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6.1 Convergence of Q-Learning

A special case of last week’s theorem is the algorithm
Ter1 = (1 — ap)r + apwin = 1y + ap(Weypr — 11) (6.1)
where 7, € R, w1 is mean zero, and E [w?, (i) | ;] < A.

Corollary 6.1. r; — 0 w.p.1.
Proof. Apply last week’s theorem with f(r) = r?2. O

If E [wi1(i) | 7] = p, then use f(r) = (r — p)? in the above corollary.

Now let us consider a more general algorithm based a pseudo-contraction.

e “States” or “components of a vector” 1 =1,2,...,n.

e The stochastic algorithm we consider is as follows. Start with some arbitrary
estimate ry € R™. Then, for t > 1,

ree1(2) = (1 — ag(i))re + (@) [(Hre) (1) + wegr (4) + g (2)]

where H is a mapping from R™ to R™ with (Hr;)(i) being the i* component
new observation of Hr;, w1 is unbiased noise (e.g. sampling error due to not
computing E exactly), and w;;, is biased noise (some sort of approximation
error).
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Let Fy = {ro(i),r1(2), ..., 7:(2), wo(i), ..., we (i), a0(2), ..., (i)}, fori ={1,2,...,n}.

Assumption 6.2. We make the following assumptions.

1. Unbiasedness: ¥V i,t, E [wt+1(i) ‘ .7-}} =0,

Bound on variance: 3 A, B s.t. E [w}, (i) }]:t] < A+ B|re?,

Stepsize: ¥ i, Y, au(i) = 00, Y, af(i) < oo, and ay(i) = 0 if i not visited,
Pseudo-contraction: 3 r* and a scalar 5 € [0,1) s.t. ||Hry —r*|| < Bl|ry — r*||.

Disappearing bias: 30, — 0 such that |ug(i)| < O¢f|r||

S v e

FEach state v is visited infinitely often with probability 1.

Theorem 6.3. For each state i, the iterates ry(i) — r*(1) w.p.1.

Proof. Assume r* = 0 since we can just shift the coordinate system. Then by Prop.
4.7 of Bertsekas and Tsitsiklis (Neuro-DP), we know that r; is bounded w.p.1. Be-
cause 1, is bounded, 3 Dy s.t. ||ry]| < Dy for all t. Define Dy = (5 + 2¢) Dy, k > 0 for
some € = 0s.t. +2e<1, D, — 0w.p.l.

Induction: Suppose 3 a random time t; s.t. ||r¢|| < Dy for all ¢ > ¢, meaning
r, enters Dy, forever at t.

Induction step: Assume this works for k, prove existence of ., satisfying the
condtition with k£ < k£ 4+ 1. Define an “accumulated noise” process started at 7
by W, ,(i) = 0, and

Wt-i-l,T(Z.) = (1 — O{t<Z)) Wtﬂ-(i) + Oft(Z‘)wH_l(Z.), Vit > T,
which averages noise terms together. By Corollary 6.1, it follows that

ImW,, (i) =0 Vr,i.

t—o00

By the induction hypothesis, the biased noise satisfies |u;(7)| < 6;|r¢|| < 0,D;, which
implies |u:(¢)] — 0, since our assumption said that § — 0. Let 7, > ¢ be a future
time at which |u.(7)| < eDg. This is a point where the noise is small enough that we
can start analyzing the convergence. Define

Yo (i) = Dy and Vi (1) = (1 = eu(2)Ya(2) + u(2) (6 + €) Dy,

Note, by Corollary 6.1, Y;(i) — (8 + €) D.
Claim 6.4. Vi and t > 7, , =Y3(i) + Wy, (1) < r(3) < Yi(2) + Wor, (4).
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Proof. We proceed by induction on ¢.

Base case (t = 71): Y7, (i) = Dy and W, ;. (i) = 0. So, it is clear that the state-
ment is true. Assume it is true for t. We want to show it is true for ¢ + 1.

Induction step:

ren(t) = (1= ou(@))re(i) + ou(@) [(Hre) (@) + wes (0) + g (4)]
< (1= ag()(Ye(@) + Wi, (1) + (i) (Hre) (4) + (i) wes (4) + cu(d) e (i)
< Y1 () + Wigr 1, (0),

where we used (Hr:) < Br|| < Dy and uyq1(i) < €Dg. Symmetrically, it can be
shown that,

—Yi1(2) + Wigr7,(4) < req1(2) < Yiga (@) + Wigr 7, (4),

which completes the proof. ]

Since, Y;(i) — (B+4€) Dy, and W, (i) — 0, then limsup||r¢|| < (B+€)Dy < Dgyr. O
t—o0

6.2 Connection to Q-Learning

1. 7(i) <= Qu(i,u).

2. H < F (Bellman Operator).
3. Wi = ’yrriiant(f(i,u,w) —vE Hii/th(f(z’,u,w)) :

4. Ut+1(7:) ~— 0.

Here we show that F'is a y-contraction in the maximum norm.
1FQ ~ FQ/ o = maxg(i.w) + B [min Q(f(i u.w)| — g(i,w) ~ B [minQ'(f (i, w))||

= ymax
K (iu)

E [min Q(f (i, w)) — min Q'(f (i, !, w))} ‘

'U/

<ymax E mi/n Q(f(i,u,w)) — miln Q'(f(i, w))’

(iu) u
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< 7max E max Q' (f(i, v, w)) — Q(f(i,u',w))|

(3,u) u

<@ @l

where we used | min f — min g| < max |f — g|. Therefore, we can apply the theorem
to see that Q; — Q* w.p.1.

6.3 DQN Paper Discussion (Ziyue)
1. Each period between updates to the target parameter vector can be thought of
as one Q-iteration (i.e., the value iteration algorithm applied using F').
2. During this time, DQN tries to approximate F'() by minimizing the loss function.

3. C can be thought of as number of SGD steps taken to fit Q—network per Q-
iteration.



