IE 3186: Approximate Dynamic Programming

Fall 2018

Lecture 6: Convergence of Q-Learning and DQN

Lecturer: Daniel Jiang Scribes: Kamal Basulaiman

References:

D. P. Bertsekas, J. N. Tsitsiklis *Neuro-dynamic programming*, Athena Scientific, Belmont MA, 1996. (§4)

V. Mnih et. al., *Human-level control through deep reinforcement learning*, Nature, 518(7540), pp. 529-533, 2018.

6.1 Convergence of Q-Learning

A special case of last week's theorem is the algorithm

$$r_{t+1} = (1 - \alpha_t)r_t + \alpha_t w_{t+1} = r_t + \alpha_t (w_{t+1} - r_t)$$
(6.1)

where $r_t \in \mathbb{R}$, w_{t+1} is mean zero, and $\mathbf{E}\left[w_{t+1}^2(i) \mid \mathcal{F}_t\right] \leqslant A$.

Corollary 6.1. $r_t \rightarrow 0$ w.p.1.

Proof. Apply last week's theorem with $f(r) = r^2$.

If $\mathbf{E}\left[w_{t+1}(i) \mid \mathcal{F}_t\right] = \mu$, then use $f(r) = (r - \mu)^2$ in the above corollary.

Now let us consider a more general algorithm based a pseudo-contraction.

- "States" or "components of a vector" i = 1, 2, ..., n.
- The stochastic algorithm we consider is as follows. Start with some arbitrary estimate $r_0 \in \mathbb{R}^n$. Then, for $t \ge 1$,

$$r_{t+1}(i) = (1 - \alpha_t(i))r_t + \alpha_t(i) \left[(Hr_t)(i) + w_{t+1}(i) + u_{t+1}(i) \right],$$

where H is a mapping from \mathbb{R}^n to \mathbb{R}^n with $(Hr_t)(i)$ being the i^{th} component new observation of Hr_t , w_{t+1} is unbiased noise (e.g. sampling error due to not computing \mathbf{E} exactly), and u_{t+1} is biased noise (some sort of approximation error).

Let
$$\mathcal{F}_t = \{r_0(i), r_1(i), \dots, r_t(i), w_0(i), \dots, w_t(i), \alpha_0(i), \dots, \alpha_t(i)\}, \text{ for } i = \{1, 2, \dots, n\}.$$

Assumption 6.2. We make the following assumptions.

- 1. Unbiasedness: $\forall i, t, \mathbf{E} \left[w_{t+1}(i) \mid \mathcal{F}_t \right] = 0$,
- 2. Bound on variance: $\exists A, B \text{ s.t. } \mathbf{E} \left[w_{t+1}^2(i) \mid \mathcal{F}_t \right] \leqslant A + B \|r_t\|^2$,
- 3. Stepsize: $\forall i, \sum_t \alpha_t(i) = \infty, \sum_t \alpha_t^2(i) < \infty, \text{ and } \alpha_t(i) = 0 \text{ if } i \text{ not visited,}$
- 4. Pseudo-contraction: $\exists r^* \text{ and a scalar } \beta \in [0,1) \text{ s.t. } ||Hr_t r^*|| \leq \beta ||r_t r^*||.$
- 5. Disappearing bias: $\exists \theta_t \to 0 \text{ such that } |u_t(i)| \leq \theta_t ||r_t||$
- 6. Each state i is visited infinitely often with probability 1.

Theorem 6.3. For each state i, the iterates $r_t(i) \rightarrow r^*(i)$ w.p.1.

Proof. Assume $r^* = 0$ since we can just shift the coordinate system. Then by Prop. 4.7 of Bertsekas and Tsitsiklis (Neuro-DP), we know that r_t is bounded w.p.1. Because r_t is bounded, $\exists D_0$ s.t. $||r_t|| \leq D_0$ for all t. Define $D_0 = (\beta + 2\epsilon) D_k, k \geq 0$ for some $\epsilon \geq 0$ s.t. $\beta + 2\epsilon < 1$, $D_k \to 0$ w.p.1.

Induction: Suppose \exists a random time t_k s.t. $||r_t|| \leq D_k$ for all $t \geq t_k$, meaning r_t enters D_k forever at t_k .

