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5.1 Introduction to Q-Learning

Last time we showed how to interchange E(·) and min(·), which results in:

Q∗(i, u) = E
[
g(i, u, w) + γmin

u′
Q∗(f(i, u, w), u′)

]
,

a reformulation of the Bellman equation written for Q-factors. Recall that Q-iteration
is simply V.I. (value iteration) for Q-factors:

Qk+1 = FQk

where F is the Q-Bellman operator. Next step: can we adjust this algorithm so that
the expectation does not need to be computed at every iteration. Instead, what if we
only had access to samples of the transition model?

Example 5.1 (Gridworld). This is the standard example from reinforcement learning,
where Q-learning originated.

• States = {locations on the grid}

• Actions = {move North, South, East, West}

• Transitions: there is eastward wind, so you either go the intended direction or
with small probability, you move East.

• Reward = 1 if good (or goal), −1 bad state, 0 otherwise.

Assumptions:

• Imagine you are a robot and can only operate in the real environment;
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• You do not know the transition model (DP is not possible even if the state space
is small), but can try things and learn from the environment;

• You also may not know the cost/reward structure (but can see it through expe-
riencing).

• Alternatively, you have a simulation model of the environment, e.g., of the wind,
but still no exact knowledge of the wind distribution.

Let α ∈ [0, 1] be a stepsize parameter. The Q-iteration algorithm Qk+1 = FQk can
be generalized by doing “partial” updates:

Qk+1(i, u) = (1− α)Qk(i, u) + αE[g(i, u, w) + γmin
u′

Qk(f(i, u, w), u′)].

Q-learning is an approximate version of this, where E is not computed, but sampled:

Qt+1(i, u) = (1− αt(i, u))Qt(i, u)) + αt(i, u)
[
g(i, u, w̃) + min

u′
Qt(f(i, u, w̃), u′)

]
where w̃ sampled (or observed) from same distribution as w and at each iteration t,
one state-action pair (i, u) is updated. Let T i,u be the iterations at which (i, u) is
updated. Then, αt(i, u) = 0 if t /∈ T i,u. Typically it is assumed that |T i,u| =∞.

Convergence of Q-learning: if certain assumptions are satisfied, Qt(i, u) → Q∗(i, u)
w.p. 1. There are two parts to the analysis:

1. Understand some basic properties of stochastic approximation (SA) theory/stochastic
gradient descent (SGD).

2. In conjunction with SA/SGD, use the contraction property of Bellman operator
F to show convergence.

Let’s start with stochastic approximation. Next time we discuss the second part.

5.2 Stochastic Approximation and Convergence

Example 5.2 (SGD). The stochastic gradient descent algorithm minimizes a cost
function f by moving in (noisy) directions of its gradient.

rt+1 = rt − αt(∇f(rt) + wt+1)

where Et[wt+1] = 0. Under some technical conditions, limt→∞∇f(rt) = 0. If f is
convex, then it follows that a minimizer is found.
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Example 5.3 (Estimation of Unknown Mean). Let vt be i.i.d random variables with
unknown mean µ and finite variance. The “Robbins-Monro” SA (stochastic approxi-
mation) algorithm

rt+1 = (1− αt) rt + αtvt+1

can be thought of as averaging (i.e., set αt = 1/t). Under some conditions, rt → r.

Example 5.4 (Minimizing a Sum). Minimize the cost

f(r) =
1

K

K∑
k=1

fk(r).

Rather than compute ∇f(r), one might consider

rt+1 = rt − αt∇fk(t)(rt)

where k(t) is a random variable uniformly distributed over {1, 2, . . . , K}.

Now, let us consider the more general algorithm:

rt+1 = rt + αt st+1, (5.1)

which cover the above examples. We need the following assumptions to show the
convergence of Algorithm 5.1.

Assumption 5.5 (Stepsize). Suppose

αt ≥ 0,
∞∑
t=0

αt =∞,
∞∑
t=0

α2
t ≤ B <∞,

where B is a deterministic constant (can be relaxed).

Remark 5.6. If
∑∞

t=0 αt ≤ A < ∞, then it may be the case that we never find the
desired solution because

|rt − r0| ≤
t−1∑
τ=0

ατ |sτ+1| ≤ c · A,

where we suppose sτ+1 is bounded by c. If r0 is chosen badly, r∗ may never be found.

Remark 5.7. Suppose αt = α for all t, where α is some constant, and the variance
of st+1 is constant, we can only hope to converge to neighborhood of r∗.

