
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 4: Asynchronous VI and Bellman Reformulations
Lecturer: Daniel Jiang Scribes: Mingyuan Xu

References:

D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§2.6)

W.B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, 2nd ed, Wiley & Sons, 2007. (§4.6)

4.1 General Asychronous Model

We are trying to solve fixed point equation: J = TJ . A general asynchronous model
is as follows:

• One “processor” is responsible for each state (or component) of J = (J1, J2, . . . Jn).

• Let Rl = {set of iterations at which processor l updates state l}.

– This model can also model the more realistic case where there are fewer
processors than states. Can simply add virtual processors that mimic a
physical processor that updates multiple states.

• States are left unchanged if they are not updated.

• J tl is the approximation of J∗l at iteration t.

• When processor l updates state l at some iteration t ∈ Rl, it sees delayed
versions of Jj for j 6= l. The communication delay from processor j → l is

t− τ(l,j)(t),

meaning that processor l sees J
τ(l,j)(t)

j . The update equation is:

J t+1
l =

{
T (J

τ(l,1)(t)

1 , J
τ(l,2)(t)

2 , . . . , J
τ(l,n)(t)
n)(l) if t ∈ Rl

J tl if t /∈ Rl.
(4.1)

4-1

Lecture 4: Asynchronous VI and Bellman Reformulations 4-2

• The standard case of no-delay is τ(l,j)(t) = t.

• The asynchronous VI algorithm can be written as a special case of this model:

J t+1
l =

{
T (J t1, J

t
2, . . . , J

t
n)(l) if l = xt

J tl if l 6= xt

where T (J t1, J
t
2, . . . , J

t
n)(l) denotes the lth component of T (J t1, J

t
2, . . . , J

t
n) = TJ t.

Assumption 4.1. States are visited infinitely often, i.e., |Rl| =∞ for each state l.

Assumption 4.2. Information is always renewed or “caught up,” i.e., lim
t→∞

τ(l,j)(t) =

∞ for every pair of processors (l, j).

Proposition 4.3 (Convergence). Under previous assumptions, the asynchronous al-
gorithm given in (4.1) converges to J∗, the fixed point of J = TJ : J t → J∗.

Proof. Let S(k) = {J : ‖J − J∗‖∞ ≤ γk‖J0 − J∗‖∞}, so we have a shrinking set of
boxes: S(k + 1) ⊆ S(k) for each k.

• By the contraction property of T , if J ∈ S(k), then TJ ∈ S(k + 1).

• Note that S(k) = S1(k)× S2(k)× · · · × Sn(k), where Sl(k) is an interval in the
lth dimension.

• The boxes shrink to a single point J∗.

Main idea of the analysis:

1. Suppose J ∈ S(k), then if we update Jl by applying T to J and keep the lth

component, then the new value function J ′ is still ∈ S(k).

2. Once Jl ∈ Sl(k) and ignoring delays, then Jl will enter Sl(k + 1) the first time
it is updated after entire vector J enters S(k).

3. So the iterates progressively enter smaller and smaller boxes and eventually
converge to J∗.

Prove by induction: For each k ≥ 0, show that there exists time tk, such that

• I1: J t ∈ S(k) for all t ≥ tk.

• I2: (J
τ(l,1)(t)

1 , J
τ(l,2)(t)

2 , . . . , J
τ(l,n)(t)
n) ∈ S(k) for all l, t ∈ Rl, and t ≥ tk.

That can be interpreted to mean:

Lecture 4: Asynchronous VI and Bellman Reformulations 4-3

1. The estimate is in S(k) once t is sufficiently large.

2. All delayed versions of the estimates are also in S(k).

Base case (k = 0) is true because J0 ∈ S(0) by definition.

Now assume for k, the two induction hypotheses (I1, I2) are true. We now try to
prove that there exists tk+1 such that (I1, I2) hold.

Let t(l) be the first time l is updated after tk: t(l) = min{i : i ∈ Rl, t ≥ tk}.

