
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 12: Policy Gradient Algorithm
Lecturer: Daniel Jiang Scribes: Jing Yang

References:

R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems (pp. 1057-1063), 2000.

S. Kunnumkal, H. Topaloglu. Using stochastic approximation methods to compute
optimal base-stock levels in inventory control problems. Operations Research, 56(3),
646-664, 2008.

W. Sun, G. J. Gordon, B. Boots, J. A. Bagnell. Dual policy iteration. arXiv preprint
arXiv:1805.10755, 2018.

12.1 Motivation

• Instead of seeking a greedy π with respect to Q, we could directly optimize
parameters of a parameterized policy πθ(s, a), where

πθ(s, a) = prob of taking action a in a state s given parameter θ.

• Main idea: use an SGD type algorithm to update θ:

θ ← θ + αOJ(θ),

where J(θ) is the expected cumulative reward of πθ (thus a function of θ).

• Why consider πθ(s, a) instead of Q∗(s, a)?

– Sometimes π∗ is easier to approximate than Q∗.

– Prior knowledge can be used by π∗; perhaps you have intuition on how to
act but understanding the value function is less intuitive.

– Can more easily consider a stochastic policy.

12-1

Lecture 12: Policy Gradient Algorithm 12-2

Example 12.1 (Benefits of stochastic policies). Consider a robot whose goal is to
hit goal in the grid below. Two actions {a1, a2} are available, but the robot doesn’t
know the directions to which a1 and a2 correspond (e.g., a1 could be left in one state
and right in another). Reward is −1 per step until G is hit.

Here is an example of how a deterministic policy learned via Q-learning could fail.

• Step 1: Design a basis function for approximation Qw(s, a) (parameter w). An
extreme case is when it is independent of state:

X(s, a) =



[
1

0

]
if a = a1,

[
0

1

]
if a = a2.

=⇒ Qw(s, a) = X(s, a)T
[
w1

w2

]
=

{
w1 if a = a1,

w2 if a = a2.

• Step 2: Apply Q-learning and get w∗.

– Case 1: w∗1 < w∗2, then choose a2 almost always (ε-greedy), that is, choose
a2 with probability 1− ε/2.

– Case 2: w∗1 ≥ w∗2, then choose a1 almost always.

Note that under the best possible deterministic policy (go right always), reward
is −3 and under best policy that Qw can approximate, reward is −40 if ε = 0.1.
Therefore, deterministic policy can be bad.

If we use a stochastic policy, but crucially, also state independent, we can be more
flexible:

πθ(s) =

{
a1 with probability 1− p2,

a2 with probability p2.

That is, the policy is as follows:

Lecture 12: Policy Gradient Algorithm 12-3

Then we have optimal p2 = 0.58 as the following graph shows:

-11 𝑝2

0.58

Another drawback of value based methods: small change in Q can cause big change
in policy. Another advantage of PG: do not need to optimize over action space.

12.2 Policy Gradient

Define:

J(θ) = discounted reward from running πθ

= Eπθ

[
∞∑
t=0

γ2rt+1

]
,

where r is the reward, or −g in our original notation from Bertsekas. Our update
takes the form

θ ← θ + αOθJ(θ).

Here are two ways we could calculate/approximate the gradient OθJ(θ).

• Approach 1: Finite Difference. For each dimension k = 1, 2, . . . , n,

1. Run policy πθ to estimate J(θ).

2. Perturb θ in the kth dimension and run new policy to get J(θ + εek).

3. Estimate the kth partial derivative by:

∂J(θ)

∂θk
≈ J(θ + εek)− J(θ)

ε
.

Lecture 12: Policy Gradient Algorithm 12-4

• Approach 2: Analytical Computation. Let’s consider a simple setting, a one-
step MDP with initial state distribution s0 ∼ d(s). Termination in one step
with reward Ra

s . Then,

J(θ) =
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Ra
s ,

where d(s) is the probability of s being the initial state. Therefore,

OJ(θ) =
∑
s∈S

d(s)
∑
a∈A

Oπθ(s, a)Ra
s

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)
Oθ(s, a)

πθ(s, a)
Ra
s

=
∑
s∈S

d(s)
∑
a∈A

πθ(s, a)Oθ log πθ(s, a)Ra
s

= Eπθ
[
Oθ log πθ(St, At)R

At

St

]
,

where (St, At) are actual state and action encountered by simulating a policy.

Theorem 12.2 (Policy Gradient Theorem, Sutton et al 2000). For any differentiable
policy πθ(s, a):

OθJ(θ) = Eπθ [Oθ log πθ(St, At)Q
πθ(St, At)].

(Compared to the one-step setting, the reward is replaced by Qπθ).

The REINFORCE algorithm is the simplest policy gradient algorithm; it uses a Monte
Carlo sample of Qπθ (do one simulation).

12.3 Structured Direct Policy Search

There are many examples in operations research where some advance knowledge of the
structure of the optimal policy is given. For example, consider multistage inventory
management with backlogged demands:

• ordering product after observing current stock,

• Dt+1 arrives and is subtracted from total inventory,

• holding cost h, backlogged cost b.

