
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 3: Variants of Value Iteration Algorithm
Lecturer: Daniel Jiang Scribes: Ziyue Sun, Tarik Bilgic

References:

D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§2.2)

3.1 Bounds on Value Iteration

Recall the value iteration algorithm:

1. Set J0 ∈ R|X | arbitrarily.

2. On iteration k + 1, set Jk+1 = (TJk) for all x. In other words, for each k and
each x ∈ X ,

Jk+1(x) = min
u∈U(x)

E [g(x, u, w) + γJk(x, u, w)]

Also recall that limk→∞ T
kJ0 = J∗, which follows by to the contraction property:

‖Jk+1 − J∗‖∞ 6 γ ‖Jk − J∗‖∞ = max
x
|Jk+1(x)− J∗(x)| .

Can we say something about the progress of VI at the progress of VI at time k? Let
the state space be X = {1, 2, . . . , n}. Denote

ε = min
i∈X

[(TJ) (i)− J(i)] .

Then, applying T on both sides of J + εe 6 TJ gives

T (J + εe) 6 T 2J (monotonicity)

TJ + γεe 6 T 2J (constant shift).

It follows from the previous two equations that

J + εe+ γεe 6 TJ + γεe 6 T 2J. (3.1)

3-1

Lecture 3: Variants of Value Iteration Algorithm 3-2

Repeat the steps again to get TJ + (γ + γ2)εe 6 T 2J + γ2εe 6 T 3J , which results in

J +

(
k∑
i=0

γi

)
εe 6 TJ +

(
k∑
i=1

γi

)
εe 6 T 2J +

(
k∑
i=2

γi

)
εe.

Let k →∞:

J +
εe

1− γ
6 TJ +

γεe

1− γ
6 T 2J +

γ2εe

1− γ
6 J∗. (3.2)

Let T kJ replace J (and using the T k+1J − T kJ version of ε):

T k+1J +
γ

1− γ
min
i

(
T k+1J(i)− T kJ(i)

)
e︸ ︷︷ ︸

ck+1

6 J∗. (3.3)

Note: this relates T k+1J (Jk+1 in VI) to J∗ in the terms of a quantity related to
the Bellman error, which is observable at any iteration k. On the other hand, the
distance to optimal is not observable.

From (3.1): TJ + γεe 6 T 2J , letting T k−1J replace J , we have

T kJ + γe

(
1− γ
γ

ck

)
6 T k+1J,

from which we conclude

γ

(
1− γ
γ

)
ck 6 min

i

(
T k+1J(i)− T kJ(i)

)
6

1− γ
γ

ck+1

and γck 6 ck+1. Based on (3.2) and (3.3),

T kJ +
ck+1

γ
6 T k+1J + ck+1 6 J∗,

T kJ + ck 6 T k+1J + ck+1 6 J∗.

Proposition 3.1 (Monotonic error bound for VI). For any value function J , state
i, and iteration k: (

T kJ
)

(i) + ck 6
(
T k+1J

)
(i) + ck+1 6 J∗(i)

6
(
T k+1J

)
(i) + ck+1

6
(
T kJ

)
(i) + ck

where ck = γ/(1− γ) maxi
[(
T kJ

)
(i)−

(
T k−1J

)
(i)
]
and ck is the same as above.

Note that both ck and ck converge to J∗ by VI. This proposition allows the process
of VI to be evaluated by the Bellman error.

Lecture 3: Variants of Value Iteration Algorithm 3-3

Example 3.2. Here is an example of how this process might look for a simple two-
state, two-action MDP.

k
(
T kT

)
(1) + ck

(
T kT

)
(1) + ck

(
T kT

)
(2) + ck

(
T kT

)
(2) + ck

0 5 4.5 5.5 10.5
3 6.8 7.8 7.2 8.1
6 7.3 7.4 7.5 7.6

...
15 7.328 7.328 7.572 7.572

3.1.1 Performance of Greedy Policy

Suppose we stop VI at some J . Just because J is close to J∗ does not make it
immediately clear that µ = greedy(J) is a good policy. A simple analysis: by the
Proposition 1, we have:

c1 6 J∗(i)− (TJ) (i) 6 c1 (3.4)

Let Jµ(i) be the value of the greedy policy with respect to J . Applying the proposition
with k = 1 and Tµ replacing T , we have

c1 6 Jµ(i)− (TµJ) (i) 6 c1 (3.5)

Rearranging (3.4) and (3.5),

Jµ(i) 6 c1 + (TµJ) (i)

−J∗(i) 6 −c1 − (TJ)(i).

