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2.1 Discounted Infinite Horizon Model

This is the most popular model; alternatives are the average cost or stochastic shortest
path model. Descriptions of these can be found in the Bertsekas textbook. Infinite
number of stages + stationarity lead to elegant algorithms and solutions.

• Only need to learn one value function since in infinite horizon, every time period
is now identical.

• Good approximation for any problem with a long horizon even if not truly
infinite.

The objective function is:

Jπ(x) = lim
N→∞

E

[
N∑
k=0

γkg(xk, µk(xk), wk+1)
∣∣x0 = x

]
(2.1)

over policies π = (µ0, µ1, ...). The optimal cost is denoted J∗(x) = inf
π∈Π

Jπ(x), where

Π is the set of all admissible policies.

• State space X .

• Control space U(x) for x ∈ X .

• Noise process {w1, w2, . . .} i.i.d. across time.
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• Transition function xk+1 = f(xk, uk, wk+1) for xk ∈ X ,, uk ∈ U(xk).

• Bounded costs |g(x, u, w)| < M .

Proposition 2.1 (Boundedness of Value Function). For any policy π, its infinite
horizon value is bounded.

Proof.

|Jπ(x)| 6M + γM + γ2M + · · · = M

1− γ
.

Proposition 2.2 (Basic Properties of T , Tµ). The following hold:

1. Monotonicity: Suppose J(x) 6 J
′
(x) for ∀x ∈ X. Then,

(TµJ)(x) 6 (TµJ
′
)(x), (TJ)(x) 6 (TJ

′
)(x), ∀x ∈ X.

Proof. Consider fixed µ

(TµJ)(x) = E [g(x, µ, w) + γJ (f(x, µ(x), w)]

6 E
[
g(x, µ, w) + γJ

′
(f(x, µ(x), w)

]
= (TµJ

′
)(x).

Minimize over µ to get the second part.

2. Constant shift: For any J , scalar r, and policy µ:

(Tµ(J + re))(x) = (TµJ)(x) + γr, (T (J + re))(x) = (TJ)(x) + γr.

for all x where e is the ones vector. Proof is clear by definition.

Some intuition: in the finite horizon case, we iterate T a total of N times to get
optimal value. Analogously, we should expect to now require iterating it ∞ times.

Theorem 2.3 (Convergence of Value Iteration). For all bounded J ,

J∗(x) = (T kJ)(x),∀x (2.2)

Proof. Let J ≡ 0 for simplicity. For any π = (µ0, µ1, ...), we have

Jπ(x ) = E

[
∞∑
l=0

γlg(xk, µk(xk), wk+1)

]

= E

[
k−1∑
l=0

γlg(xl, µl(xl), wl+1)

]
+ E

[
∞∑
l=k

γlg(xl, µl(xl), wl+1)

]
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The last term satisfies ∣∣∣∣∣E
[
∞∑
l=k

γlg(xl, µl(xl), wl+1)

]∣∣∣∣∣ 6 γkM

1− γ

So:

Jπ(x )− γkM

1− γ
6 E

[
k−1∑
l=0

γlg(xl, µl(xl), wl+1)

]
6 Jπ(x ) +

γkM

1− γ
(2.3)

Since J ≡ 0, we can add it everywhere and write:

Jπ(x)− γkM

1− γ
6 (Tµ0Tµ1 . . . TµkJ)(x) 6 Jπ(x) +

γkM

1− γ
.

Taking minimum over π and then k →∞, we get

J∗(x) 6 lim
k→∞

(T kJ)(x) 6 J∗(x),

completing the proof.

Theorem 2.4. (Optimal Policy and Bellman Equation) The optimal value function
J∗ satisfies J = TJ . It is called the “fixed point” of T .

Proof. Let J0 ≡ 0. As before:

J∗(x)− γkM

1− γ
6 (T kJ0)(x) 6 J∗(x)− γkM

1− γ

By monotonicity and constant shift,

T

(
J∗(x)− γkM

1− γ

)
6 (T (T kJ0))(x) 6 T

(
J∗(x)− γkM

1− γ

)
(TJ∗)(x)− γkM

1− γ
6 (T k+1J0)(x) 6 (TJ∗)(x) +

γkM

1− γ
.

Let k →∞ to get (TJ∗)(x) 6 J∗(x) 6 (TJ∗)(x).

