
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 8: Policy Evaluation and TD Learning
Lecturer: Daniel Jiang Scribes: Tarik Bilgic, Shaoning Han

References:

D. P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dy-
namic Programming, Vol. 2, 4th ed., Athena Scientific, Belmont MA, 2012. (§6.3)

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, 2nd ed.,
The MIT Press, Cambridge, MA, 2018. (Ch. 6)

W. B. Powell and H. Topaloglu. Approximate dynamic programming for large-scale
resource allocation problems, Tutorials in Operations Research, 2012.

8.1 Policy Evaluation using Projected Bellman Equation

Evaluation of the value of fixed policy µ

Jµ(i) = E

[
∞∑
k=0

γkg(ik, µ(ik), wk+1)
∣∣∣ i0 = i

]
can be done by solving the fixed point equation J = TµJ or by iterating Tµ from any
starting J0.

For today, since µ is fixed, we can ignore it and focus on the evolution of states under
µ, ik, ik+1, ik+2, . . . , which is a Markov chain. Instead of f(ik, uk, wk+1) = ik+1, let
pijbe the probability of moving from state i to j, following µ(i). The states form
a Markov Chain under µ that has a unique steady state distribution with positive
components:

ξj = lim
N→∞

1

N

N∑
k=1

P(ik = j | i0 = i) > 0.

Recall that we are looking at
Jk+1 = ΠTµJk

Assume that Φ has rank m (where m is the dimension of the parameter vector). This
means that every vector in S = {Φr : r ∈ Rm} is associated with a unique parameter
vector r.

8-1

Lecture 8: Policy Evaluation and TD Learning 8-2

Recall the definition of the weighted Euclidean norm ‖J‖w =
√∑

iwiJ(i)2, where
w = (w1, w2, . . . , wn) is a vector of weights.

Proposition 8.1 (Projections are non-expansive).

‖ΠJ − ΠJ ′‖w ≤ ‖J − J ′‖w.

Proof. See previous lecture.

If Π were non-expansive in the same norm under which Tµ is a contraction, then we
could show that ΠTµ is a contraction. So far, we only have that Tµ is a contraction
in the max-norm, so we have a norm mismatch problem.

Lemma 8.2 (Non-expansiveness of transition matrix). Let P = (pij) be the transition
matrix of a Markov chain that has an invariant distribution ξ = (ξ1, . . . , ξn), meaning
that ξ′ = ξ′P . Then,

‖Pz‖ξ ≤ ‖z‖ξ for any z ∈ Rn.

Proof. Note that:

‖Pz‖2
ξ =

n∑
i=1

ξi

(
n∑
j=1

pijzi

)2

≤
n∑
i=1

ξi

n∑
j=1

pij z
2
j (by Jensen’s Inequality)

=
n∑
j=1

(
n∑
i=1

ξjpij

)
z2
j

=
n∑
j=1

ξjz
2
j = ‖z‖2

ξ ,

which completes the proof.

We take advantage of this to get a contraction property in Tµ for policy evaluation.

Proposition 8.3. The combined operator ΠTµ, where Π is the projection operator
with respect to ‖ · ‖∞ is a γ-contraction in ‖ · ‖ξ.

Proof. Let TµJ = g + γPJ , where g(i) = E[(g(i, µ(i), w)]. Then, we have

‖ΠTµJ − ΠTµJ
′‖ξ ≤ ‖TµJ − TµJ ′‖ξ

= ‖γPJ − γPJ ′‖ξ
= γ‖P (J − J ′)‖ξ
≤ γ‖J − J ′‖ξ,

Lecture 8: Policy Evaluation and TD Learning 8-3

which completes the proof.

This means that (ΠTµ)kJ0 → Φr∗, where Φr∗ is the unique fixed point of ΠTµ. Also,
r∗ is the unique solution (due to the rank assumption) of Φr = (ΠTµ)(Φr).

Proposition 8.4 (Policy evaluation error bound).