Let Ft = {r0, . . . , rt, s0, . . . , st, α0, . . . , αt} be the history of the algorithm. Let || · ||
be the Euclidean norm.
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Assumption 5.8 (Potential Function). There exists a function f : Rn → R s.t.

1. (Nonnegative) f(r) ≥ 0 for all r.

2. (Lipschitz ∇f) The function f is continuously differeatiable and ∃L s.t.

||∇f(r)−∇f(r′)|| ≤ L||r − r′||

for all r, r′ ∈ Rn.

3. (Pseudo-gradient) ∃ a positive constant c s.t.

c||∇f(rt)||2 ≤ −∇f(rt)
TE[st+1|Ft].

“Expected update direction is roughly opposite of gradient and is a direction of
cost decrease.”

4. ∃ positive constants K1, K2 s.t.

E
[
||st+1||2 | Ft

]
≤ K1 +K2 ‖∇f‖2.

Theorem 5.9. Under these assumptions and (5.1), the following hold w.p. 1:

1. f(rt) converges;

2. limt→∞∇f(rt) = 0;

3. Every limit point of rt is a stationary point of f .

5.3 Proof of the Convergence Theorem

First, let’s recall some helpful results from probability.

Lemma 5.10 (Supermartingale Convergence Theorem). Let Xt, Yt, Zt, t = 0, 1, . . . ,
be sequences of nonnegative random variables in Ft. Suppose that:

1. For each t, we have
E[Yt+1|Ft] ≤ Yt −Xt + Zt;

2. It holds that
∑∞

t=0 Zt.

Then
∑∞

t=0Xt <∞ and {Yt} converges to some random variable Y w.p. 1.

Lemma 5.11 (Martinale Convergence Theorem). Let Xt be a martingale, i.e., E[Xt+1 | Ft] =
Xt] and E[|Xt|] ≤M , for some positive M . Then, Xt converges to some X w.p.1.
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Proof of Theorem 5.9. (Part 1; lower bound on limit) First note that using the as-
sumption on f ,

f(r̄) ≤ f(r) +∇f(r)T (r̄ − r) +
L

2
||r̄ − r||2.

(See page 95 of Bertsekas & Tsitsiklis for derivation).

Applying this with r = rt, r̄ = rt+1 = rt + γt st+1:

f(rt+1) ≤ f(rt) + αt∇f(rt)
T st+1 +

L

2
α2
t ||st+1||2

Take E[· | Ft] on both sides to obtain

E[f(rt+1)|Ft] ≤ f(rt) + αt∇f(rt)
TE[st+1 | Ft] +

L

2
α2
t

(
K1 +K2||∇f(rt)||2

)
≤ f(rt)− αt

(
c− LK2αt

2

)
||∇f(rt)||2 +

LK1d
2
t

2
= f(rt)−Xt + Zt

where

Xt := max
(
αt

(
c− LK2αt

2

)
||∇f(rt)||2, 0

)
, Yt = f(rt),

Zt :=
LK1α

2
t

2
−min

(
αt

(
c− LK2αt

2

)
||∇f(rt)||2, 0

)
.

Clearly, Xt, Yt, Zt ∈ F are nonnegative and
∑∞

t=0 Zt < ∞ by assumption. By the
supermartingale convergence theorem, f(rt) converges and

∑
tXt < ∞. After some

finite time when LK2αt ≤ c

Xt = αt

(
c− LK2αt

2

)
||∇f(rt)||2 ≥

c

2
αt||∇f(rt)||2.

So we have
∑

t αt||∇f(rt)||2 < ∞ (otherwise,
∑

tXt = ∞). Suppose ∃ t0, δ > 0 s.t.
||∇f(rt)||2 ≥ δ, ∀ t ≥ t0. But then, we would have∑

t

αt||∇f(rt)||2 ≥
∑
t

αtδ =∞

by the stepsize assumption. Contradiction! It follows that

lim inf
t→∞

||∇f(rt)|| = 0.

(Part 2; upper bound on limit) Next, we want to show an upper bound on the limit
is zero as well. Fix ε > 0. A time interval {t, t+ 1, . . . , t̄} is an upcrossing interval if

||∇f(rt)|| < ε/2, ||∇f(rt̄)|| > ε
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and
||∇f(rτ )|| ∈ [ε/2, ε] ∀ t < τ < t̄.

Goal: show there are only a finite number of upcrossings from ε/2 to ε. Let

s̄t = E[st+1 | Ft], wt+1 = st+1 − s̄t.