Induction step: Assume this works for k, prove existence of t_{k+1} satisfying the condition with $k \leftarrow k+1$. Define an "accumulated noise" process started at τ by $W_{\tau,\tau}(i) = 0$, and

$$W_{t+1,\tau}(i) = (1 - \alpha_t(i)) W_{t,\tau}(i) + \alpha_t(i) w_{t+1}(i), \quad \forall \ t \geqslant \tau,$$

which averages noise terms together. By Corollary 6.1, it follows that

$$\lim_{t \to \infty} W_{t,\tau}(i) = 0 \quad \forall \, \tau, i.$$

By the induction hypothesis, the biased noise satisfies $|u_t(i)| \leq \theta_t ||r_t|| \leq \theta_t D_t$, which implies $|u_t(i)| \to 0$, since our assumption said that $\theta \to 0$. Let $\tau_k \geq t_k$ be a future time at which $|u_t(i)| \leq \epsilon D_k$. This is a point where the noise is small enough that we can start analyzing the convergence. Define

$$Y_{\tau_k}(i) = D_k$$
 and $Y_{t+1}(i) = (1 - \alpha_t(i))Y_t(i) + \alpha_t(i)(\beta + \epsilon)D_k$

Note, by Corollary 6.1, $Y_t(i) \to (\beta + \epsilon)D_k$.

Claim 6.4. $\forall i \text{ and } t \geqslant \tau_k$, $-Y_t(i) + W_{t,\tau_k}(i) \leqslant r_t(i) \leqslant Y_t(i) + W_{t,\tau_k}(i)$.

Proof. We proceed by induction on t.

Base case $(t = \tau_k)$: $Y_{\tau_k}(i) = D_k$ and $W_{\tau_k,\tau_k}(i) = 0$. So, it is clear that the statement is true. Assume it is true for t. We want to show it is true for t + 1.

Induction step:

$$r_{t+1}(i) = (1 - \alpha_t(i))r_t(i) + \alpha_t(i) [(Hr_t)(i) + w_{t+1}(i) + u_{t+1}(i)]$$

$$\leqslant (1 - \alpha_t(i))(Y_t(i) + W_{t,\tau_k}(i)) + \alpha_t(i)(Hr_t)(i) + \alpha_t(i)w_{t+1}(i) + \alpha_t(i)u_{t+1}(i)$$

$$\leqslant Y_{t+1}(i) + W_{t+1,\tau_k}(i),$$

where we used $(Hr_t) \leq \beta ||r_t|| \leq \beta D_k$ and $u_{t+1}(i) \leq \epsilon D_k$. Symmetrically, it can be shown that,

$$-Y_{t+1}(i) + W_{t+1,\tau_k}(i) \leqslant r_{t+1}(i) \leqslant Y_{t+1}(i) + W_{t+1,\tau_k}(i),$$

which completes the proof.

Since, $Y_t(i) \to (\beta + \epsilon)D_k$, and $W_{t,\tau_k}(i) \to 0$, then $\limsup_{t \to \infty} ||r_t|| \le (\beta + \epsilon)D_k \le D_{k+1}$. \square

6.2 Connection to Q-Learning

- 1. $r_t(i) \iff Q_t(i, u)$.
- 2. $H \iff F$ (Bellman Operator).
- 3. $w_{t+1} \iff \gamma \min_{u'} Q_t(f(i, u, \tilde{w}) \gamma \mathbf{E} \left[\min_{u'} Q_t(f(i, u, w)) \right].$
- 4. $u_{t+1}(i) \iff 0$.

Here we show that F is a γ -contraction in the maximum norm.

$$\begin{split} \|FQ - FQ'\|_{\infty} &= \max_{(i,u)} \left| g(i,u) + \gamma \, \mathbf{E} \left[\min_{u'} Q(f(i,u,w')) \right] - g(i,u) - \gamma \, \mathbf{E} \left[\min_{u'} Q'(f(i,u,w')) \right] \right| \\ &= \gamma \max_{(i,u)} \left| \mathbf{E} \left[\min_{u'} Q(f(i,u',w)) - \min_{u'} Q'(f(i,u',w)) \right] \right| \\ &\leqslant \gamma \max_{(i,u)} \mathbf{E} \left| \min_{u'} Q(f(i,u',w)) - \min_{u'} Q'(f(i,u',w)) \right| \end{split}$$

$$\leqslant \gamma \max_{(i,u)} \mathbf{E} \left[\max_{u'} |Q'(f(i,u',w)) - Q(f(i,u',w))| \right]$$

$$\leqslant \gamma \|Q' - Q\|,$$

where we used $|\min f - \min g| \leq \max |f - g|$. Therefore, we can apply the theorem to see that $Q_t \to Q^*$ w.p.1.

6.3 DQN Paper Discussion (Ziyue)

- 1. Each period between updates to the target parameter vector can be thought of as one Q-iteration (i.e., the value iteration algorithm applied using F).
- 2. During this time, DQN tries to approximate FQ by minimizing the loss function.
- 3. C can be thought of as number of SGD steps taken to fit \hat{Q} -network per Qiteration.