‖Jµ − Φr∗‖ξ ≤
1√

1− γ2
‖Jµ − ΠJµ‖ξ.

Proof.
‖Jµ − Φr∗‖2

ξ ≤ ‖Jµ − ΠJµ‖2
ξ + ‖ΠJµ − Φr∗‖2

= ‖Jµ − ΠJµ‖2
ξ + ‖ΠTµJµ − ΠTµΦr∗‖2

ξ

≤ ‖Jµ − ΠJµ‖2
ξ + γ2‖Jµ − Φr∗‖2

ξ ,

so we conclude by rearranging the terms.

We have shown that projected VI works reliability if the norm is chosen correctly.

Remark 8.5. There are more direct methods to solve

Φr = ΠTµΦr,

involving matrix inversion. See the textbook.

Next, can we improve upon the coefficient of 1/
√

1− γ2?

8.2 Conceptual Intro to Temporal Difference Learning

Our current VI approaches are “bootstrapped” approaches, where we are using the
old value function approximation to update the new value function approximation
(also true for Q-learning). This introduces bias. Alternatively, we could evaluate the
policy simply by running it for a long time and get an unbiased observation:

“new observation = cost0 + γcost1 + γ2cost2 + . . . ”

This is called the Monte Carlo approach.

Example 8.6. Set γ = 1 and let P(1©) = 0.9,P(2©) = 0.1 and consider the transition
dynamics and rewards given in the diagram below.

Consider stochastic approximation (Q-learning-like approaches) for evaluating this
Markov Chain. Case 1:

J(ik)← (1− α) J(ik) + αk
[
g(ik, ik+1) + J(ik+1)

]
← J(ik) + αk

[
g(ik, ik+1) + J(ik+1)− J(ik+1)

]
.

(8.1)

Lecture 8: Policy Evaluation and TD Learning 8-4

The term g(ik, ik+1) + J(ik+1) is called the “target” or the new value that we are
trying to mimic. Case 2 is given below; the target is now replaced with a Monte Carlo
estimate instead of the bootstrapped observation.

J(ik)← J(ik) + αk

[
∞∑
k′=k

g(ik, ik+1)− J(ik)

]
. (8.2)

Suppose αk = 1
k

(which corresponds to simple averaging).
Case (1): At nth visit of 2©, 1© is visited approximately 9n times, 3© is visited ap-
proximately 10n times.

Jn(3) ≈ 1

10n

10n∑
i=1

Ber(0.5)

=⇒ Jn(2) ≈ 1

n

k∑
i=1

(0 + Ji(3))

Note that Ji(3) quickly converges to 0.5 and variance is decreasing. Thus, Jn(2) will
quickly start to average nearly deterministic values of Ji(3).

Case (2): At nth visit of 2©,

=⇒ Jn(2) =
1

n

n∑
i=1

Ber(0.5),

since we are simply running the Markov chain until it reaches the terminal state. The
variance of each observation is fixed. In this example, Case (1) is better.

Example 8.7. Now, consider a different Markov chain, a long sequence of states and
the same two algorithms as in the previous example.

Case (1): Consider 1©. Target is 0 + J(2), but J(2) depends on J(3) . . . and J(3)
depends on J(4), etc. J(N − 1) might be slowly averaging observations of 0 from its
initial value. Due to the multiple levels of dependence, this could take a long time.

Lecture 8: Policy Evaluation and TD Learning 8-5

Case (2): All states see the correct target of 1 when the Markov chain is simulated
until the terminal state. Therefore, in this example, Case (2) is better.

We conclude that both TD(λ) and MC have merits. Why not unify them?

8.3 TD(λ)

• Define
G

(n)
k = g(ik, ik+1) + γg(ik+1, ik+2) + · · ·+ γngJ(ik+n).

• The Monte Carlo (MC) algorithm uses G
(∞)
k as a target. The bootstrapped

version, which we’ll call TD(0), uses G
(1)
k .

