IE 3186: Approximate Dynamic Programming

References:
D. P. Bertsekas, J. N. Tsitsiklis Neuro-dynamic programming, Athena Scientific, Belmont MA, 1996. (§6.5)
D. P. De Farias, B. Van Roy. The linear programming approach to approximate dynamic programming. Operations Research, 51(6), pp. 850-865, 2003.
D. P. De Farias, B. Van Roy. On constraint sampling in the linear programming approach to approximate dynamic programming. Mathematics of Operations Research 29(3), pp. 462-478, 2004.

7.1 Approximating the Value Function

We start with a series of simple theorems related to quantifying errors in a value function approximation (VFA) setting.

Proposition 7.1 (ϵ-V.I.). Consider the approximation V.I. algorithm with

$$
\left\|J_{k+1}-T J_{k}\right\|_{\infty} \leq \epsilon, \quad \forall k
$$

Then:

$$
J^{*}-\frac{\epsilon}{1-\gamma} e \leq \liminf _{k} J_{k} \leq \limsup _{k} J_{k} \leq J^{*}+\frac{\epsilon}{1-\gamma} e
$$

where e is a vector with elements all ones.

Proof. We know

$$
-\epsilon e \leq J_{1}-T J_{0} \leq \epsilon e
$$

Apply T^{k-1} :

$$
-\gamma^{k-1} \epsilon e \leq T^{k-1} J_{1}-T^{k} J_{0} \leq \gamma^{k-1} \epsilon e .
$$

Generally, we can get

$$
-\gamma^{k-i} \epsilon \leq T^{k-i} J_{i}-T_{k-i+1} J_{i-1} \leq \gamma^{k-i} \epsilon, \quad 1 \leq i \leq k
$$

Sum such inequalities up, we get

$$
-\sum_{i=1}^{k} \gamma^{k-i} \epsilon \leq \sum_{i=1}^{k}\left(T^{k-i} J_{i}-T^{k-i+1} J_{i-1}\right) \leq \sum_{i=1}^{k} \gamma^{k-i} \epsilon
$$

i.e.

$$
-\epsilon \sum_{i=0}^{k-1} \gamma^{i} \leq J_{k}-T^{k} J_{0} \leq \epsilon \sum_{i=0}^{k-1} \gamma^{i}
$$

Take limit to conclude.

If the value function approximate well, the limiting value function is close to optimal value. But what about policies?

Proposition 7.2 (Error in VFA \rightarrow Performance). Let $\left\|J^{*}-J\right\|_{\infty}=\epsilon$ and let μ be policy greedy with respect to J :

$$
\mu(i)=\arg \min _{u}[g(i, u)+\gamma \mathbf{E}[J(f(i, u, w))]] .
$$

Then

$$
\left\|J^{\mu}-J^{*}\right\|_{\infty} \leq \frac{2 \gamma \epsilon}{1-\gamma}
$$

Proof.

$$
\begin{aligned}
\left\|J^{\mu}-J^{*}\right\|_{\infty} & =\left\|T_{\mu} J_{\mu}-J^{*}\right\|_{\infty} \\
& \leq\left\|T_{\mu} J^{\mu}-T_{\mu} J+T_{\mu} J-J^{*}\right\|_{\infty} \\
& \leq\left\|T_{\mu} J^{\mu}-T_{\mu} J\right\|_{\infty}+\left\|T_{\mu}-J^{*}\right\|_{\infty} \\
& \leq \gamma\left\|J^{\mu}-J\right\|_{i} n f t y+\left\|T J-T J^{*}\right\|_{\infty} \\
& \leq \gamma\left\|J^{\mu}-J\right\|_{\infty}+\gamma\left\|J-J^{*}\right\|_{\infty} \\
& \leq \gamma\left\|J^{\mu}-J^{*}+J^{*}-J\right\|_{\infty}+\gamma \epsilon
\end{aligned}
$$

It follows that $(1-\gamma)\left\|J^{\mu}-J^{*}\right\|_{\infty} \leq 2 \epsilon \gamma$.
Proposition 7.3. When J^{*} is approximated closely enough, the greedy policy of the VFA becomes optimal.

