
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 7: VFA, Fitted V.I., and the LP Approach
Lecturer: Daniel Jiang Scribes: Shaoning Han, Mingyuan Xu

References:

D. P. Bertsekas, J. N. Tsitsiklis Neuro-dynamic programming, Athena Scientific, Bel-
mont MA, 1996. (§6.5)

D. P. De Farias, B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Research, 51(6), pp. 850-865, 2003.

D. P. De Farias, B. Van Roy. On constraint sampling in the linear programming ap-
proach to approximate dynamic programming. Mathematics of Operations Research
29(3), pp. 462-478, 2004.

7.1 Approximating the Value Function

We start with a series of simple theorems related to quantifying errors in a value
function approximation (VFA) setting.

Proposition 7.1 (ε–V.I.). Consider the approximation V.I. algorithm with

‖Jk+1 − TJk‖∞ ≤ ε, ∀ k.

Then:
J∗ − ε

1− γ
e ≤ lim inf

k
Jk ≤ lim sup

k
Jk ≤ J∗ +

ε

1− γ
e,

where e is a vector with elements all ones.

Proof. We know
−εe ≤ J1 − TJ0 ≤ εe

Apply T k−1:
−γk−1εe ≤ T k−1J1 − T kJ0 ≤ γk−1εe.

Generally, we can get

−γk−iε ≤ T k−iJi − Tk−i+1Ji−1 ≤ γk−iε, 1 ≤ i ≤ k.

7-1

Lecture 7: VFA, Fitted V.I., and the LP Approach 7-2

Sum such inequalities up, we get

−
k∑
i=1

γk−iε ≤
k∑
i=1

(T k−iJi − T k−i+1Ji−1) ≤
k∑
i=1

γk−iε

i.e.

−ε
k−1∑
i=0

γi ≤ Jk − T kJ0 ≤ ε

k−1∑
i=0

γi

Take limit to conclude.

If the value function approximate well, the limiting value function is close to optimal
value. But what about policies?

Proposition 7.2 (Error in VFA → Performance). Let ‖J∗ − J‖∞ = ε and let µ be
policy greedy with respect to J :

µ(i) = arg min
u

[g(i, u) + γE[J(f(i, u, w))]].

Then

‖Jµ − J∗‖∞ ≤
2γε

1− γ

Proof.

‖Jµ − J∗‖∞ = ‖TµJµ − J∗‖∞
≤ ‖TµJµ − TµJ + TµJ − J∗‖∞
≤ ‖TµJµ − TµJ‖∞ + ‖Tµ − J∗‖∞
≤ γ‖Jµ − J‖infty + ‖TJ − TJ∗‖∞
≤ γ‖Jµ − J‖∞ + γ‖J − J∗‖∞
≤ γ‖Jµ − J∗ + J∗ − J‖∞ + γε

It follows that (1− γ)‖Jµ − J∗‖∞ ≤ 2εγ.

Proposition 7.3. When J∗ is approximated closely enough, the greedy policy of the
VFA becomes optimal.

Proof. There are a finite number of polices. Let µ̄ 6= µ∗ be the policy for which J µ̄ is
closest to J∗ in ‖ · ‖∞. Suppose ‖J µ̄ − J∗‖ = δ. Then if ε is small such that 2γε

1−γ < δ,
µ must be optimal.

Corollary 7.4. Let µk be the policy greedy to Jk. For k sufficiently large in ε–AVI,
we have

‖Jµk − J∗‖∞ ≤
2γ

1− γ

(
ε

1− γ

)
=

2γε

(1− γ)2
.

Lecture 7: VFA, Fitted V.I., and the LP Approach 7-3

In the above, we needed to know ε = ‖J − J∗‖. Given some J , how can we tell if it
is good when we don’t have access to J∗? We can compute the Bellman error.

Proposition 7.5. Suppose Bellman error is bounded by ε in ‖·‖∞, i.e., ‖J−TJ‖∞ ≤
ε. Then, it holds that

‖J − J∗‖∞ ≤
ε

1− γ
.