• Since we don’t know ahead of time whether MC or TD(0) should be performed,
one approach would be to combine them:

Gavg
k =

1

2
G

(1)
k +

1

2
G

(∞)
k

or

Gavg
k =

1

2
G

(1)
k +

1

4
G

(2)
k +

1

4
G

(3)
k .

• TD(λ) is a specific way, parameterized by λ, to do the combining.

• λ ∈ [0, 1] interpolates from TD(0) to MC, where TD(1) is MC.

• Given some 0 < λ < 1, the target of TD(λ) update is a mixture of multi-step
returns.

Let the weight of G
(i)
k be P(X = i) where X is a Geometric random variable with

parameter 1− λ. The λ-return is

Gk = (1− λ)
∞∑
l=0

λlGl+1
k

Lecture 8: Policy Evaluation and TD Learning 8-6

Operator notation for TD(λ) replace Tµ with

T (λ)
µ = (1− λ)

∞∑
l=0

λlT l+1
µ for 0 < λ < 1.

The fixed point problem is now J = T
(λ)
µ J . Is it better than Tµ?

Proposition 8.8.

T (λ)
µ is a

γ(1− λ)

1− γλ
contraction in ‖ · ‖ξ.

Proof. First, note that

T 2
µJ = g + γPTµJ = g + γP (g + γPJ)

= (I + γP)g + γ2P 2J

T 3
µJ = g + γP (T 2

µJ) = g + γP ((I + γP)g + γ2P 2J)

= (I + γP + γ2P 2)g + γ2P 2J

...

T nµ J =

(
n−1∑
k=0

γkP k

)
g + γnP nJ.

Next, using the above,

T (λ)
µ J = (1− λ)

∞∑
l=0

λl(T l+1
µ J)

= (1− λ)
∞∑
l=0

λl

[(
l∑

k=0

γkP k

)
g + γl+1P l+1J

]

= g(λ) + γP (λ)J, where P (λ) = (1− λ)
∞∑
l=0

λlγlP l+1.

For any J and J ′,

‖T (λ)
µ J − T (λ)

µ J ′‖ξ = ‖γP (λ)J − γP (λ)J ′‖ξ
= γ‖P (λ)(J − J ′)‖ξ

= γ‖(1− λ)
∞∑
l=0

γlλlP l+1(J − J ′)‖ξ

≤ γ(1− λ)

1− γλ
‖|J − J ′‖ξ

Lecture 8: Policy Evaluation and TD Learning 8-7

We can rewrite the contraction coefficient to see that it is smaller than γ:

γ(λ) =
γ(1− λ)

1− γλ
=
γ(1− γλ+ γλ− λ)

1− γλ

= γ − γ(λ− γλ)

1− γλ
< γ,

since the second term is positive. Also, γ(λ) → 0 as λ → 1, so we can make this
arbitrarily small.

Theorem 8.9. Let Φr∗λ be fixed point of ΠT
(λ)
µ . Then

‖Jµ − Φr∗λ‖ξ ≤
1√

1− (γ(λ))2
‖Jµ − ΠJµ‖ξ

Remark 8.10. T
(λ)
µ can be a contraction in any norm if λ large enough by norm

equivalence. As λ→ 1, error bound says that Φr∗ converges to the best approximation
of Jµ in S.

8.4 Paper Discussion: Large-Scale Resource Allocation

8.4.1 Model and Notations

• Rt = (Rta)a∈A: Rta is the number of resources of type a at t

• Dt = (Dtb)b∈B: Dtb is the number of demands of type b at t

• St = (Rt, Dt): state vector

• Wt = (R̂t, D̂t): exogenous information

• xt = (xtad)a∈A,d∈D: decision vector, where xtad is the number of resources of
type a modified by using decision d at time t

• Ct(xt): cost(profit) linear function of xt

• Xπ
t (·): function that maps St to a feasible decision xt ∈ X (St)

• X (St): set of feasible decisions for St at time t

• Transition function:
St+1 = SM(St, xt,Wt+1) (8.3)