Proof. There are a finite number of polices. Let $\bar{\mu} \neq \mu^{*}$ be the policy for which $J^{\bar{\mu}}$ is closest to J^{*} in $\|\cdot\|_{\infty}$. Suppose $\left\|J^{\bar{\mu}}-J^{*}\right\|=\delta$. Then if ϵ is small such that $\frac{2 \gamma \epsilon}{1-\gamma}<\delta$, μ must be optimal.

Corollary 7.4. Let μ_{k} be the policy greedy to J_{k}. For k sufficiently large in $\epsilon-A V I$, we have

$$
\left\|J^{\mu_{k}}-J^{*}\right\|_{\infty} \leq \frac{2 \gamma}{1-\gamma}\left(\frac{\epsilon}{1-\gamma}\right)=\frac{2 \gamma \epsilon}{(1-\gamma)^{2}}
$$

In the above, we needed to know $\epsilon=\left\|J-J^{*}\right\|$. Given some J, how can we tell if it is good when we don't have access to J^{*} ? We can compute the Bellman error.

Proposition 7.5. Suppose Bellman error is bounded by ϵ in $\|\cdot\|_{\infty}$, i.e., $\|J-T J\|_{\infty} \leq$ ϵ. Then, it holds that

$$
\left\|J-J^{*}\right\|_{\infty} \leq \frac{\epsilon}{1-\gamma}
$$

Proof. Note that

$$
\begin{aligned}
\left\|J-J^{*}\right\|_{\infty} & \leq\left\|J-T J+T J-J^{*}\right\|_{\infty} \\
& \leq\|T-T J\|_{\infty}+\left\|T J-T J^{*}\right\|_{\infty} \\
& \leq \epsilon+\gamma\left\|J-J^{*}\right\|_{\infty} .
\end{aligned}
$$

It follows that $(1-\gamma)\left\|J-J^{*}\right\|_{\infty} \leq \epsilon$.

7.2 Fitted Value Iteration

How do we approximate the value function, either J^{*} or J^{μ}, in practice?

- A parametric class:

$$
\tilde{J}(i ; r) \approx J^{*}(i) \text { or } J^{\mu}(i)
$$

where $r=\left(r_{1}, \ldots, r_{m}\right) \in \mathbb{R}^{m}$ where m should be much smaller than n. Then we have a possibly tractable problem.

Linear architecture:

$$
\tilde{J}(\cdot ; r)=\Phi \cdot r=\left[\begin{array}{cccccc}
\Phi_{1}(1) & \Phi_{2}(1) & \cdots & \Phi_{k}(1) & \cdots & \Phi_{m}(1) \\
\Phi_{1}(2) & \Phi_{2}(2) & \cdots & \Phi_{k}(2) & \cdots & \Phi_{m}(2) \\
\vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
\Phi_{1}(n) & \Phi_{2}(n) & \cdots & \Phi_{k}(n) & \cdots & \Phi_{m}(n)
\end{array}\right] \cdot\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]
$$

i.e. $\tilde{J}(i ; r)=\sum_{k=1}^{m} \Phi_{k}(i) r_{k}$, where $\Phi_{k}(\cdot)$ is basis function k.

Example 7.6 (Polynomials). Set $i=\left(i_{1}, i_{2}, \ldots, i_{\lambda}\right)$. Quadratic basis function

$$
\tilde{J}(i ; r)=r_{0}+\sum_{k} i_{k} r_{k}+\sum_{\ell} \sum_{k} i_{\ell} i_{k} r_{\ell k}
$$

Example 7.7 (Radial Basis). Radial basis function:

$$
\Phi_{k}(i)=\exp \left(-\left\|i-\mu_{k}\right\|_{2}^{2}\right) / \sigma_{k}
$$

and consider a linear combination.

Example 7.8 (Tetris game). For Tetris game, every square has two states 0 or 1. If the screen has 10×20 sqaures, there are 2^{200} states. Successful features were of the form:

$$
\Phi(\text { screen })=\left[\begin{array}{c}
\text { heights of columns (10) } \\
\text { height differences (9) } \\
\text { max height } \\
\text { number of holes } \\
1
\end{array}\right]
$$

What is fitted V.I.?
First, select a small sample of states. Let $\tilde{J}_{k}(\cdot)=\tilde{J}\left(\cdot ; r_{k}\right)$ (Here r_{k} is an m-dimensional iterative vector rather than $k^{\text {th }}$ component of vector r as before) be the approximation at iteration k. For each state $i \in$ sample, compute $\left(T \tilde{J}_{k}\right)(\cdot)$.
Next, choose r_{k+1} to "fit" the function \tilde{J}_{k+1} using the "observed" values $\left(T \tilde{J}_{k}\right)$ at sampled states. Fitted V.I. for evaluation: replace T with T_{μ}.
Example 7.9 (Error Amplification). Consider the following MDP.

