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13.1 Benchmarking

How do we test the optimality of an ADP algorithm on a specific problem instance?

1. Benchmark on a “simple” problem for which you can solve the MDP. The logic is
that: if on a simple problem we can use ADP to compute a solution (which may
in itself take many hours or days to compute) that is, e.g., 90% of the optimal
objective then hopefully with normalized computation we can also achieve 90%
of the optimal objective on the real problem. Repeating this experiment across
a number of distinct problem domains can be convincing.
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2. Or, test directly on the real problem instance (one that you can’t solve) and
compare against baselines/heuristics. Often the default route; self-explanatory.

3. Alternatively: produce an upper-bound on the optimal solution of a problem
that you cannot solve.

ADP

OPT
UB
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Here, one would make a statement such as: if ADP
UB

= 80%, then ADP
OPT

≥ 80%.
There are various ways to do this. In this lecture, we discuss the information
relaxation approach to producing this upperbound.

13.2 Information Relaxation and Duality in MDPs

We will be in the setting of maximizing rewards. Any feasible policy is a lower
bound. The main idea of Brown et. al. is that to get an upper bound, we can relax
nonanticipativity constraints (i.e., constraints requiring decisions to depend only on
the information available at the time a decision is made).

13.2.1 Framework

Slightly more general DP framework.

• F = (F0,F1, . . . ,FT ) (standard filtration),

• DM (decision’s maker’s) state of information,

• At is the set of actions at time t,

• A = A0 ×A1 × · · · × AT ,

• Standard DP: the policy πt depends only on information in Ft, and this infor-
mation is summarized by the state variable.

• For each ω ∈ Ω, π will select a sequence of actions a0, a1, . . . , aT . (π : Ω→ A).

• Let ΠF be all nonanticipative policies.

• Let rt(a) = rt(a0, a1, . . . , at) be a reward function at time t. Let r(π) be the
total reward generated by following π.

• We can write the recursion:

Vt(a0, a1, . . . , at−1) = sup
at∈At

{rt(a0, . . . , at) + E[Vt+1(a0, . . . , at) | Ft]}.

13.2.2 The Dual approach

Let G be a relaxed filtration, i.e., for all t, Ft ⊆ Gt ⇐⇒ F ⊆ G. Under G, DM knows
more information and since Ft ⊆ Gt, we know that ΠF ⊆ ΠG. Hence, we also have

sup
π∈ΠF

E[r(π)] ≤ sup
π∈ΠG

E[r(π)].
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Example 13.1 (Perfect Information). At every time period t, you know information
all of the information, as if you were at T . To be precise, we define I = {F ,F , . . . ,F},
i.e., all randomness is known at every period. Thus, we have ΠF ⊆ ΠG ⊆ ΠI and

sup
π∈ΠF

E[r(π)] ≤ E

[
sup
a∈A

r(a)

]
= sup

π∈ΠI

E[r(π)].

Main issue: this upper bound can (and is expected to) be weak. How can we improve
it? Solution: we could somehow penalize the use of future information.

Dual Feasible Penalty

A dual feasible penalty z satisfies

ZF = {z : E[z(π)] ≤ 0, for all π ∈ ΠF}.

Here z is defined similar to the way we defined r. Note that z assigns no penalty
(negative penalty) to nonanticipative π.

Lemma 13.2 (Weak Duality). For any πF ∈ ΠF,

E[r(πF )] ≤ sup
πG∈ΠG

E[r(πG)− z(πG)].

Proof. We have E[r(πF )] ≤ E[r(πF )− z(πF )] ≤ sup
πG∈ΠG

E[r(πG)− z(πG)].

The first inequality holds because z ∈ ZF (thus E[z(πF )] ≤ 0) and the second because
πF ∈ ΠF ⊆ ΠG.

Corollary 13.3 (G = I). Perfect information case: for any πF ∈ AF and z ∈ ZF we
have

E[r(πF )− z(πF )] ≤ E
[
sup
a∈A
{r(a)− z(a)}

]
. (13.1)

Remark 13.4. The upper bound in (13.1) is good for simulation. We can estimate
the expected value of the right hand side of (13.1) by (1) generating samples (2)
optimizing deterministically (3) taking the average.