Note for later that
||s2

t+1|| = ||wt+1||2 + ||s̄t||2 + 2wTt+1s̄t,

so
||s̄t||2 + E[||wt+1||2 | Ft] = E[||s2

t+1|| | Ft] ≤ K1 +K2 ||∇f(tr)||2. (5.2)

Let χt = 1{||∇f(rt)||≤ε}. We need to pause the main proof here for a lemma.

Lemma 5.12 (Technical Lemma). The sequence ut defined by

ut =
t−1∑
τ=0

χtαtwτ+1

converges w.p.1.

Proof. Note E[χtαtwt+1 | Ft] = χtαtE[wt+1 | Ft] = 0 by unbiasedness of wt+1, so

E[ut+1|Ft] = E[ut + χtαtwt+1|Ft] = ut.

Each component of ut is a martingale if we can show ∃M s.t. E|ut(i)| ≤M for all t.

||ut+1||2 = ||ut||2 + 2uTt χtαtwt+1 + χ2
tα

2
t ||wt+1||2

E[||ut+1||2|Ft] = ||ut||2 + 2uTt χtαtE[wt+1|Ft] + χ2
tα

2
tE[||wt+1||2|Ft]

by (5.2) ≤ ||ut||2 + χ2
tα

2
t (K1 +K2||∇f(rt)||2)

≤ ||ut||2 + α2
t (K1 +K2ε

2).

Taking unconditional expectations and then iterating:

E[||ut||2] ≤ (K1 +K2ε
2)E
[ ∞∑
τ=0

α2
τ

]
≤ B

Since ||ut|| ≤ 1 + ||ut||2, suptE[||ut||] ≤ some M . So we can apply martingale
convergence to conclude.
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Back to main proof: (Part 2; upper bound on limit, continued) Suppose we have a
sample path with infinite number of upcrossings from ε/2 to ε. Let {tk, . . . , t̄k} be
the kth upcrossing interval

t̄k−1∑
t=tk

χtαtwt+1 =

t̄k−1∑
t=tk

αtwt+1.

We claim that

lim
k→∞

t̄k−1∑
t=tk

αtwt+1 = 0. (5.3)

If not, ut cannot converge since ut ≈
∑

k

∑t̄k−1
t=tk

αtwt+1. Similarly

lim
k→∞

αtkwtk+1 = 0. (5.4)

Now we have

||∇f(rtk+1)|| − ||∇f(rtk)|| ≤ ||∇f(rtk+1)−∇f(rtk)||
≤ L||rtk+1 − rtk ||
= αtkL||s̄tk + wtk+1||
≤ αtkL[||s̄tk ||+ ||wtk+1||]
≤ αtkL(K1 +K2ε

2) + Lαtk ||wtk+1||
by (5.2) and (5.4) → 0 as k →∞.

Note ||∇f(rtk+1)|| ≥ ε/2, we can suppose that for large enough k, ||∇f(rtk)|| will be
close, say ≥ ε/4.

For any k, it is also true that

ε

2
≤ ||∇f(rt̄k)|| − ||∇f(rtk)||

≤ ||∇f(rt̄k)−∇f(rtk)||
≤ L||rt̄k − rtk ||

≤ L

t̄k−1∑
t=tk

αt||s̄t||︸ ︷︷ ︸
denoted by (∗)

+L||
t̄k−1∑
t=tk

αtwt+1||︸ ︷︷ ︸
→ 0 by (5.3)

Notice

(∗) ≤ L

t̄k−1∑
t=tk

αt(1 + ||s̄t||2) ≤ L

t̄k−1∑
t=tk

(1 +K1 +K2ε
2)αt ≤ Ld

t̄k−1∑
t=tk

αt
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where K1, K2, d are some positive constants. It follows that

lim inf
k→∞

t̄k−1∑
t=tk

αt ≥
ε

2Ld

Combining with the previous lower bound of ε/4 on ||∇f(rt)|| for large k,

lim inf
k→∞

t̄k−1∑
t=tk

αt||∇f(rt)||2 ≥
ε

2Ld

( ε
4

)2

which implies
∞∑
t=0

αt||∇f(rt)||2 =∞,

a contradiction from the beginning of the proof where we used supermartingale con-
vergence. Thus, there are a finite number of upcrossing intervals.

lim sup
t→∞

||∇f(rt)|| ≤ ε

Because ε is arbitrary, limt→∞ ||∇f(rt)|| = 0. Let r be a limit point of rt. Then ∇f(r)
is the limit of a subsequence of ∇f(rt), so also = 0.


