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6.1 Convergence of Q-Learning

A special case of last week’s theorem is the algorithm

rt+1 = (1− αt)rt + αtwt+1 = rt + αt(wt+1 − rt) (6.1)

where rt ∈ R, wt+1 is mean zero, and E
[
w2
t+1(i)

∣∣Ft] 6 A.

Corollary 6.1. rt → 0 w.p.1.

Proof. Apply last week’s theorem with f(r) = r2.

If E
[
wt+1(i)

∣∣Ft] = µ, then use f(r) = (r − µ)2 in the above corollary.

Now let us consider a more general algorithm based a pseudo-contraction.

• “States” or “components of a vector” i = 1, 2, . . . , n.

• The stochastic algorithm we consider is as follows. Start with some arbitrary
estimate r0 ∈ Rn. Then, for t > 1,

rt+1(i) = (1− αt(i))rt + αt(i) [(Hrt)(i) + wt+1(i) + ut+1(i)] ,

where H is a mapping from Rn to Rn with (Hrt)(i) being the ith component
new observation of Hrt, wt+1 is unbiased noise (e.g. sampling error due to not
computing E exactly), and ut+1 is biased noise (some sort of approximation
error).
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Let Ft = {r0(i), r1(i), . . . , rt(i), w0(i), . . . , wt(i), α0(i), . . . , αt(i)}, for i = {1, 2, . . . , n}.

Assumption 6.2. We make the following assumptions.

1. Unbiasedness: ∀ i, t, E
[
wt+1(i)

∣∣Ft] = 0,

2. Bound on variance: ∃ A,B s.t. E
[
w2
t+1(i)

∣∣Ft] 6 A+B‖rt‖2,

3. Stepsize: ∀ i,
∑

t αt(i) =∞,
∑

t α
2
t (i) <∞, and αt(i) = 0 if i not visited,

4. Pseudo-contraction: ∃ r∗ and a scalar β ∈ [0, 1) s.t. ‖Hrt − r∗‖ 6 β‖rt − r∗‖.

5. Disappearing bias: ∃ θt → 0 such that |ut(i)| 6 θt‖rt‖

6. Each state i is visited infinitely often with probability 1.

Theorem 6.3. For each state i, the iterates rt(i)→ r∗(i) w.p.1.

Proof. Assume r∗ = 0 since we can just shift the coordinate system. Then by Prop.
4.7 of Bertsekas and Tsitsiklis (Neuro-DP), we know that rt is bounded w.p.1. Be-
cause rt is bounded, ∃ D0 s.t. ‖rt‖ 6 D0 for all t. Define D0 = (β + 2ε) Dk, k > 0 for
some ε > 0 s.t. β + 2ε < 1, Dk → 0 w.p.1.

Induction: Suppose ∃ a random time tk s.t. ‖rt‖ 6 Dk for all t > tk, meaning
rt enters Dk forever at tk.

Induction step: Assume this works for k, prove existence of tk+1 satisfying the
condtition with k ← k + 1. Define an “accumulated noise” process started at τ
by Wτ,τ (i) = 0, and

Wt+1,τ (i) = (1− αt(i))Wt,τ (i) + αt(i)wt+1(i), ∀ t > τ,

which averages noise terms together. By Corollary 6.1, it follows that

lim
t→∞

Wt,τ (i) = 0 ∀ τ, i.

By the induction hypothesis, the biased noise satisfies |ut(i)| 6 θt‖rt‖ 6 θtDt, which
implies |ut(i)| → 0, since our assumption said that θ → 0. Let τk > tk be a future
time at which |ut(i)| 6 εDk. This is a point where the noise is small enough that we
can start analyzing the convergence. Define

Yτk(i) = Dk and Yt+1(i) = (1− αt(i))Yt(i) + αt(i)(β + ε)Dk

Note, by Corollary 6.1, Yt(i)→ (β + ε)Dk.

Claim 6.4. ∀ i and t > τk , −Yt(i) +Wt,τk(i) 6 rt(i) 6 Yt(i) +Wt,τk(i).
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Proof. We proceed by induction on t.

Base case (t = τk): Yτk(i) = Dk and Wτk,τk(i) = 0. So, it is clear that the state-
ment is true. Assume it is true for t. We want to show it is true for t+ 1.

Induction step:

rt+1(i) = (1− αt(i))rt(i) + αt(i) [(Hrt)(i) + wt+1(i) + ut+1(i)]

6 (1− αt(i))(Yt(i) +Wt,τk(i)) + αt(i)(Hrt)(i) + αt(i)wt+1(i) + αt(i)ut+1(i)

6 Yt+1(i) +Wt+1,τk(i),

where we used (Hrt) 6 β‖rt‖ 6 βDk and ut+1(i) 6 εDk. Symmetrically, it can be
shown that,

−Yt+1(i) +Wt+1,τk(i) 6 rt+1(i) 6 Yt+1(i) +Wt+1,τk(i),

which completes the proof.

Since, Yt(i)→ (β+ε)Dk, and Wt,τk(i)→ 0, then lim sup
t→∞

‖rt‖ 6 (β+ε)Dk 6 Dk+1.

6.2 Connection to Q-Learning

1. rt(i) ⇐⇒ Qt(i, u).

2. H ⇐⇒ F (Bellman Operator).

3. wt+1 ⇐⇒ γmin
u′

Qt(f(i, u, w̃)− γE
[
min
u′

Qt(f(i, u, w))
]
.

4. ut+1(i) ⇐⇒ 0.

Here we show that F is a γ-contraction in the maximum norm.

‖FQ− FQ′‖∞ = max
(i,u)

∣∣∣g(i, u) + γE
[
min
u′

Q(f(i, u, w′))
]
− g(i, u)− γE

[
min
u′

Q′(f(i, u, w′))
]∣∣∣

= γmax
(i,u)

∣∣∣E [min
u′

Q(f(i, u′, w))−min
u′

Q′(f(i, u′, w))
]∣∣∣

6 γmax
(i,u)

E
∣∣∣min
u′

Q(f(i, u′, w))−min
u′

Q′(f(i, u′, w))
∣∣∣
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6 γmax
(i,u)

E
[
max
u′
|Q′(f(i, u′, w))−Q(f(i, u′, w))|

]
6 γ‖Q′ −Q‖,

where we used |min f −min g| 6 max |f − g|. Therefore, we can apply the theorem
to see that Qt → Q∗ w.p.1.

6.3 DQN Paper Discussion (Ziyue)

1. Each period between updates to the target parameter vector can be thought of
as one Q-iteration (i.e., the value iteration algorithm applied using F ).

2. During this time, DQN tries to approximate FQ by minimizing the loss function.

3. C can be thought of as number of SGD steps taken to fit Q̂-network per Q-
iteration.