If G 6= I, then we have “partial future knowledge” e.g. maybe we know demand, but
not price in an inventory problem. In this case, the simulation of the bound involves
(1) generating a sample of future demands, (2) solve simpler stochastic DP, where
the demand is deterministic, (3) average.

Theorem 13.5 (Strong Duality). Let G be a relaxation of F. Then,

V ∗ = sup
πF∈ΠF

E[r(πF )] = inf
z∈ZF

{
sup
πG∈ΠG

E[r(πG)− z(πG)]
}
. (13.2)
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Proof. By weak duality, we have

sup
πF∈ΠF

E[r(πF )] ≤ inf
z∈ZF

{ sup
πG∈ΠG

E[r(πG)− z(πG)]}.

Let z∗(a) = r(a)− V ∗ and note that E[z∗(π)] = E[r(π)]− V ∗ but since E[r(π)] ≤ V ∗

for all π ∈ ΠF (by defn), z∗ is dual feasible. If V ∗ <∞ then so is the RHS of (13.2).
So RHS = V ∗ (plugin z∗ in (13.2)).

Theorem 13.6 (Complementary Slackness). Let π∗F and z∗ be feasible to primal,
dual problems with respect to information relaxation G. They are optimal to their
respective problems if and only if (1) E[z∗(π∗F )] = 0 and (2)

E[r(π∗F )− z∗(π∗F )] = sup
πG∈ΠG

E[r(πG)− z∗(πG)].

Proof. (⇐ direction). By (1) and (2) we have

supπG∈ΠG
E[r(πG)− z∗(πG)] = E[r(π∗F )]

By weak duality, π∗F and z∗ must be optimal.

(⇒ direction). For any π∗F ∈ ΠF, z
∗ ∈ ZF

sup
πG∈ΠG

E[r(πG)− z∗(πG)] ≥ sup
πF∈ΠF

E[r(πF )− z∗(πF )]

≥ E[r(π∗F )− z∗(π∗F )] (π∗F ∈ ΠF)

≥ E[r(π∗F )] (z∗ ∈ ZF)

By strong duality, the first and last terms are equal. Thus: E[z∗(π∗F )] = 0 and so

E[r(π∗F )− z∗(πF )] = sup
πF∈ΠF

E[r(πF )− z∗(πF )]

as desired.

Interpretation:

• With optimal penalty, DM chooses nonanticipative policy, even though it has
the option to choose otherwise.

• Optimal penalty assigns zero to optimal primal policy.
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Proposition 13.7 (Good Penalty). Let filtration G be an information relaxation
of F. Let (w0(a, ω), w1(a, ω), . . . , wT (a, ω)) be a sequence of generating functions on
A × Ω, where wt depends only on the first t + 1 actions of a: (a0, a1, . . . , at). Let
zt(a) = E[wt(a) | Gt]− E[wt(a) | Ft] and z(a) =

∑T
t=0 zt(a). Then:

1. For all πF ∈ ΠF,E[zt(a) | Ft] = 0 and E[z(πF )] = 0.

2. (z0(a), . . . , zT (a)) is adapted to G and depends on the first t+ 1 actions of a.

Part 1 says that this choice of penalty assigns all nonanticipative policies zero penalty.
Part 2 says that the penalized objective, r − z, can be decomposed and solved as
another DP.

V Gt (a0, . . . , at−1) = sup
at

{rt(a0, . . . , at)− zt(a0, . . . , at) + E[V Gt+1(a0, . . . , at) | Gt ]}

Theorem 13.8 (Ideal Penalty). Consider letting wt(a) = Vt+1(a0, . . . , at) and let
G = I. Then,

zt(a) = Vt+1(a0, . . . , at)− E[Vt+1(a0, . . . , at) | Ft ]

is dual feasible and optimal.

Therefore, the optimal penalty can be constructed using the optimal value function.
This suggests than value function approximations from ADP could be a good choice.


