References:

D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§2.6)
W.B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality, 2nd ed, Wiley \& Sons, 2007. (§4.6)

4.1 General Asychronous Model

We are trying to solve fixed point equation: $J=T J$. A general asynchronous model is as follows:

- One "processor" is responsible for each state (or component) of $J=\left(J_{1}, J_{2}, \ldots J_{n}\right)$.
- Let $R_{l}=\{$ set of iterations at which processor l updates state $l\}$.
- This model can also model the more realistic case where there are fewer processors than states. Can simply add virtual processors that mimic a physical processor that updates multiple states.
- States are left unchanged if they are not updated.
- J_{l}^{t} is the approximation of J_{l}^{*} at iteration t.
- When processor l updates state l at some iteration $t \in R_{l}$, it sees delayed versions of J_{j} for $j \neq l$. The communication delay from processor $j \rightarrow l$ is

$$
t-\tau_{(l, j)}(t)
$$

meaning that processor l sees $J_{j}^{\tau_{(l, j)}(t)}$. The update equation is:

$$
J_{l}^{t+1}= \begin{cases}T\left(J_{1}^{\tau_{l(, 1)}(t)}, J_{2}^{\tau_{(l, 2)}(t)}, \ldots, J_{n}^{\tau_{(l, n)}(t)}\right)(l) & \text { if } t \in \mathcal{R}_{l} \tag{4.1}\\ J_{l}^{t} & \text { if } t \notin \mathcal{R}_{l} .\end{cases}
$$

- The standard case of no-delay is $\tau_{(l, j)}(t)=t$.
- The asynchronous VI algorithm can be written as a special case of this model:

$$
J_{l}^{t+1}= \begin{cases}T\left(J_{1}^{t}, J_{2}^{t}, \ldots, J_{n}^{t}\right)(l) & \text { if } l=x_{t} \\ J_{l}^{t} & \text { if } l \neq x_{t}\end{cases}
$$

where $T\left(J_{1}^{t}, J_{2}^{t}, \ldots, J_{n}^{t}\right)(l)$ denotes the $l^{\text {th }}$ component of $T\left(J_{1}^{t}, J_{2}^{t}, \ldots, J_{n}^{t}\right)=T J^{t}$.
Assumption 4.1. States are visited infinitely often, i.e., $\left|\mathcal{R}_{l}\right|=\infty$ for each state l.
Assumption 4.2. Information is always renewed or "caught up," i.e., $\lim _{t \rightarrow \infty} \tau_{(l, j)}(t)=$ ∞ for every pair of processors (l, j).

Proposition 4.3 (Convergence). Under previous assumptions, the asynchronous algorithm given in (4.1) converges to J^{*}, the fixed point of $J=T J: J^{t} \rightarrow J^{*}$.

Proof. Let $S(k)=\left\{J:\left\|J-J^{*}\right\|_{\infty} \leq \gamma^{k}\left\|J^{0}-J^{*}\right\|_{\infty}\right\}$, so we have a shrinking set of boxes: $S(k+1) \subseteq S(k)$ for each k.

- By the contraction property of T, if $J \in S(k)$, then $T J \in S(k+1)$.
- Note that $S(k)=S_{1}(k) \times S_{2}(k) \times \cdots \times S_{n}(k)$, where $S_{l}(k)$ is an interval in the $l^{\text {th }}$ dimension.
- The boxes shrink to a single point J^{*}.

Main idea of the analysis:

1. Suppose $J \in S(k)$, then if we update J_{l} by applying T to J and keep the $l^{\text {th }}$ component, then the new value function J^{\prime} is still $\in S(k)$.
2. Once $J_{l} \in S_{l}(k)$ and ignoring delays, then J_{l} will enter $S_{l}(k+1)$ the first time it is updated after entire vector J enters $S(k)$.
3. So the iterates progressively enter smaller and smaller boxes and eventually converge to J^{*}.

Prove by induction: For each $k \geq 0$, show that there exists time t_{k}, such that

- $I_{1}: \quad J^{t} \in S(k)$ for all $t \geq t_{k}$.
- $I_{2}:\left(J_{1}^{\tau_{(l, 1)}(t)}, J_{2}^{\tau_{(l, 2)}(t)}, \ldots, J_{n}^{\tau_{(l, n)}(t)}\right) \in S(k)$ for all $l, t \in \mathcal{R}_{l}$, and $t \geq t_{k}$.

That can be interpreted to mean:

1. The estimate is in $S(k)$ once t is sufficiently large.
2. All delayed versions of the estimates are also in $S(k)$.

Base case $(k=0)$ is true because $J^{0} \in S(0)$ by definition.
Now assume for k, the two induction hypotheses $\left(I_{1}, I_{2}\right)$ are true. We now try to prove that there exists t_{k+1} such that $\left(I_{1}, I_{2}\right)$ hold.
Let $t(l)$ be the first time l is updated after $t_{k}: t(l)=\min \left\{i: i \in R_{l}, t \geq t_{k}\right\}$.
By the contraction property of Bellman operator T, we know that once delayed versions enter $S(k)$ after $t_{k}\left(I_{2}\right)$, the update equation for $J_{l}^{t(l)+1} \in S_{l}(k+1)$:

$$
J_{l}^{t(l)+1}= \begin{cases}T\left(J_{1}^{\tau_{(l, 1)}(t)}, J_{2}^{\tau_{(l, 2)}(t)}, \ldots, J_{n}^{\tau_{(l, n)}(t)}\right)(l) & \text { if } t \in R_{l} \\ J_{l}^{t} & \text { if } t \notin R_{l}\end{cases}
$$

sends $J_{l}^{t(l)+1}$ into $S_{l}(k+1)$.
In fact, for all $t \in R_{l}$ and $t \geq t(l)$, it holds that $J_{l}^{t+1} \in S_{l}(k+1)$. Since J_{l}^{t} is not changed between updates, we actually know that

$$
\begin{equation*}
J_{l}^{t} \in S_{l}(k+1) \quad \text { for all } \quad t \geq t(l)+1 \tag{4.2}
\end{equation*}
$$

Let $t_{k}^{\prime}=\max _{l}\{t(l)\}+1$, the time after which all processors l have updated their respective component l at least once after t_{k}. Since (4.2) holds for all processors l, this means that:

$$
J^{t}=\left(J_{1}^{t}, J_{2}^{t}, \ldots, J_{n}^{t}\right) \in S(k+1) \quad \text { for all } \quad t \geq t_{k}^{\prime} .
$$

The final step is to select t_{k+1} such that all delayed versions are also in $S(k+1)$. We can simply "wait" until this is true. By assumption, $\tau_{(l, j)}(t) \rightarrow \infty$ as $t \rightarrow \infty$. Choose t_{k+1} sufficiently large such that $\tau_{(l, j)}(t) \geq t_{k}^{\prime}$ for all l, j when $t \geq t_{k+1}$.

Thus, the time index t_{k+1} verifies both induction hypotheses.
Remark 4.4. This ADP algorithm is "approximate" only in the sense that we compute Bellman in an asychronous manner (not all states). However, for each Bellman update, we compute it exactly for the states that we visit. Can we consider approaches where there is noise in the Bellman computation as well?

4.2 Q-factor Reformulation

Suppose we sample \hat{w} from the same distribution of w, then we could try a sampled version of the Bellman update:

$$
(T J)(i) \approx \min _{u}[(g(i, u, \hat{w})+\gamma J(f(i, u, \hat{w})]=:(\hat{T} J)(i, \hat{w})
$$

But $T J(i) \geq \mathbf{E}_{\hat{w}}[(T \hat{(J)}(i, \hat{w})]$. It is hard to imagine that a biased observation of $T J$ can lead to good algorithms.

We would prefer \hat{J} be an unbiased observation of $T J$, i.e.,

$$
(\hat{T} J)(i)=(T J)(i)+\epsilon, \mathbf{E}(\epsilon)=0
$$

Goal: let's try to reformulate the Bellman equation so that unbiased estimates are easy. If successful, then we will have a new Bellman operator T^{\prime} such that it is easy to observe $\left(T^{\prime} J\right)(i)+\epsilon$.
Definition 4.5. Suppose $U(i)=U$ for all i (for simplicity). Define the Q-factor or (state-action value function):

$$
Q^{*}(i, u)=\mathbf{E}\left[g(i, u, w)+\gamma J^{*}(f(i, u, w))\right]=g(i, u)+\gamma \mathbf{E}\left[J^{*}(f(i, u, w))\right]
$$

where action u is taken out of state i for one step and then π^{*} followed afterwards.
Then, we have

$$
J^{*}(i)=\min _{u} Q^{*}(i, u), \quad \pi^{*}(i) \in \operatorname{argmin} Q^{*}(i, u)
$$

A nice observation is that if we have Q^{*}, then there is no need to compute an expectation when implementing π^{*}.

Note that we can also write versions for the fixed policy case:

$$
Q^{\pi}(i, u)=\mathbf{E}\left[g(i, u, w)+\gamma J^{\pi}(f(i, u, w))\right]=g(i, u)+\gamma \mathbf{E}\left[J^{*}(f(i, u, w))\right]
$$

The Q-factor version of Bellman equation is

$$
Q^{*}\left(i_{k}, u_{k}\right)=g\left(i_{k}, u_{k}\right)+\gamma \mathbf{E}\left[\min _{u_{k+1}} Q\left(f\left(i_{k}, u_{k}, w_{k+1}\right), u_{k+1}\right)\right] .
$$

Theoretical properties from T essentially all follow using the same proof ideas. We can aim to find Q^{*} instead of J^{*}.
Algorithm 4.6. Q-factor Value Iteration:
(1) Choose Q_{0} arbitrarily.
(2) Iterate $Q_{k+1}=F Q_{k}$, where $(F Q)(i, u)=g(i, u)+\gamma \mathbf{E}\left[\min _{u^{\prime}} Q^{*}\left(f(i, u, w), u^{\prime}\right)\right]$.

Then, $Q_{k} \rightarrow Q^{*}$.
We now have have an easy way to get an unbiased estimate because min and expectation are interchanged:

$$
\begin{gathered}
(\hat{F} Q)(i, u, \hat{w})=g(i, u)+\min _{u^{\prime}} Q\left(f(i, u, \hat{w}), u^{\prime}\right), \\
(F Q)(i, u)=\mathbf{E}[(\hat{F} Q)(i, u, \hat{w})]
\end{gathered}
$$

Unfortunately, the new "state space" is $|U|$ times larger than before.

4.3 Post-decision Reformulation

Question: is a simpler variable that contains the same information as (i, u) ? The postdecision state is the state of the system after u is decided, but before w is revealed. The original transition f is:

$$
i_{k+1}=f\left(i_{k}, u_{k}, w_{k+1}\right)
$$

Consider the following decomposition of transition f :

$$
i_{k}^{u}=f_{1}\left(i_{k}, u_{k}\right), i_{k+1}=f_{2}\left(i_{k}^{u}, w_{k+1}\right)
$$

Then, we have:

$$
\begin{aligned}
J^{*}(i) & =\min _{u} g(i, u)+\gamma \mathbf{E}\left[J^{*}\left(f\left(i, u, w_{k+1}\right)\right)\right] \\
& =\min _{u} g(i, u)+\gamma \underbrace{\mathbf{E}\left[J^{*}\left(f_{2}\left(i_{k}^{u}, w_{k+1}\right)\right)\right]}_{\tilde{J}\left(i_{k}^{u}\right)} \\
& =\min _{u} g(i, u)+\gamma \tilde{J}\left(f_{1}\left(i_{k}, u_{k}\right)\right) .
\end{aligned}
$$

Therefore, the post-decision Bellman equation is given by:

$$
\tilde{J}\left(i_{k}^{u}\right)=\mathbf{E}\left[\min _{u_{k+1}} g\left(i_{k+1}, u_{k+1}\right)+\gamma \tilde{J}\left(f_{1}\left(i_{k+1}, u_{k+1}\right)\right]\right.
$$

Example 4.7 (Inventory Control). Consider the following MDP model for the standard inventory control problem:

- Variables:
- State x_{k} : current stock,
- Decision $u_{k} \geq 0$: how much to order,
- Noise D_{k+1} is the demand (assume it is independent over time periods).
- Transition function: $x_{k+1}=x_{k}+w_{k}-D_{k+1}$
- Cost function:

$$
\begin{aligned}
g\left(x_{k}, u_{k}, D_{k+1}\right) & =c u_{k}+h\left(x_{k}+u_{k}-D_{k+1}\right)^{+}+b\left(D_{k+1}-x_{k}-u_{k}\right)^{+} \\
\bar{g}\left(x_{k}, u_{k}\right) & =\mathbf{E}\left[g\left(x_{k}, u_{k}, D_{k+1}\right)\right] .
\end{aligned}
$$

Different formulations:
(a) $J^{*}\left(x_{k}\right)=\min _{u_{k}} \bar{g}\left(x_{k}, u_{k}\right)+\gamma \mathbf{E}\left[J^{*}\left(x_{k+1}\right)\right]$.

State: 1-dim; $\min \mathbf{E}$ formulation.
(b) $Q^{*}\left(x_{k}, u_{k}\right)=\bar{g}\left(x_{k}, u_{k}\right)+\gamma \mathbf{E}\left[\min _{u_{k+1}} Q^{*}\left(x_{k+1}, u_{k+1}\right)\right]$.

State: 2-dim; E min formulation.
(c) Let $y_{k}=x_{k}+u_{k}=: f_{1}\left(x_{k}, u_{k}\right)$ and $x_{k+1}=y_{k}-D_{k+1}=: f_{2}\left(y_{k}, D_{k+1}\right)$.
$\tilde{J}\left(y_{k}\right)=\mathbf{E}\left[J^{*}\left(y_{k}-D_{k+1}\right)\right]=\mathbf{E}\left[\min _{u_{k+1}} \bar{g}\left(x_{k+1}, u_{k+1}\right)+\gamma \tilde{J}\left(y_{k+1}\right)\right]$
State: 1-dim; E min formulation. Ideal case.
Example 4.8. (Multiple Locations/Prices)
Example 4.7 except the manager can order from n locations/suppliers at fluctuating $\operatorname{cost}\left\{c_{k}^{1}, c_{k}^{2}, \ldots, c_{k}^{n}\right\}$. Let x_{k} be the current stock.

- Variables:
- State Space: $\left(x_{k}, c_{k}^{1}, c_{k}^{2}, \ldots, c_{k}^{n}\right)$,
- Decision Space: $0 \leq u_{k}^{i} \leq u_{\text {max }}^{i}$ for $k=1,2, \ldots, n$,
- Noise D_{k+1} is the demand (assume it is independent over time periods).
- Transition function: $r_{k+1}=r_{k}+\sum_{i} u_{k}^{i}-D_{k+1}, c_{k+1}^{i}$ drawn from a distribution.
- Cost-to-go function:

$$
\begin{aligned}
& g\left(r_{k},\left(c_{k}^{i}\right),\left(u_{k}^{i}\right), D_{k+1}\right)=\sum_{i} c_{k}^{i} u_{k}^{i}+h\left(r_{k}+\sum_{i} u_{k}^{i}-D_{k+1}\right)^{+}+b\left(D_{k+1}-r_{k}-\sum_{i} u_{k}^{i}\right)^{+} \\
& \bar{g}\left(r_{k}, c_{k}^{i}, u_{k}^{i}\right)=\mathbf{E}\left[g\left(r_{k}, c_{k}^{i}, u_{k}^{i}, D_{k+1}\right)\right] .
\end{aligned}
$$

Different formulations:

(a) Standard formulation has $(n+1)$-dim state and $\min \mathbf{E}$.
(b) Q-factor formulation has $(2 n+1)$-dim state and \mathbf{E} min.
(c) Let $y_{k}=r_{k}+\sum_{i} u_{k}^{i}$,
$\tilde{J}\left(y_{k}\right)=\mathbf{E}\left[J^{*}\left(y_{k}-D_{k+1},\left(c_{k+1}^{i}\right)\right)\right]=\mathbf{E}\left[\min _{\left(u_{k+1}^{i}\right)} \bar{g}\left(r_{k+1}, c_{k+1}^{i}, u_{k+1}^{i}\right)+\gamma \tilde{J}\left(y_{k+1}\right)\right]$.
Post-decision formulation only has 1-dim state and \mathbf{E} min!

