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7.1 Approximating the Value Function

We start with a series of simple theorems related to quantifying errors in a value
function approximation (VFA) setting.

Proposition 7.1 (e-V.1.). Consider the approzimation V.1I. algorithm with
1ot — Thlle <6 V.

Then:

J*— ¢ e < liminf J, <limsup J, < J* +

where e s a vector with elements all ones.

€,

Proof. We know
—€e S Jl —TJO S €e

Apply TF1:
—vk_lee < T — TkJO < yk_lee.

Generally, we can get

—yk_ie S Tk_ZJZ - Tk—i—‘,-l(]i—l S /yk_iea 1 S i S k.
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Sum such inequalities up, we get

k k k
. Zﬁyk’—ie < Z(Tk—ZJZ o Tk_H_lJZ',l) < Zﬁyk—ie
=1 =1

ie. - -
—627 < J,—TrJ, < eZy’
i=0 1=0
Take limit to conclude. O

If the value function approximate well, the limiting value function is close to optimal
value. But what about policies?

Proposition 7.2 (Error in VFA — Performance). Let ||J* — J||o = € and let p be
policy greedy with respect to J:

(i) = argminlg (i, u) + ~E[T(f(i, u,w))]].

Then N

17 = Tl < 5
-7
Proof.
[JH = T loo = 1Ty — "]l oo

<|\T,J"=T,J+T,J —J |
< HTMJH - TALJHoo + HTu - ‘]*Hoo
<AIJ* = J|linfty + |TJ — TJ"||
< AN = Tloo + Y = Tl
AT = T+ T = Tl + e

It follows that (1 — )||J* — J*||e0 < 2e€7. O

Proposition 7.3. When J* is approximated closely enough, the greedy policy of the
VFA becomes optimal.

Proof. There are a finite number of polices. Let i # p* be the policy for which J# is
closest to J* in || + ||oo. Suppose ||J# — J*|| = 6. Then if € is small such that 12%; <0,
4 must be optimal. O

Corollary 7.4. Let py be the policy greedy to Ji.. For k sufficiently large in e-AVI,

we have
HJ/%_J*HOOS2_7( € ): 276 5
1—y\1—7v (1-7)
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In the above, we needed to know € = ||.J — J*||. Given some .J, how can we tell if it
is good when we don’t have access to J*7 We can compute the Bellman error.

Proposition 7.5. Suppose Bellman error is bounded by € in |||, i€, ||[J =T J]|s0 <

€. Then, it holds that
1= Tl < 7=

Proof. Note that

|J = T oo <N[J =TT +TJ = J|0g
<|T =TJ|oo + 1TT = TJT||0e
<e+v|J = J o

It follows that (1 —)||J — J*||e < €. O

7.2 Fitted Value Iteration

How do we approximate the value function, either J* or J*, in practice?

e A parametric class:

J(isr) =~ J*(i) or JH(1),
where r = (r1,...,7,) € R™ where m should be much smaller than n. Then
we have a possibly tractable problem.

Linear architecture:

(1) Po(1) Py (1) ®,,,(1) r1
For) == D1(2) Do(2) D,(2) CIDm.(Q) To
<I>1.(n) @2‘(77/) e @k.(n) e @m(n) r;n
ie. J(i;r) =S, ®p(i)ry, where @ () is basis function k.
Example 7.6 (Polynomials). Set i = (iy,is,...,4)). Quadratic basis function

J(iir) =ro + Z KTk + Z Zieikmk
k ¢k

Example 7.7 (Radial Basis). Radial basis function:

Dy (i) = exp(—lli — pll3)/o%

and consider a linear combination.
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Example 7.8 (Tetris game). For Tetris game, every square has two states 0 or 1. If
the screen has 10 x 20 sqaures, there are 2*%° states. Successful features were of the
form:
heights of columns(10)
height differences(9)
O (screen) = mazx height

number of holes
1

What is fitted V.1.7

First, select a small sample of states. Let Jy,(-) = J(-;7;,) (Here ry, is an m—dimensional
iterative vector rather than k™ component of vector r as before) be the approximation
at iteration k. For each state ¢ € sample, compute (T'J;)(+).

Next, choose 7,41 to “fit” the function Ji; using the “observed” values (Tjk) at
sampled states. Fitted V.I. for evaluation: replace T" with T),.