- 2 states with $i \in\{1,2\}$.
- Just one action with cost 0 and transitions are deterministic: transition probability matrix

$$
P=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Notice 2 is an absorbing state.

- $J^{*}(1)=J^{*}(2)=0$.
- A single basis function $\Phi_{1}(i)=i$. So $\Phi=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\Phi r=\left[\begin{array}{c}r \\ 2 r\end{array}\right]$.

Exact fitted V.I. (compute T at all states) using least squares fit:

$$
\begin{aligned}
r_{k+1} & =\arg \min _{r}\left[\sum_{i=1}^{2}\left(\tilde{J}(i ; r)-\left(T \tilde{J}_{k}\right)(i)\right)^{2}\right] \\
& =\arg \min _{r}[(r-\underbrace{\left(T \tilde{J}_{k}\right)(1)}_{0+\gamma \cdot 2 r_{k}})^{2}+(2 r-\underbrace{\left(T \tilde{J}_{k}\right)(2)}_{0+\gamma \cdot 2 r_{k}})^{2}] \\
& =\arg \min _{r}\left[\left(r-\gamma \cdot 2 r_{k}\right)^{2}+\left(2 r-\gamma \cdot 2 r_{k}\right)^{2}\right]
\end{aligned}
$$

By taking derivative, we can get $r_{k+1}=\frac{6}{5} \gamma r_{k}$. It diverges for $\gamma>\frac{5}{6}$! One way to explain this is that state 2 is much more important than state 1 and we need to weight state 2 much more, but by using least squares fit, we don't take it into account.

Notation: let Π be a projection operator onto linear space $S=\left\{\Phi r: r \in \mathbb{R}^{m}\right\}$ with respect to $\|\cdot\|_{2}$. The "fit" step can be written as $\Pi J=\Phi r^{*}$ where $r^{*}=$ $\arg \min _{r}\|\Phi r-J\|_{2}^{2}$. Thus fitted V.I. can be done by:

$$
\tilde{J}_{k} \xrightarrow{\text { Bellman V.I. }} T_{\mu} \tilde{J}_{k} \xrightarrow{\text { fit w.r.t. some norm }} \tilde{J}_{k+1}=\Pi T_{\mu} \tilde{J}_{k}
$$

The problem is that thew operator ΠT_{μ} may be not a contraction.
Let's focus on weighted projection. Define a weighted Euclidean norm (think of this as weighing states)

$$
\|v\|_{\xi}=\sqrt{\sum_{i} \xi_{i}(v(i))^{2}}
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a distribution.
Example 7.10. Let's revisit the divergent example with weighted projection $\|\cdot\|_{\xi}$ with $\xi=\left(\xi_{1}, \xi_{2}\right)$.

$$
r_{k+1}=\arg \min _{r}\left[\xi_{1}\left(r-\gamma \cdot 2 r_{k}\right)^{2}+\xi_{2}\left(2 r-\gamma \cdot 2 r_{k}\right)^{2}\right] .
$$

By taking the derivative, it's easy to get

$$
r_{k+1}=\left(\frac{\xi_{1}}{\xi_{1}+4 \xi_{2}}+1\right) \gamma r_{k} .
$$

We can see that if ξ_{2} is large enough, then r_{k} converges. Notice that state 2 is occupied by system most of the time, so this makes intuitive sense.