Proof. Note that

‖J − J∗‖∞ ≤ ‖J − TJ + TJ − J∗‖∞
≤ ‖T − TJ‖∞ + ‖TJ − TJ∗‖∞
≤ ε+ γ‖J − J∗‖∞.

It follows that (1− γ)‖J − J∗‖∞ ≤ ε.

7.2 Fitted Value Iteration

How do we approximate the value function, either J∗ or Jµ, in practice?

• A parametric class:
J̃(i; r) ≈ J∗(i) or Jµ(i),

where r = (r1, . . . , rm) ∈ Rm where m should be much smaller than n. Then
we have a possibly tractable problem.

Linear architecture:

J̃(·; r) = Φ · r =


Φ1(1) Φ2(1) · · · Φk(1) · · · Φm(1)
Φ1(2) Φ2(2) · · · Φk(2) · · · Φm(2)

...
... · · · ... · · · ...

Φ1(n) Φ2(n) · · · Φk(n) · · · Φm(n)

 ·


r1

r2
...
rm


i.e. J̃(i; r) =

∑m
k=1 Φk(i)rk, where Φk(·) is basis function k.

Example 7.6 (Polynomials). Set i = (i1, i2, . . . , iλ). Quadratic basis function

J̃(i; r) = r0 +
∑
k

ikrk +
∑
`

∑
k

i`ikr`k

.

Example 7.7 (Radial Basis). Radial basis function:

Φk(i) = exp(−‖i− µk‖2
2)/σk

and consider a linear combination.

Lecture 7: VFA, Fitted V.I., and the LP Approach 7-4

Example 7.8 (Tetris game). For Tetris game, every square has two states 0 or 1. If
the screen has 10 × 20 sqaures, there are 2200 states. Successful features were of the
form:

Φ(screen) =


heights of columns(10)

height differences(9)
max height

number of holes
1


What is fitted V.I.?

First, select a small sample of states. Let J̃k(·) = J̃(·; rk) (Here rk is an m–dimensional
iterative vector rather than kth component of vector r as before) be the approximation
at iteration k. For each state i ∈ sample, compute (T J̃k)(·).

Next, choose rk+1 to “fit” the function J̃k+1 using the “observed” values (T J̃k) at
sampled states. Fitted V.I. for evaluation: replace T with Tµ.

Example 7.9 (Error Amplification). Consider the following MDP.

• 2 states with i ∈ {1, 2}.

• Just one action with cost 0 and transitions are deterministic: transition proba-
bility matrix

P =

[
0 1
0 1

]
.

Notice 2 is an absorbing state.

• J∗(1) = J∗(2) = 0.

• A single basis function Φ1(i) = i. So Φ =

[
1
2

]
and Φr =

[
r
2r

]
.

Exact fitted V.I. (compute T at all states) using least squares fit:

rk+1 = arg min
r

[
2∑
i=1

(J̃(i; r)− (T J̃k)(i))
2

]

= arg min
r

(r − (T J̃k)(1)︸ ︷︷ ︸
0+γ·2rk

)2 + (2r − (T J̃k)(2)︸ ︷︷ ︸
0+γ·2rk

)2


= arg min

r

[
(r − γ · 2rk)2 + (2r − γ · 2rk)2

]
By taking derivative, we can get rk+1 = 6

5
γrk. It diverges for γ > 5

6
! One way to

explain this is that state 2 is much more important than state 1 and we need to weight
state 2 much more, but by using least squares fit, we don’t take it into account.

Lecture 7: VFA, Fitted V.I., and the LP Approach 7-5

Notation: let Π be a projection operator onto linear space S = {Φr : r ∈ Rm}
with respect to ‖ · ‖2. The “fit” step can be written as ΠJ = Φr∗ where r∗ =
arg min

r
‖Φr − J‖2

2. Thus fitted V.I. can be done by:

J̃k
Bellman V.I.−−−−−−−→ TµJ̃k

fit w.r.t. some norm−−−−−−−−−−−→ J̃k+1 = ΠTµJ̃k

The problem is that thew operator ΠTµ may be not a contraction.

Let’s focus on weighted projection. Define a weighted Euclidean norm (think of this
as weighing states)

‖v‖ξ =

√∑
i

ξi(v(i))2,

where ξ = (ξ1, . . . , ξn) is a distribution.

