IE 3186: Approximate Dynamic Programming

References:
D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§2.2)

3.1 Bounds on Value Iteration

Recall the value iteration algorithm:

1. Set $J_{0} \in \mathbb{R}^{|\mathcal{X}|}$ arbitrarily.
2. On iteration $k+1$, set $J_{k+1}=\left(T J_{k}\right)$ for all x. In other words, for each k and each $x \in \mathcal{X}$,

$$
J_{k+1}(x)=\min _{u \in \mathcal{U}(x)} \mathbf{E}\left[g(x, u, w)+\gamma J_{k}(x, u, w)\right]
$$

Also recall that $\lim _{k \rightarrow \infty} T^{k} J_{0}=J^{*}$, which follows by to the contraction property:

$$
\left\|J_{k+1}-J^{*}\right\|_{\infty} \leqslant \gamma\left\|J_{k}-J^{*}\right\|_{\infty}=\max _{x}\left|J_{k+1}(x)-J^{*}(x)\right| .
$$

Can we say something about the progress of VI at the progress of VI at time k ? Let the state space be $\mathcal{X}=\{1,2, \ldots, n\}$. Denote

$$
\epsilon=\min _{i \in \mathcal{X}}[(T J)(i)-J(i)] .
$$

Then, applying T on both sides of $J+\epsilon e \leqslant T J$ gives

$$
\begin{gathered}
T(J+\epsilon e) \leqslant T^{2} J \quad \text { (monotonicity) } \\
T J+\gamma \epsilon e \leqslant T^{2} J \quad \text { (constant shift). }
\end{gathered}
$$

It follows from the previous two equations that

$$
\begin{equation*}
J+\epsilon e+\gamma \epsilon e \leqslant T J+\gamma \epsilon e \leqslant T^{2} J \tag{3.1}
\end{equation*}
$$

Repeat the steps again to get $T J+\left(\gamma+\gamma^{2}\right) \epsilon e \leqslant T^{2} J+\gamma^{2} \epsilon e \leqslant T^{3} J$, which results in

$$
J+\left(\sum_{i=0}^{k} \gamma^{i}\right) \epsilon e \leqslant T J+\left(\sum_{i=1}^{k} \gamma^{i}\right) \epsilon e \leqslant T^{2} J+\left(\sum_{i=2}^{k} \gamma^{i}\right) \epsilon e .
$$

Let $k \rightarrow \infty$:

$$
\begin{equation*}
J+\frac{\epsilon e}{1-\gamma} \leqslant T J+\frac{\gamma \epsilon e}{1-\gamma} \leqslant T^{2} J+\frac{\gamma^{2} \epsilon e}{1-\gamma} \leqslant J^{*} \tag{3.2}
\end{equation*}
$$

Let $T^{k} J$ replace J (and using the $T^{k+1} J-T^{k} J$ version of ϵ):

$$
\begin{equation*}
T^{k+1} J+\underbrace{\frac{\gamma}{1-\gamma} \min _{i}\left(T^{k+1} J(i)-T^{k} J(i)\right) e}_{\underline{c}_{k+1}} \leqslant J^{*} \tag{3.3}
\end{equation*}
$$

Note: this relates $T^{k+1} J\left(J_{k+1}\right.$ in VI$)$ to J^{*} in the terms of a quantity related to the Bellman error, which is observable at any iteration k. On the other hand, the distance to optimal is not observable.

From (3.1): $T J+\gamma \epsilon e \leqslant T^{2} J$, letting $T^{k-1} J$ replace J, we have

$$
T^{k} J+\gamma e\left(\frac{1-\gamma}{\gamma} \underline{c}_{k}\right) \leqslant T^{k+1} J,
$$

from which we conclude

$$
\gamma\left(\frac{1-\gamma}{\gamma}\right) \underline{c}_{k} \leqslant \min _{i}\left(T^{k+1} J(i)-T^{k} J(i)\right) \leqslant \frac{1-\gamma}{\gamma} \underline{c}_{k+1}
$$

and $\gamma \underline{c}_{k} \leqslant \underline{c}_{k+1}$. Based on (3.2) and (3.3),

$$
\begin{gathered}
T^{k} J+\frac{\underline{c}_{k+1}}{\gamma} \leqslant T^{k+1} J+\underline{c}_{k+1} \leqslant J^{*} \\
T^{k} J+\underline{c}_{k} \leqslant T^{k+1} J+\underline{c}_{k+1} \leqslant J^{*}
\end{gathered}
$$

Proposition 3.1 (Monotonic error bound for VI). For any value function J, state i, and iteration k :

$$
\begin{aligned}
\left(T^{k} J\right)(i)+\underline{c}_{k} & \leqslant\left(T^{k+1} J\right)(i)+\underline{c}_{k+1} \leqslant J^{*}(i) \\
& \leqslant\left(T^{k+1} J\right)(i)+\bar{c}_{k+1} \\
& \leqslant\left(T^{k} J\right)(i)+\bar{c}_{k}
\end{aligned}
$$

where $\bar{c}_{k}=\gamma /(1-\gamma) \max _{i}\left[\left(T^{k} J\right)(i)-\left(T^{k-1} J\right)(i)\right]$ and \underline{c}_{k} is the same as above.
Note that both \underline{c}_{k} and \bar{c}_{k} converge to J^{*} by VI. This proposition allows the process of VI to be evaluated by the Bellman error.

Example 3.2. Here is an example of how this process might look for a simple twostate, two-action MDP.

k	$\left(T^{k} T\right)(1)+\underline{c}_{k}$	$\left(T^{k} T\right)(1)+\bar{c}_{k}$	$\left(T^{k} T\right)(2)+\underline{c}_{k}$	$\left(T^{k} T\right)(2)+\bar{c}_{k}$
0	5	4.5	5.5	10.5
3	6.8	7.8	7.2	8.1
6	7.3	7.4	7.5	7.6
			\vdots	
15	7.328	7.328	7.572	7.572

3.1.1 Performance of Greedy Policy

Suppose we stop VI at some J. Just because J is close to J^{*} does not make it immediately clear that $\mu=\operatorname{greedy}(J)$ is a good policy. A simple analysis: by the Proposition 1, we have:

$$
\begin{equation*}
\underline{c}_{1} \leqslant J^{*}(i)-(T J)(i) \leqslant \bar{c}_{1} \tag{3.4}
\end{equation*}
$$

Let $J_{\mu}(i)$ be the value of the greedy policy with respect to J. Applying the proposition with $k=1$ and T_{μ} replacing T, we have

$$
\begin{equation*}
\underline{c}_{1} \leqslant J_{\mu}(i)-\left(T_{\mu} J\right)(i) \leqslant \bar{c}_{1} \tag{3.5}
\end{equation*}
$$

Rearranging (3.4) and (3.5),

$$
\begin{aligned}
J_{\mu}(i) & \leqslant \bar{c}_{1}+\left(T_{\mu} J\right)(i) \\
-J^{*}(i) & \leqslant-\underline{c}_{1}-(T J)(i) .
\end{aligned}
$$

Adding the two inequalities and then maximizing over states yields

$$
\max _{i}\left(J_{\mu}(i)-J^{*}(i)\right) \leqslant \frac{\gamma}{1-\gamma}\left\{\max _{i}\left(J_{\mu}(i)-J^{*}(i)\right)-\min _{i}\left(J_{\mu}(i)-J^{*}(i)\right)\right\}
$$

3.1.2 Removing Suboptimal Actions

Can we speed up VI by removing suboptimal actions? Note that $\tilde{\mu}$ is suboptimal if

$$
\mathbf{E}\left[g(i, \tilde{\mu})+\gamma \underline{J}^{*}(f(i, \tilde{\mu}, w))\right]>J^{*}(i)
$$

Let's say $\underline{J} \leqslant J^{*} \leqslant \bar{J}$. Then if $\mathbf{E}[g(i, \tilde{\mu})+\gamma J(f(i, \tilde{\mu}, w))]>\bar{J}(i), \tilde{\mu}$ is suboptimal. Remove $\tilde{\mu}$ from $\mathcal{U}(i)$.

3.2 Gauss-Seidel Version of Value Iteration

The update step $J_{k+1}=T J_{k}$ means the Bellman operator T is applied simultaneously to all states. In reality, we use looping through the states one by one. Why not use the newest information (i.e., update J as soon as you complete the Bellman optimization step)? In the Gauss-Seidel version of VI, iterations are made one-state at a time.

- $p_{i j}(u)$: Probability of going to state j, starting from state i, by taking action u (Transition probability notation)
- $g(i, u)=\mathbf{E}[g(i, u, w)]$,
- Fixed order of state updates: states $1,2,3, \ldots, n, 1,2, \ldots$,
- Operator W (similar to T in that $W: \mathbb{R}^{\mid \mathcal{X |}} \rightarrow \mathbb{R}^{|\mathcal{X}|}$):

$$
\begin{aligned}
(W J)(1) & =\min _{u \in \mathcal{U}(1)} g(1, u)+\gamma \sum_{j=1}^{n} p_{i j}(u) J(j) \\
& =(T J)(1)
\end{aligned}
$$

For $i=2,3, \ldots, n$:

$$
(W J)(i)=\min _{u \in \mathcal{U}(i)}[g(i, u)]+\gamma \sum_{j<i} p_{i j}(u) W J(j)+\gamma \sum_{j \geq i} p_{i j}(u) J(j)
$$

The Gauss-Seidel V.I. proceeds via the iterations $J, W J, W^{2} J, \ldots$
Proposition 3.3 (Convergence of Gauss-Seidel algorithm). For any value functions J, J^{\prime} and all iterations k :

$$
\left\|W^{k} J-W^{k} J^{\prime}\right\|_{\infty} \leq \gamma^{k}\left\|J-J^{\prime}\right\|_{\infty}
$$

Furthermore;

$$
\begin{aligned}
W J^{*} & =J^{*} \\
\lim _{k \rightarrow \infty} W^{k} J & =J^{*}
\end{aligned}
$$

Proof. Consider $k=1$. By definition,

$$
\left\|(W J)(1)-\left(W J^{\prime}\right)(1)\right\|_{\infty} \leq \gamma\left\|J-J^{*}\right\|_{\infty} \text { by contraction property of } T
$$

Assume the equation above is true for $i=1, \ldots, m-1$, and we will try to show the result for m :

$$
\begin{aligned}
\left|(W J)(m)-\left(W J^{\prime}\right)(m)\right| \leq & \gamma \max \left\{\left|(W J)(1)-\left(W J^{\prime}\right)\right|, \ldots, \mid(W J)(m)-\left(W J^{\prime}\right)(m)\right) \mid \\
& \left.\left|J(m+1)-J^{\prime}(m+1)\right|, \ldots,\left|J(n)-J^{\prime}(n)\right|\right\} \\
\leq & \gamma \max _{i}\left\{\gamma\left\|J-J^{\prime}\right\|,\left\|J-J^{\prime}\right\|\right\} \\
\leq & \gamma\left\|J-J^{\prime}\right\|_{\infty}
\end{aligned}
$$

The fixed point property $W J^{*}=J^{*}$ follows by $T J^{*}=J^{*}$ and the convergence to J^{*} follows by Banach's fixed point theorem.

Proposition 3.4 (Comparison of G.S. and V.I.). Suppose that $J \leq T J$. Then

$$
T^{k} W \leq W^{k} J \leq J^{*}
$$

which means that G.S. is at least as fast as V.I.
Proof. $T^{0} J \leq W^{0} J$ and assume $T^{k-1} J \leq W^{k-1} J$. Prove for k :

$$
\begin{aligned}
\left(T^{k} J\right)(1) & =\min _{u}\left[g(1, u)+\sum_{j} p_{1 j}(u)\left(T^{k-1} J\right)(j)\right] \\
& \leq \min _{u}\left[g(1, u)+\sum_{j} p_{1 j}(u)\left(W^{k-1} J\right)(j)\right] \\
& \leq\left(W^{k} J(1)\right)
\end{aligned}
$$

Suppose true for states $i=1,2, \ldots, m-1$

$$
\begin{aligned}
\left(T^{k} J\right)(m) & =\min _{u}\left[g(m, u)+\sum_{j<m} p_{m j}(u)\left(T^{k-1} J\right)(j)+\sum_{j>m} p_{m j}(u)\left(T^{k-1} J\right)(j]\right. \\
& \leq \min _{u}\left[g(m, u)+\sum_{j<m} p_{m j}(u)\left(T^{k} J\right)(j)+\sum_{j>m} p_{m j}(u)\left(T^{k} J\right)(j)\right] \\
& \leq \min _{u}\left[g(m, u)+\sum_{j<m} p_{m j}(u)\left(W^{k} J\right)(j)+\sum_{j>m} p_{m j}(u)\left(W^{k-1} J\right)(j)\right] \\
& =\left(W^{k} J\right)(m)
\end{aligned}
$$

So, we conclude that $T^{k} J \leq W^{k} J$ for all k. In addition, since $J \leq T J \leq W J$, repeatedly applying W gives $J \leq W J \leq W^{2} J \leq \ldots \leq J^{*}$, which implies $T^{k} J \leq$ $W^{k} J \leq J^{*}$.