Proposition 7.11 (Projections are nonexpensive). Using $\|\cdot\|$,

$$
\left\|\Pi J-\Pi J^{\prime}\right\|_{\xi} \leq\left\|J-J^{\prime}\right\|_{\xi}
$$

Proof.

$$
\|\Pi J-\Phi r\|_{\xi}^{2}+\|J-\Pi J\|_{x} i^{2}=\|J-\Phi r\|_{\xi}^{2}, \quad \forall \Phi r \in S
$$

It follows that

$$
\left\|\Pi\left(J-J^{\prime}\right)\right\|_{\xi}^{2} \leq\left\|\Pi\left(J-J^{\prime}\right)\right\|^{2}+\left\|(I-\Pi)\left(J-J^{\prime}\right)\right\|_{\xi}^{2}=\left\|J-J^{\prime}\right\|_{\xi},
$$

which concludes the proof.
Now, in $\tilde{J}_{k+1}=\Pi J_{\mu} \tilde{J}_{k}$, operator Π is nonexpansive with respect to $\|\cdot\|_{\xi}$ and operator J_{μ} is a contraction with respect to $\|\cdot\|_{\infty}$. If these two operators are with respect to the same norm, ΠJ_{μ} would be a good operator. Unfortunately, we face the "norm mismatch" problem. To be continued.

7.3 Paper Discussion (Mingyuan)

7.3.1 Exact LP Reformulation

Consider the following linear programming problem:

$$
\begin{array}{ll}
\max _{J(x)} & c^{T} J=\sum_{x \in S} c(x) J(x) \\
\text { s.t. } & J(x) \leq T J(x) \tag{7.1}\\
& \forall x \in S
\end{array}
$$

- Linearity:

$$
J(x) \leq T J(x) \Leftrightarrow\left(T_{\mu} J\right)(x)=\mathbf{E}[g(x, \mu, w)+\gamma J(f(x, \mu, w)] \geq J(x), \forall \mu \in \mathcal{U}(x)
$$

- Dimensionality: $|S|$ variables, $|S| \times|A|$ constraints
- Feasibility and Optimility:

$$
\begin{aligned}
& -J^{*}=T J^{*} \leq T J^{*} \\
& -J \leq T J \Rightarrow J \leq T J \leq T^{2} J \leq \cdots \leq J^{*}
\end{aligned}
$$

- State-relevance weights: $(c(x) \geq 0, \forall x \in S)$. Note that the choice of staterelevance weights does not influence the solution of (7.1).

7.3.2 Approximate/Reduced LP Approach

7.3.2.1 Parameterization

Given pre-selected K basis functions $\phi_{k}(x)\left(\phi_{k}: S \rightarrow \mathbb{R}^{1}, K \ll|S|\right)$, define a matrix:

$$
\begin{equation*}
\Phi_{|S| * K}=\left[\phi_{1}, \phi_{2}, \cdots, \phi_{K}\right]_{|S| \times K} \tag{7.2}
\end{equation*}
$$

The aim is to generate a weight vector $\tilde{r} \in \mathbb{R}^{K}$:

$$
\begin{equation*}
\tilde{J}(x) \approx \Phi \tilde{r}(x)=\sum_{k=1}^{K} \phi_{k}(x) \tilde{r}_{k} \tag{7.3}
\end{equation*}
$$

Then we have the following linear programming problem:

$$
\begin{array}{ll}
\max _{r} & c^{T} \Phi r=\sum_{x \in S} c(x) \sum_{k=1}^{K} \phi_{k}(x) r_{k} \tag{7.4}\\
\text { s.t. } & \Phi r \leq T \Phi r \\
& \forall x \in S
\end{array}
$$

- Dimensionality: K variables, $|S| \times|A|$ constraints
- Φ^{*} : the optimal cost-to-go function lies within the span of the basis functions. In practice, basis functions should be chosen based on heuristics and perhaps some simplified analysis of the problem.
- Feasibility: depends on Φ
- State-relevance weights:
- Consider c to be a probability distribution $\sum_{x \in S} c(x)=1$. Then the objective can be viewed as an expected value where x is sampled according to the distribution c.
- (7.4) is equivalent to the programming with weighted norm based on c :

$$
\begin{array}{ll}
\min _{r} & \left\|J^{*}-\Phi r\right\|_{1, c}=\sum_{x \in S} c(x)\left\|J^{*}(x)-\Phi r(x)\right\|_{1} \\
\text { s.t. } & \Phi r(x) \leq \operatorname{T\Phi r}(x) \tag{7.5}\\
& \forall x \in S
\end{array}
$$

- Error Bound:

$$
\begin{equation*}
\left\|J^{*}-\Phi \tilde{r}\right\|_{1, c} \leq \frac{2}{1-\gamma} \min _{r}\left\|J^{*}-\Phi r\right\|_{\infty} \tag{7.6}
\end{equation*}
$$