Example 7.9 (Error Amplification). Consider the following MDP.

o 2 states with i € {1,2}.

o Just one action with cost 0 and transitions are deterministic: transition proba-
bility matrix
0 1
o
Notice 2 is an absorbing state.
e J*(1)=J*(2) =0.

o A single basis function ®4(i) =i. So = B} and &r = {ZTT}'
Ezact fitted V.I. (compute T at all states) using least squares fit:

e = argmin [ 3°(J(0:7) - <TJk><z'>>2]

i=1

— argmin | (r — (TJy)(1)2 + (2r — (TJ,)(2))?
' 0+4-2rg O0+4-27p

= argmin [(r — - 2ry)* 4+ (2r — 7 - 2r4)?]

By taking derivative, we can get ry,q = gfyrk. It diverges for v > %/ One way to

explain this is that state 2 is much more important than state 1 and we need to weight
state 2 much more, but by using least squares fit, we don’t take it into account.
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Notation: let IT be a projection operator onto linear space S = {®r : r € R™}
with respect to || - ||2. The “fit” step can be written as IIJ = ®r* where r* =
arg min ||®r — J||3. Thus fitted V.I. can be done by:

Bellman V.I. fit w.r.t. some norm

T T, J » Ty = OT,J,
The problem is that thew operator 1I7,, may be not a contraction.

Let’s focus on weighted projection. Define a weighted Euclidean norm (think of this

as weighing states)
lolle =, D &(v(D)?,

where £ = (&1, ...,&,) is a distribution.

Example 7.10. Let’s revisit the divergent example with weighted projection ||-||¢ with

§= (fb&)'
Tk+1 = arg mrin [51(7“ -7 27"k)2 + &a(2r — - 27%)2} :

By taking the derivative, it’s easy to get

Tkt1 = (ﬁ + 1> Y Tk

We can see that if & is large enough, then ry converges. Notice that state 2 is occupied
by system most of the time, so this makes intuitive sense.

Proposition 7.11 (Projections are nonexpensive). Using || - ||,
1L =L < [l = 7e
Proof.
ITLJ — @r|Z + ||J — ILJ||,i* = ||J — @rlf, V ®resS.
It follows that
(T = )l < 11T = I)P+ 1 =) = T)lg = 1T = T'lle,

which concludes the proof. O]

Now, in Jy41 = I1J,Ji, operator IT is nonexpansive with respect to || - || and operator
J,, is a contraction with respect to || - ||oo. If these two operators are with respect to
the same norm, II.J, would be a good operator. Unfortunately, we face the “norm
mismatch” problem. To be continued.
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7.3 Paper Discussion (Mingyuan)

7.3.1 Exact LP Reformulation

Consider the following linear programming problem:

r(r]1$< = Zc(:c)J(x)
x€S
st.  J(x) <TJ(x)

Ve eSS

(7.1)

Linearity:

J(2) STJ(z) < (T,J))(x) = Elg(z, p,w) +~J (f(z, p,w)] = J(x),V p € U(x)

Dimensionality: |S| variables, |S| x |A| constraints

Feasibility and Optimility:

- Jr=TJ <TJ"
— J<TI=J<TJ<T?J<--- < J*

State-relevance weights: (c¢(z) > 0,Vz € S). Note that the choice of state-
relevance weights does not influence the solution of (7.1).

7.3.2 Approximate/Reduced LP Approach

7.3.2.1 Parameterization

Given pre-selected K basis functions ¢p(x) (¢r : S — R}, K < |S|), define a matrix:
Pigjs = [P1, P2, -, OK]s|x K (7.2)

The aim is to generate a weight vector 7 € R¥:

K

J(x) = ©F(x) =Y dilx)i (7.3)
k=1

Then we have the following linear programming problem:

K
max I or = Z c(x) Z Or ()7
k=1

zeS

st. Or <Tor
Ve esS

(7.4)
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e Dimensionality: K variables, |S| x |A| constraints

®* : the optimal cost-to-go function lies within the span of the basis functions.
In practice, basis functions should be chosen based on heuristics and perhaps
some simplified analysis of the problem.

Feasibility: depends on ®

State-relevance weights:

— Consider ¢ to be a probability distribution )  _cc(z) = 1. Then the
objective can be viewed as an expected value where x is sampled according
to the distribution c.

— (7.4) is equivalent to the programming with weighted norm based on ¢:

min - |[J* = ®rfly. = > (@) |17 () — @r(a)|h
€S

st. Or(z) <Tor(z)
Vzels

(7.5)

e Error Bound: 5