Lecture 12: Policy Gradient Algorithm 12-5

If we denote current stock as xt and new stock after ordering as yt, then we have

V ∗t (xt) = min
yt≥xt

c(yt − xt) + E
[
h(yt −Dt+1)+ + b(Dt+1 − yt)+ + V ∗t+1(yt −Dt+1)

]
= min

yt≥xt
ft(yt)− cxt.

Cost in last period is V ∗T+1(·) = 0.

Proposition 12.3. ft(yt) is convex for each t (proof using induction) with finite
minimizer.

Theorem 12.4. Optimal policy is of “basestock form.” That is, if xt is less than a
so-called basestock threshold r∗t , then yt = r∗t ; otherwise, yt = xt.

Proof. This is clear by convexity of f and V ∗t (xt) = −cxt + minyt≥xt f(yt).

Policy search over Π̃ = {all basestock policies} = {(r1, r2, . . . , tT) : rk ∈ R}. Thus we
are optimizing the following system

min
r1,r2,...,rT

E[total cost(r1, r2, . . . , rT)].

However, this optimization problem is not necessarily convex, as shown empirically
in the paper (Kunnumkal, Topaloglu, 2008).

Proposed Solution: a mix of policy search, Bellman Equation, and SGD (Kunnumkal,
Topaloglu, 2008).

Goal: we seek {r∗t } where r∗t = argmin ft(rt).

ft(rt) = crt + E[h(rt −Dt+1)+ + b(Dt+1 − rt)+ + V ∗t+1(rt −Dt+1)],

then the stochastic gradient is

Oft(rt, Dt+1) = c+ h1{Dt+1<rt} − b1{Dt+1≥rt} + OV ∗t+1(rt −Dt+1).

So one option is
rn+1
t = rnt − αnOft(rt, Dn

t+1), for each t.

Need to estimate OV ∗t+1 simultaneously. First:

V ∗t+1(xt) =


ft(xt)− cxt if xt ≥ r∗t ,

ft(r
∗
t)− cxt if xt < r∗t .

Since

Oft(xt) = c+ hP(rt ≥ Dt+1)− bP(rt ≥ Dt+1) + EOV ∗t+1(rt −Dt+1),

Lecture 12: Policy Gradient Algorithm 12-6

we can have

OV ∗t+1(xt) =


c+ hP(rt ≥ Dt+1) + bP(rt ≥ Dt+1)− c+ EOV ∗t+1(xt −Dt+1) if xt ≥ r∗t ,

c+ hP(rt ≥ Dt+1) + bP(rt ≥ Dt+1)− c+ EOV ∗t+1(r∗t −Dt+1) if xt < r∗t .

A stochastic version of OV ∗t (xt, Dt+1) is:

OV ∗t+1(xt, Dt+1) =


h1{Dt+1<xt} − b1{Dt+1≥r∗t } + OV ∗t+1(xt −Dt+1) if xt ≥ r∗t ,

h1{Dt+1<r∗t } − b1{Dt+1≥r∗t } + OV ∗t+1(r∗t −Dt+1) if xt < r∗t .

Use ξnt to approximate {OV ∗t (xt, D
n
t+1)} on a given (Dn

1 , D
n
2 , . . . , D

n
T) and (rn1 , r

n
2 , . . . , r

n
T−1).

ξnt (xt, D
n
t+1, . . . , D

n
T)

=


h1{Dt+1<xt} − b1{Dt+1≥r∗t } + ξnt+1(xt −Dn

t+1, D
n
t+2 . . . , D

n
T) if xt ≥ r∗t ,

h1{Dt+1<r∗t } − b1{Dt+1≥r∗t } + ξnt+1(r∗t −Dn
t+1, D

n
t+2 . . . , D

n
T) if xt < r∗t .

Thus, the approximation to Oft(xt, Dt+1) is

snt (xt, D
n
t+1, . . . , D

n
T) = c+ h1{Dt+1<r∗t } − b1{Dt+1≥r∗t } + ξnt+1(xt −Dn

t+1, D
n
t+2, . . . , D

n
T).

So, the approximate SGD update is

rn+1
t = rnt − αsnt (rnt , D

n+1
t+1 , . . . , D

n+1
T).

Sketch of Convergence:

ent (xt) = OV ∗T (xt)− E[ξnt (xt, D
n
t+1, . . . , D

n
T)].

At time T , enT (·) = 0, so snt−1(xt, D
n+1
t+1 , . . . , D

n+1
t) is not biased. Thus, rn+1

T−1 is updated
by an SGD that converges, so rnT−1 → r∗T−1. This, in turn, means that the bias
vanishes, enT−1(·)→ 0, and so rnT−2 → r∗T−2.