• Objective function:

max
π∈Π

E{
∑
t∈T

Ct(X
π
t (St))} (8.4)

Lecture 8: Policy Evaluation and TD Learning 8-8

• Bellman equation:

Vt(St) = max
xt∈X (St)

Ct(xt) + E{Vt+1(SM(St, xt,Wt+1))|St} (8.5)

8.4.2 An Approximation Strategy using Postdecision State

Postdecision State Vector

• Rx
t = SM,x(St, xt): the number of resources immediately after we make the

decisions at t

• Sxt = Rx
t : postdecision vector, assuming any unserved demands are lost

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 , . . . ,Wt, St, xt, S

x
t , . . . ,WT , ST , xT , S

x
T)

Rewrite the Bellman equation in terms of Rx
t :

V x
t−1(Rx

t−1) = E

[
max

xt∈X (Rx
t−1,R̂t,D̂t)

Ct(xt) + V x
t (SM,x(St, xt)) |Rx

t−1

]
(8.6)

By doing so, we interchange E and the operator max.

Use a sample realization Wt(ω) = (R̂t, D̂t) to drop E and get the approximation:

Ṽ x
t−1(Rx

t−1) = max
xt∈X (Rx

t−1,R̂t,D̂t)
Ct(xt) + V x

t (SM,x(Rx
t−1,Wt(ω), xt)) (8.7)

Use V̄ x
t (·) to approximate V x

t (·).

Lecture 8: Policy Evaluation and TD Learning 8-9

An algorithmic framework for ADP

Structure for The Value Function Approximation

A generic structure

V̄ x
t (Rx

t) =
∑
f∈F

θtfφf (R
x
t), (8.8)

where the function φf characterize the structure of state vectors and θtf ’s are the
parameters tuned in every iteration. The characteristics are the type and the number
of resources. Or, we could consider a separable approximation:

V̄ x
t (Rx

t) =
∑
a∈A

V̄ x
ta(R

x
ta). (8.9)

Form of V̄ x
ta(·)

Linear value function approximation

V̄ x
ta(R

x
ta) = v̄taR

x
ta (8.10)

Piecewise-linear value function approximation

• V̄ x
ta(·) is piecewise-linear. Assume the number of resources are integers and

have an upper bound Q. V̄ta(·) can be characterized by a sequence of slopes
{v̄ta(q) : q = 1, 2, . . . , Q}.

v̄ta(q) = V̄ x
ta(q)− V̄ x

ta(q − 1) (8.11)

Lecture 8: Policy Evaluation and TD Learning 8-10

• V̄ x
ta(·) is concave

v̄ta(1) ≥ v̄ta(2) ≥ · · · ≥ v̄ta(Q) (8.12)

Updating Linear Value Function Approximations

We can perturb one attribute and use an estimate of V x
t (Rn,x

t + ea) − V x
t (Rn,x

t) to
update the slopes.

ϑnta = Ṽ n,x
t (Rn,x

t + ea, R̂
n
t , D̂

n
t)− Ṽ n,x

t (Rn,x
t , R̂n

t , D̂
n
t) (8.13)

Combine ϑnta and v̄n−1
ta ,

v̄nta = [1− αn−1]v̄n−1
ta + αn−1ϑ

n
ta (8.14)

Linear approximations can be unstable and do not perform as well as piecewise-linear
combinations.

Updating Piecewise-Linear Value Function Approximations

Similarly, let

θnta(q) =

{
[1− αn−1]v̄n−1

ta (q) + αn−1ϑ
n
ta if q = Rn,x

ta + 1

v̄n−1
ta (q) o.w.

(8.15)

θnta(1) ≥ · · · ≥ θnta(Q) may not hold. Project to set of concave functions:

v̄nta = argminz∈W‖z − θnta‖2, (8.16)

where W = {z ∈ RQ : z1 ≥ z2 ≥ · · · ≥ zQ} is a convex cone. It’s easy to solve
problem (8.16) using KKT conditions.