Adding the two inequalities and then maximizing over states yields

max
i

(Jµ(i)− J∗(i)) 6 γ

1− γ

{
max
i

(Jµ(i)− J∗(i))−min
i

(Jµ(i)− J∗(i))
}
.

3.1.2 Removing Suboptimal Actions

Can we speed up VI by removing suboptimal actions? Note that µ̃ is suboptimal if

E [g (i, µ̃) + γJ∗ (f (i, µ̃, w))] > J∗(i).

Let’s say J 6 J∗ 6 J̄ . Then if E [g (i, µ̃) + γJ (f (i, µ̃, w))] > J(i), µ̃ is suboptimal.
Remove µ̃ from U(i).

Lecture 3: Variants of Value Iteration Algorithm 3-4

3.2 Gauss-Seidel Version of Value Iteration

The update step Jk+1 = TJk means the Bellman operator T is applied simultaneously
to all states. In reality, we use looping through the states one by one. Why not use the
newest information (i.e., update J as soon as you complete the Bellman optimization
step)? In the Gauss-Seidel version of VI, iterations are made one-state at a time.

• pij(u): Probability of going to state j, starting from state i, by taking action u
(Transition probability notation)

• g(i, u) = E[g(i, u, w)],

• Fixed order of state updates: states 1, 2, 3, . . . , n, 1, 2, . . .,

• Operator W (similar to T in that W : R|X | → R|X |):

(WJ)(1) = min
u∈U(1)

g(1, u) + γ
n∑
j=1

pij(u)J(j)

= (TJ)(1)

For i = 2, 3, . . . , n:

(WJ)(i) = min
u∈U(i)

[g(i, u)] + γ
∑
j<i

pij(u)WJ(j) + γ
∑
j≥i

pij(u)J(j)

The Gauss-Seidel V.I. proceeds via the iterations J,WJ,W 2J, . . .

Proposition 3.3 (Convergence of Gauss-Seidel algorithm). For any value functions
J, J ′ and all iterations k:

||W kJ −W kJ ′||∞ ≤ γk||J − J ′||∞.

Furthermore;
WJ∗ = J∗

lim
k→∞

W kJ = J∗.

Proof. Consider k = 1. By definition,

||(WJ)(1)− (WJ ′)(1)||∞ ≤ γ||J − J∗||∞ by contraction property of T .

Assume the equation above is true for i = 1, . . . ,m− 1, and we will try to show the
result for m:

|(WJ)(m)− (WJ ′)(m)| ≤ γmax{|(WJ)(1)− (WJ ′)|, . . . , |(WJ)(m)− (WJ ′)(m))|,
|J(m+ 1)− J ′(m+ 1)|, . . . , |J(n)− J ′(n)|}

≤ γmax
i
{γ||J − J ′||, ||J − J ′||}

≤ γ ||J − J ′||∞.

Lecture 3: Variants of Value Iteration Algorithm 3-5

The fixed point property WJ∗ = J∗ follows by TJ∗ = J∗ and the convergence to J∗

follows by Banach’s fixed point theorem.

Proposition 3.4 (Comparison of G.S. and V.I.). Suppose that J ≤ TJ . Then

T kW ≤ W kJ ≤ J∗,

which means that G.S. is at least as fast as V.I.

Proof. T 0J ≤ W 0J and assume T k−1J ≤ W k−1J . Prove for k:

(T kJ)(1) = min
u

[
g(1, u) +

∑
j

p1j(u)(T k−1J)(j)
]

≤ min
u

[
g(1, u) +

∑
j

p1j(u)(W k−1J)(j)
]

≤ (W kJ(1))

Suppose true for states i = 1, 2, . . . ,m− 1

(T kJ)(m) = min
u

[
g(m,u) +

∑
j<m

pmj(u)(T k−1J)(j) +
∑
j>m

pmj(u)(T k−1J)(j
]

≤ min
u

[
g(m,u) +

∑
j<m

pmj(u)(T kJ)(j) +
∑
j>m

pmj(u)(T kJ)(j)
]

≤ min
u

[
g(m,u) +

∑
j<m

pmj(u)(W kJ)(j) +
∑
j>m

pmj(u)(W k−1J)(j)
]

= (W kJ)(m)

So, we conclude that T kJ ≤ W kJ for all k. In addition, since J ≤ TJ ≤ WJ ,
repeatedly applying W gives J ≤ WJ ≤ W 2J ≤ . . . ≤ J∗, which implies T kJ ≤
W kJ ≤ J∗.