By the contraction property of Bellman operator T , we know that once delayed ver-
sions enter S(k) after tk (I2), the update equation for J

t(l)+1
l ∈ Sl(k + 1):

J
t(l)+1
l =

{
T (J

τ(l,1)(t)

1 , J
τ(l,2)(t)

2 , . . . , J
τ(l,n)(t)
n)(l) if t ∈ Rl

J tl if t /∈ Rl

sends J
t(l)+1
l into Sl(k + 1).

In fact, for all t ∈ Rl and t ≥ t(l), it holds that J t+1
l ∈ Sl(k + 1). Since J tl is not

changed between updates, we actually know that

J tl ∈ Sl(k + 1) for all t ≥ t(l) + 1. (4.2)

Let t′k = max
l
{t(l)} + 1, the time after which all processors l have updated their

respective component l at least once after tk. Since (4.2) holds for all processors l,
this means that:

J t = (J t1, J
t
2, . . . , J

t
n) ∈ S(k + 1) for all t ≥ t′k.

The final step is to select tk+1 such that all delayed versions are also in S(k+ 1). We
can simply “wait” until this is true. By assumption, τ(l,j)(t)→∞ as t→∞. Choose
tk+1 sufficiently large such that τ(l,j)(t) ≥ t′k for all l, j when t ≥ tk+1.

Thus, the time index tk+1 verifies both induction hypotheses.

Remark 4.4. This ADP algorithm is “approximate” only in the sense that we com-
pute Bellman in an asychronous manner (not all states). However, for each Bellman
update, we compute it exactly for the states that we visit. Can we consider approaches
where there is noise in the Bellman computation as well?

4.2 Q-factor Reformulation

Suppose we sample ŵ from the same distribution of w, then we could try a sampled
version of the Bellman update:

(TJ)(i) ≈ min
u

[(g(i, u, ŵ) + γJ(f(i, u, ŵ)] =: (T̂ J)(i, ŵ).

Lecture 4: Asynchronous VI and Bellman Reformulations 4-4

But TJ(i) ≥ Eŵ[(T (̂J)(i, ŵ)]. It is hard to imagine that a biased observation of TJ
can lead to good algorithms.

We would prefer Ĵ be an unbiased observation of TJ , i.e.,

(T̂ J)(i) = (TJ)(i) + ε, E(ε) = 0.

Goal: let’s try to reformulate the Bellman equation so that unbiased estimates are
easy. If successful, then we will have a new Bellman operator T ′ such that it is easy
to observe (T ′J)(i) + ε.

Definition 4.5. Suppose U(i) = U for all i (for simplicity). Define the Q-factor or
(state-action value function):

Q∗(i, u) = E [g(i, u, w) + γJ∗(f(i, u, w))] = g(i, u) + γE [J∗(f(i, u, w))]

where action u is taken out of state i for one step and then π∗ followed afterwards.

Then, we have

J∗(i) = min
u

Q∗(i, u), π∗(i) ∈ argmin Q∗(i, u).

A nice observation is that if we have Q∗, then there is no need to compute an expec-
tation when implementing π∗.

Note that we can also write versions for the fixed policy case:

Qπ(i, u) = E [g(i, u, w) + γJπ(f(i, u, w))] = g(i, u) + γE [J∗(f(i, u, w))] .

The Q-factor version of Bellman equation is

Q∗(ik, uk) = g(ik, uk) + γE

[
min
uk+1

Q(f(ik, uk, wk+1), uk+1)

]
.

Theoretical properties from T essentially all follow using the same proof ideas. We
can aim to find Q∗ instead of J∗.

Algorithm 4.6. Q-factor Value Iteration:

(1) Choose Q0 arbitrarily.

(2) Iterate Qk+1 = FQk, where (FQ)(i, u) = g(i, u) + γE
[
min
u′

Q∗(f(i, u, w), u′)
]
.

Then, Qk → Q∗.