12.4 Paper Discussion: Dual Policy Iteration

This paper presents and analyzes Dual Policy Iteration (DPI), which is a framework
that alternatively computes a non-reactive policy ia more advance and systematic
search, and updates a reactive policy via imitating the non-reactive one. Based on
this framework, the paper provides a simple instance of DPI for RL with unknown
dynamics. The instance integrates local model fit, local model-based search, and

Lecture 12: Policy Gradient Algorithm 12-7

reactive policy improvement via imitating the local optimal policy resulting from
model-based search. For the theoretical results, the authors show that integrating
model-based search and imitation into policy improvement could result in larger policy
improvement at each step. In computational experiment, this paper demonstrates the
improved sample efficiency compared to strong baselines.

12.4.1 Preliminaries

In DPI algorithm, two policies are under consideration at any time during training:

• Reactive policy: usually learned by some form of function approximation, used
for generating samples and deployed at test time.

• Intermediate policy: can only be constructed or accessed during training, used
as an expert policy to guide the improvement of the reactive policy.

The RL setting considered in this paper: (S,A, P, c, ρ0, γ), where S,A denote the state
and action space, respectively. P is the transition dynamics, c is the cost function
and ρ0 denotes the initial distribution of states, γ is the discount factor.

Side notes: For two distributions P1 and P2,

• DTV (P1,P2) =
‖P1−P2‖1

2
is the total variation distance

• DKL(P1,P2) =
∫
P1(x) log(P1(x)/P2(x))dx is the KL divergence.

V π(s) = E

[∞∑
t=0

γtc(st, at) | s0 = s

]
;

Qπ(s, a) = c(s, a) + γEs′∼Ps,a [V
π(s′)];

J(π) = Es∼ρ0 [V
π(s)].

Define advantage function as Aπ(s, a) = Qπ(s, a) − V π(s). Goal is to learn a single
stationary policy π∗ that minimizes J(π).

12.4.2 Main results

Lemma 12.5. For any two policies π and π′, we have

J(π)− J(π′) =
1

1− γ
E(s,a)∼dππ[Aπ

′
(s, a)],

where dππ is the joint distribution such that dππ(s, a) = dπ(s)π(a|s).

Lecture 12: Policy Gradient Algorithm 12-8

Dual Policy Iteration
Consider the min-max optimization framework:

min
π∈Π

max
η∈Π

Es∼dπ [Ea∼π(·|s)[A
η(s, a)]],

where dπ(s) = (1 − γ)
∑∞

t=0 γ
tdtπ(s) is the state visitation distribution and dtπ(s) is

the distribution of state at time step t, induced by running the policy π.

Then Nash equilibrium is (π, η) = (π∗, π∗). DPI alternatively fixes one policy and
updates the second policy.

• Updating η :
Given πn, the objective function for η becomes

max
η

Es∼dπn [Ea∼πn(·|s)[A
η(s, a)]].

According to the above Lemma, updating η is equivalent to finding the optimal
policy

π∗ = argmaxη(J(πn)− J(η)) = argminηJ(η).

However, this is as hard as the original problem.

Therefore, the paper suggests to update η locally by constraining it to a trust
region around πn:

argminηJ(η), s.t. Es∼dπnDTV [(η(·|s), π(·|s))] ≤ α.

However, to solve this problem, we need to learn Ps,a.

To learn Ps,a, the paper seeks a model P̂ such that Es∼dπnπnDTV (P̂s,a, Ps,a) is
small. Moreover, by Pinsker’s inequality

DKL(P̂s,a, Ps,a) ≥ DTV (P̂s,a, Ps,a)
2,

the following optimization problem can be considered instead.

argminP̂∈PEs∼dπn ,a∼πn(s)DKL(Ps,a, P̂s,a) = argminP̂∈PEs∼dπn ,a∼πn(s),s′∼Ps,a [− log P̂s,a(s
′)],

and this can be solved by using existing stochastic MBOC solvers.

• Updating π:
Given ηn, πn+1 is computed by performing the following constrained optimiza-
tion procedure:

argminπEs∼dπn [a ∼ π(·|∼)[Aηn(s, a)]], s.t. Es∼dπn [DTV (π(·|s)), πn(·|s)] ≤ β,

and this can be solved by imitating ηn.

Lecture 12: Policy Gradient Algorithm 12-9

Policy Improvement
Let ∆n(a) ≥ 0 be the performance gain from η∗n over πn, i.e.

J(πn)− J(η∗n) ≥ ∆n(α).

Theorem 12.6. Assume P̂ satisfies E(s,a)∼dπnπnDTV (P̂s,a, Ps,a) ≤ δ, we have the

J(ηn) ≤ J(πn)−∆n(α) +O

(
γδ

1− γ
+

γα

(1− γ)2

)
.

Define An(πn+1) as the disadvantage of πn+1 over ηn under dπn .

An(πn+1) = Es∼dπn [Ea∼πn+1(·|s)[A
ηπ(s, a)]].

Theorem 12.7. The improvement of πn+1 over πn is

J(πn+1)− Jπn ≤
βε

(1− γ)2
− |An(πn+1)|

1− γ
−∆n(α).