Example 7.10. Let’s revisit the divergent example with weighted projection ‖·‖ξ with
ξ = (ξ1, ξ2).

rk+1 = arg min
r

[
ξ1(r − γ · 2rk)2 + ξ2(2r − γ · 2rk)2

]
.

By taking the derivative, it’s easy to get

rk+1 =

(
ξ1

ξ1 + 4ξ2

+ 1

)
γ rk.

We can see that if ξ2 is large enough, then rk converges. Notice that state 2 is occupied
by system most of the time, so this makes intuitive sense.

Proposition 7.11 (Projections are nonexpensive). Using ‖ · ‖,

‖ΠJ − ΠJ ′‖ξ ≤ ‖J − J ′‖ξ

Proof.
‖ΠJ − Φr‖2

ξ + ‖J − ΠJ‖xi2 = ‖J − Φr‖2
ξ , ∀ Φr ∈ S.

It follows that

‖Π(J − J ′)‖2
ξ ≤ ‖Π(J − J ′)‖2 + ‖(I − Π)(J − J ′)‖2

ξ = ‖J − J ′‖ξ,

which concludes the proof.

Now, in J̃k+1 = ΠJµJ̃k, operator Π is nonexpansive with respect to ‖ ·‖ξ and operator
Jµ is a contraction with respect to ‖ · ‖∞. If these two operators are with respect to
the same norm, ΠJµ would be a good operator. Unfortunately, we face the “norm
mismatch” problem. To be continued.

Lecture 7: VFA, Fitted V.I., and the LP Approach 7-6

7.3 Paper Discussion (Mingyuan)

7.3.1 Exact LP Reformulation

Consider the following linear programming problem:

max
J(x)

cTJ =
∑
x∈S

c(x)J(x)

s.t. J(x) ≤ TJ(x)

∀x ∈ S

(7.1)

• Linearity:

J(x) ≤ TJ(x)⇔ (TµJ)(x) = E [g(x, µ, w) + γJ (f(x, µ, w)] ≥ J(x),∀µ ∈ U(x)

• Dimensionality: |S| variables, |S| × |A| constraints

• Feasibility and Optimility:

– J∗ = TJ∗ ≤ TJ∗

– J ≤ TJ ⇒ J ≤ TJ ≤ T 2J ≤ · · · ≤ J∗

• State-relevance weights: (c(x) ≥ 0,∀x ∈ S). Note that the choice of state-
relevance weights does not influence the solution of (7.1).

7.3.2 Approximate/Reduced LP Approach

7.3.2.1 Parameterization

Given pre-selected K basis functions φk(x) (φk : S → R1, K � |S|), define a matrix:

Φ|S|∗K = [φ1, φ2, · · · , φK]|S|×K (7.2)

The aim is to generate a weight vector r̃ ∈ RK :

J̃(x) ≈ Φr̃(x) =
K∑
k=1

φk(x)r̃k (7.3)

Then we have the following linear programming problem:

max
r

cTΦr =
∑
x∈S

c(x)
K∑
k=1

φk(x)rk

s.t. Φr ≤ TΦr

∀x ∈ S

(7.4)

Lecture 7: VFA, Fitted V.I., and the LP Approach 7-7

• Dimensionality: K variables, |S| × |A| constraints

• Φ∗ : the optimal cost-to-go function lies within the span of the basis functions.
In practice, basis functions should be chosen based on heuristics and perhaps
some simplified analysis of the problem.

• Feasibility: depends on Φ

• State-relevance weights:

– Consider c to be a probability distribution
∑

x∈S c(x) = 1. Then the
objective can be viewed as an expected value where x is sampled according
to the distribution c.

– (7.4) is equivalent to the programming with weighted norm based on c:

min
r
||J∗ − Φr||1,c =

∑
x∈S

c(x) ||J∗(x)− Φr(x)||1

s.t. Φr(x) ≤ TΦr(x)

∀x ∈ S

(7.5)

• Error Bound:

||J∗ − Φr̃||1,c ≤
2

1− γ
min
r
||J∗ − Φr||∞ (7.6)