We now have have an easy way to get an unbiased estimate because min and expec-
tation are interchanged:

(F̂Q)(i, u, ŵ) = g(i, u) + min
u′

Q(f(i, u, ŵ), u′),

(FQ)(i, u) = E[(F̂Q)(i, u, ŵ)].

Unfortunately, the new “state space” is |U | times larger than before.

Lecture 4: Asynchronous VI and Bellman Reformulations 4-5

4.3 Post-decision Reformulation

Question: is a simpler variable that contains the same information as (i, u)? The post-
decision state is the state of the system after u is decided, but before w is revealed.
The original transition f is:

ik+1 = f(ik, uk, wk+1)

Consider the following decomposition of transition f :

iuk = f1(ik, uk), ik+1 = f2(i
u
k , wk+1).

Then, we have:
J∗(i) = min

u
g(i, u) + γE [J∗(f(i, u, wk+1))]

= min
u

g(i, u) + γE [J∗(f2(i
u
k , wk+1))]︸ ︷︷ ︸

J̃(iuk)

= min
u

g(i, u) + γJ̃(f1(ik, uk)).

Therefore, the post-decision Bellman equation is given by:

J̃(iuk) = E
[
min
uk+1

g(ik+1, uk+1) + γJ̃(f1(ik+1, uk+1)
]

Example 4.7 (Inventory Control). Consider the following MDP model for the stan-
dard inventory control problem:

• Variables:

– State xk: current stock,

– Decision uk ≥ 0: how much to order,

– Noise Dk+1 is the demand (assume it is independent over time periods).

• Transition function: xk+1 = xk + wk −Dk+1

• Cost function:

g(xk, uk, Dk+1) = cuk + h(xk + uk −Dk+1)
+ + b(Dk+1 − xk − uk)+,

ḡ(xk, uk) = E
[
g(xk, uk, Dk+1)

]
.

Different formulations:

(a) J∗(xk) = min
uk

ḡ(xk, uk) + γE[J∗(xk+1)].

State: 1-dim; min E formulation.

Lecture 4: Asynchronous VI and Bellman Reformulations 4-6

(b) Q∗(xk, uk) = ḡ(xk, uk) + γE
[
minuk+1

Q∗(xk+1, uk+1)
]
.

State: 2-dim; E min formulation.

(c) Let yk = xk + uk =: f1(xk, uk) and xk+1 = yk −Dk+1 =: f2(yk, Dk+1).

J̃(yk) = E[J∗(yk −Dk+1)] = E
[
min
uk+1

ḡ(xk+1, uk+1) + γJ̃(yk+1)
]

State: 1-dim; E min formulation. Ideal case.

Example 4.8. (Multiple Locations/Prices)

Example 4.7 except the manager can order from n locations/suppliers at fluctuating
cost {c1k, c2k, . . . , cnk}. Let xk be the current stock.

• Variables:

– State Space: (xk, c
1
k, c

2
k, . . . , c

n
k),

– Decision Space: 0 ≤ uik ≤ uimax for k = 1, 2, . . . , n,

– Noise Dk+1 is the demand (assume it is independent over time periods).

• Transition function: rk+1 = rk +
∑

i u
i
k−Dk+1, cik+1 drawn from a distribution.

• Cost-to-go function:

g(rk, (c
i
k), (u

i
k), Dk+1) =

∑
i c
i
ku

i
k+h(rk+

∑
i u

i
k−Dk+1)

++b(Dk+1−rk−
∑

i u
i
k)

+,

ḡ(rk, c
i
k, u

i
k) = E[g(rk, c

i
k, u

i
k, Dk+1)].

Different formulations:

(a) Standard formulation has (n+ 1)-dim state and min E.

(b) Q-factor formulation has (2n+ 1)-dim state and E min.

(c) Let yk = rk +
∑

i u
i
k,

J̃(yk) = E[J∗(yk −Dk+1, (c
i
k+1))] = E

[
min
(uik+1)

ḡ(rk+1, c
i
k+1, u

i
k+1) + γJ̃(yk+1)

]
.

Post-decision formulation only has 1-dim state and E min!