Proposition 2.5 (Contraction Property). For any arbitrary value functions J and
J

′
and a policy µ, we have∥∥TµJ − TµJ ′∥∥

∞ 6 γ
∥∥J − J ′∥∥

∞

where
∥∥J∥∥∞ = max

x
|J(x)| . Similarly,∥∥TJ − TJ ′∥∥ 6 γ

∥∥J − J ′∥∥
∞
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Proof. Let c = ‖J − J ′‖∞. So we have, for all x:

J(x)− c 6 J
′
(x) 6 J(x) + c

(TJ)(x)− γc 6 (TJ
′
)(x) 6 (TJ)(x) + γc

This implies that |(TJ)(x)− (TJ
′
)(x)| 6 γc, which completes the proof. The Tµ part

can be proved by considering a modified problem where the only action available is
µ(x).

By Banach’s fixed point theorem, this contraction property implies a unique J∗ sat-
isfying J∗ = TJ∗.

Corollary 2.6. Jµ(x) = lim
N→∞

(TNµ J0)(x) and the associated Bellnab equation is Jµ =

TµJµ, which is uniquely satisfied.

Theorem 2.7 (Optimal Policy). A stationary policy µ is optimal iff µ(x) attains the
minimum in Bellman’s equation for each x:

TJ∗ = TµJ
∗.

Without shorthand notation, this means:

µ(x) ∈ arg min
u∈U(x)

E [g(x, u, w) + γJ∗(f(x, u, w))]

Proof. (⇐) If we have TJ∗ = TµJ
∗, then using TJ∗ = J∗, it holds that J∗ = TµJ

∗.
So by uniqueness of fixed point of Tµ, it must be that Jµ = J∗.

(⇒) Assume µ is optimal (J∗ = Jµ). We always have Jµ = TµJµ, so combining, we
get J∗ = TµJ

∗ = TJ∗, since J∗ is also equal to TJ∗.

2.1.1 Value Iteration Algorithm

1. Start with any J0.

2. Let Jk+1 = TJk.

By the theoren above, Jk+1 → J∗. Then use µ∗ greedy with respect to J∗.

2.1.2 Policy Iteration Algorithm

Main idea: generate a sequence of stationary policies, each with improved cost.
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1. Select any policy µ0.

2. [Policy Evaluation] Compute the value of µk, i.e., find Jµk such that

Jµk = TµkJµk .

3. [Policy Improvement] Find µk+1 such that

Tµk+1Jµk = TJµk .

This can also be written as µk+1 ← arg max
u∈U(x)

E
[
g(x, u, w) + γJµk(f(x, u, w))

]
.

Theorem 2.8. (Policy Improvement Theorem) Consider two policies µ and µ′ such
that Tµ′Jµ = TJµ. Then the newer policy µ′ is improved: Jµ′ 6 Jµ. If µ is not optimal,
there is strict improvement.

Proof. Since µ′ minimizes with respect to Jµ, we have:

Jµ(x) = E [(g(x, µ(x), w) + γJµ(f(x, µ(x), w)]

> E [(g(x, µ′(x), w) + γJµ(f(x, µ′(x), w)]

= Tµ′Vµ.

Applying Tµ′ to both sides and using monotonicity, we have:

Tµ′Jµ(x) > Tµ′Tµ′Vµ =⇒ Jµ > Tµ′Jµ > Tµ′Jµ > · · · > Jµ′

Now suppose there is no improvement, i.e., Jµ = Jµ′ . Then

Jµ = Tµ′Jµ = TJµ

and by uniqueness, Jµ = J∗.

2.2 Approximate Dynamic Programming

Approximate dynamic programming attempts to overcome the following three curses
of dimensionality: the size of the state space, the size of the action space, and the
size of the outcome space (if it is large, then the expectation cannot be computed).
The next example illustrates all three issues.

Example 2.9. Portfolio optimization: there are N stocks and each stock i has an as-
sociated Markov price process {Pi,k}∞k=0. Decisions are how much of each to purchase
or sell at each time period and the state variable is

xk = (r1,k, r2,k, . . . , rN,k, p1,k, p2,k, . . . , pN,k)
T ,
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where ri,k represents the amount of stock i owned at time k and pi,k is the price of

stock i at time k. The action at time k is uk = (u1,k, u2,k, . . . , uN,k)
T , where ui,k > 0

means buy the stock and ui,k < 0 means sell. The noise is the change in price between

periods k and k + 1: wk+1 = (p̂1,k+1, p̂2,k+1, . . . , p̂N,k+1)T . The transitions are

ri,k+1 = ri,k + ui,k,

pi,k+1 = pi,k + p̂i,k+1,

and the cost function is g(xk, uk, wk+1) =
∑
k

ui,k pi,k.

Other issues affecting our ability to solve an MDP are continuous states, actions, or
distributions; unknown transitions (the central assumption in reinforcement learning)
and partial observability (we won’t do this).


