IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 3: Variants of Value Iteration Algorithm
Lecturer: Daniel Jiang Scribes: Ziyue Sun, Tarik Bilgic

References:

D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§2.2)

3.1 Bounds on Value Iteration

Recall the value iteration algorithm:

1. Set J, € RI*I arbitrarily.

2. On iteration k + 1, set Jyy1 = (T'Jy) for all z. In other words, for each k and
each x € X,

Jk+1(x) = Ig[l}(n)E [g(:v,u,w) +7Jk($7u>w)]

Also recall that limy,_,o 7%Jy = J*, which follows by to the contraction property:
i1 = Tl < vk = Tl = max | Sy (2) = J*(2)]

Can we say something about the progress of VI at the progress of VI at time k7 Let
the state space be X = {1, 2,..., n}. Denote

e =min ((TJ) (3) - J(0)].

Then, applying 7" on both sides of J + ee < T'J gives

T(J+ee) <T?J (monotonicity)
TJ+~ee < T?*J (constantshift).

It follows from the previous two equations that

J+ee+yee < TJ +vyee < T?J. (3.1)

3-1

Lecture 3: Variants of Value Iteration Algorithm 3-2

Repeat the steps again to get T'J + (v + v?)ee < T%J + ~v%ece < T3J, which results in

k k k
J + (Z'yl) ce <TJ+ <Zv’) ce <T?T + <271> €e
i=0 i=1 i=2

Let &k — oo:

2

€e ee
J+ —<TJ+ 1" <T?* T+ < J% 3.2
+1—7 +1 Y L—x (3:2)

Let T*J replace J (and using the T*T1.J — T*J version of ¢):

T“U+Il—mmawﬂun—TWQ»e<ﬁ. (3.3)

_7 i

J

~~

Cl+1

Note: this relates T**1.J (J,, in VI) to J* in the terms of a quantity related to
the Bellman error, which is observable at any iteration k. On the other hand, the
distance to optimal is not observable.

From (3.1): T'J + vee < T?J, letting T*~1J replace J, we have

T J + e (Qk) < TR,

from which we conclude
1— 1—
7 () e < min (74190 - T0) <
Y i Y

and ¢, < ¢4, Based on (3.2) and (3.3),
THT 4+ L TR T g < T
v
TFT + ¢, < T T ¢y < T

Proposition 3.1 (Monotonic error bound for VI). For any value function J, state
1, and iteration k:

(T"J) (i) + ¢, (T (i) 4 ¢pq < J*(0)
(Tk+1J) +c Ck+1

(TkJ) ()+Ck

where ¢, = /(1 —) max; [(T*J) (i) — (T**J) (i)] and ¢, is the same as above.

N CININ

Note that both ¢, and ¢ converge to J* by VI. This proposition allows the process
of VI to be evaluated by the Bellman error.

Lecture 3: Variants of Value Iteration Algorithm 3-3

Example 3.2. Here is an example of how this process might look for a simple two-
state, two-action MDP.

ko (T"T) (1) +¢, (T*T) (D) +a (TFT) (2)+¢, (T*T)(2) +
0 5 4.5 5.5 10.5
3 6.8 7.8 7.2 8.1
6 7.3 7.4 7.5 7.6
15 7.328 7.328 7.572 7.572

3.1.1 Performance of Greedy Policy

Suppose we stop VI at some J. Just because J is close to J* does not make it
immediately clear that pu = greedy(J) is a good policy. A simple analysis: by the
Proposition 1, we have:

o < J() = (TT) (i) <& (3.4)

Let J,,(7) be the value of the greedy policy with respect to J. Applying the proposition
with £ = 1 and T}, replacing T, we have

o < J00) — () () <@ (3.5)

Rearranging (3.4) and (3.5),

Ju(i) <@+ (T, J) (1)
—J (i) < —¢; — (TT)(9).

Adding the two inequalities and then maximizing over states yields

max (J,(0) = (1) < 2 {max (Ju(0) = J°(0)) — min (J,(0) = J*(0)) }.

3.1.2 Removing Suboptimal Actions
Can we speed up VI by removing suboptimal actions? Note that [is suboptimal if
Elg (i, f) +~L" (f (i, 2, w))] > J*(4).

Let’s say J < J* < J. Then if E[g (i, i) +~J (f (i, fi,w))] > J(i), i is suboptimal.
Remove fi from U(3).

Lecture 3: Variants of Value Iteration Algorithm 3-4

3.2 Gauss-Seidel Version of Value Iteration

The update step Jxy1 = T'Jr, means the Bellman operator T' is applied simultaneously
to all states. In reality, we use looping through the states one by one. Why not use the
newest information (i.e., update J as soon as you complete the Bellman optimization
step)? In the Gauss-Seidel version of VI, iterations are made one-state at a time.

e p;;(u): Probability of going to state j, starting from state ¢, by taking action u
(Transition probability notation)

o g(i,u) = E[g(i, u,w)],

e Fixed order of state updates: states 1,2,3,...,n,1,2,...,

e Operator W (similar to T in that W : RI*I — RI*I).

(WJ)(1) = min g (1,u) —1—721)”

u€elU(l

= (TJ)(1)
For:=2,3,...,n

(WJ)(i) = mg{n (i w)] + 7Y Py (WWIG) +7 > pi(w)J ()
e j<i i>i
The Gauss-Seidel V.I. proceeds via the iterations J, W.J, W?2J, ...

Proposition 3.3 (Convergence of Gauss-Seidel algorithm). For any value functions
J, J" and all iterations k:

[WHT = WHhT oo < AT = Tl

Furthermore;
wWJr=J*
lim W*J = J*.

k—o00

Proof. Consider k = 1. By definition,
(W) (1) — (WJI)1)||leo < v||J — J*||eo by contraction property of T'.

Assume the equation above is true for : = 1,...,m — 1, and we will try to show the

result for m:

(W) (m) — (WJ')(m)| < ymax{|(WJ)(1) = (WJ),....|(WJ)(m) — (WJ)(m))],
|J(m+1) = J' (m+1)|,...,]J(n) — J'(n)|}

< ymax{y||] =TI, |1~ 7|I}
<l = Tl

Lecture 3: Variants of Value Iteration Algorithm 3-5

The fixed point property W.J* = J* follows by T'J* = J* and the convergence to J*
follows by Banach’s fixed point theorem. O]

Proposition 3.4 (Comparison of G.S. and V.I.). Suppose that J < TJ. Then
T"W < WkJ < J*,

which means that G.S. is at least as fast as V.I.

Proof. T°J < W9J and assume T*~1J < W*=1J. Prove for k:

(T’fJ)(n:mgn[(1,u +Zp1])(TH17)(j)]

§m£n[(1,u +ZP1J Wk 1J)()]

< (Whi(1))
Suppose true for states i = 1,2,...,m — 1
(T*J)(m) = min (m,u) + me] (T D) (5) + me] (T) (5]
“ j<m j>m
< min | g(m, u) + Y s (W)(T)() + D oy () (TH) ()]
) j<m ji>m
< min[g(m, w) + > pus(WWH1)(G) + 3 pns (W) (W1 ()]
) j<m ji>m

= (W*J)(m)

So, we conclude that T%J < W*J for all k. In addition, since J < TJ < WJ,
repeatedly applying W gives J < WJ < W2J < ... < J*, which implies Tk <
WkEJ < J*. O

