left[(PJ^{\Phi r^*})(i) - (PJ^*)(i) \right] \right|^2}$$

$$\leqslant \sqrt{\sum_{i=1}^n \xi_i (PJ^{\Phi r^*} - PJ^*)^2}$$

$$= \|PJ^{\Phi r^*} - PJ^*\|_{\xi} = \frac{1}{\gamma} \|g + \gamma PJ^{\Phi r^*} - (g + \gamma PJ^*)\|_{\xi}$$

$$= \frac{1}{\gamma} \|\tilde{Q} - Q^*\|_{\xi},$$

where we used convexity and Jensen's inequality in the third line. Now,

$$\begin{split} \|\tilde{Q} - Q^*\|_{\xi} & \leqslant \|Q^* - F\Phi r^* + \tilde{F}\Phi r^* - \tilde{Q}\|_{\xi} \\ & \leqslant \|Q^* - F\Phi r^*\|_{\xi} + \|\tilde{F}\Phi r^* - \tilde{F}\tilde{Q}\|_{\xi} \\ & \leqslant \gamma \, \|Q^* - \Phi r^*\|_{\xi} + \gamma \, \|\tilde{Q} - \Phi r^*\|_{\xi} \\ & \leqslant \gamma \, \|Q^* - \Phi r^*\|_{\xi} + \gamma \, \|\tilde{Q} - Q^*\|_{\xi} + \gamma \, \|Q^* - \Phi r^*\|_{\xi}. \end{split}$$

Therefore:

$$\|Q^* - \tilde{Q}\|_{\xi} \leqslant \frac{2\gamma}{1-\gamma} \|Q^* - \Phi r^*\|_{\xi} \leqslant \frac{2\gamma}{1-\gamma} \frac{1}{\sqrt{1-\gamma^2}} \|\Pi Q^* - Q^*\|_{\xi}.$$

Combining with the previous step, we have

$$\mathbf{E}\Big[J^{\Phi r^*}(i_0) - J^*(i_0)\Big] \leqslant \frac{2}{(1-\gamma)\sqrt{1-\gamma^2}} \|\Pi Q^* - Q^*\|_{\xi}.$$