
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 11: Approximate Policy Iteration
Lecturer: Daniel Jiang Scribes: Boyuan Lai, Ibrahim El Shar

References:

D. P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dy-
namic Programming, Vol. 2, 4th ed., Athena Scientific, Belmont MA, 2012. (§6.2)

D. P. Bertsekas. Approximate policy iteration: A survey and some new methods.
Journal of Control Theory and Applications, 9(3), 310-335, 2011.

R. Munos and C. Szepesvari. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research 9.May (2008): 815-857.

11.1 Approximate Policy Iteration

Recall the exact PI algorithm; on iteration k,

• Policy evaluation: compute the value of µk, i.e. solve TµkJ = J to get Jµk ;

• Policy improvement: find µk+1 that is greedy with respective to Jµk .

The policy improvement property is at the core of why PI works. It was proven in a
previous lecture.

Theorem 11.1 (Policy Improvement Property). µk+1 is improved from µk in the
sense that Jµk+1 ≤ Jµk and if µk is not optimal, we have a strict improvement.

11.1.1 Optimistic Policy Iteration

• A first approximation to exact PI: do partial evaluation of µk using a few steps
of VI: on iteration k, do mk steps of VI so that Jµk ≈ Tmk

µk
J for 1 ≤ mk ≤ ∞.

• But do the improvement step exactly.

• The algorithm can be written:

TµkJk = TJk, Jk+1 = Tmk

µk
Jk.
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• Note the special case mk = 1 ∀ k reduces to standard VI because Jk+1 = TJk.

• The special case mk = ∞ ∀ k is PI. So, optimistic PI can be viewed as a
“scaling” between PI and VI.

Proposition 11.2 (Optimistic PI). Jk → J∗ and µk is optimal for large enough k.

Proof. Omitted, but see B&T book.

11.1.2 Approximate PI, Bounded Max Norm Error

Assumption 11.3. Suppose both steps of PI are performed with some error bounded
in max norm: ‖Jk − Jµk‖∞ ≤ δ and ‖Tµk+1Jk − TJk‖ ≤ ε.

Proposition 11.4 (Error bound for API). This procedure admits the following bound:

lim sup
k→∞

‖Jµk − J∗‖∞ ≤
ε+ 2γδ

(1− γ)2
.

Proof. We have: Tµk+1Jk ≤ TJk + εe and

Jµk − δe ≤ Jk ⇒ Tµk+1Jµk − γδe ≤ Tµk+1Jk ⇒ Tµk+1Jµk ≤ Tµk+1Jk + γδe,

so Tµk+1Jµk ≤ TJk +(ε+γδ)e. But since Jk ≤ Jµk + δe⇒ TJk ≤ TJµk +γδe, we have

Tµk+1Jµk ≤ TJµk + (ε+ 2γδ)e. (∗)

Since TJµk ≤ TµkJµk = Jµk , we also have:

Tµk+1Jµk ≤ Jµk + (ε+ 2γδ)e. (∗∗)

We pause here for a small lemma.

Lemma 11.5. For c ≥ 0 and some J such that TµJ ≤ J + ce, we have

Jµ ≤ J +
ce

1− γ
.

Proof. Note that if we iteratively apply Tµ:

T 2
µJ ≤ TµJ + γce, T 3

µJ ≤ T 2
µJ + γ2ce, . . . , T lµJ ≤ T l−1

µ J + γl−1ce.

Now, observe that:

T kµJ − J =
k∑
l=1

(T lµJ − T l−1
µ J)
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≤
k∑
l=1

γl−1ce.

Letting k →∞ gives the desired result.

Applying the lemma to (∗∗), we have

Jµk+1 ≤ Jµk +
ε+ 2γδ

1− γ
e.

Next, note that

Jµk+1 − J∗ = Tµk+1Jµk+1 − J∗

= Tµk+1Jµk + (Tµk+1Jµk+1 − Tµk+1Jµk)− J∗

≤ Tµk+1Jµk − J∗ + γ
ε+ 2γδ

1− γ
e (#).

Using

TJµk+1 − J∗ = TJµk+1 − TJ∗

≤ γ‖Jµk+1 − J∗‖e,

we conclude from (∗) that

Tµk+1Jµk − J∗ ≤ TJµk − J∗ + (ε+ 2γδ)e

≤ γ‖Jµk − J∗‖e+ (ε+ 2γδ)e

From (#),

Jµk+1 − J∗ ≤ γ‖Jµk − J∗‖e+ (ε+ 2γδ)e+ γ
ε+ 2γδ

1− γ
e

= γ‖Jµk − J∗‖e+
ε+ 2γδ

1− γ
e

Therefore, ‖Jµk+1 − J∗‖ ≤ γ‖Jµk − J∗‖+
ε+ 2γδ

1− γ
.

Take limsup to conclude that: lim sup
k→∞

‖Jµk − J∗‖ ≤
ε+ 2γδ

(1− γ)2
.

In the limit, we get policies oscillate (or sometimes converge) in a region such that
the worst case performance is not too far from J∗. In some cases, policies converge.
We now suppose they do. We can show an improved error bound.
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Assumption 11.6. µk̄+1 = µk̄ = µ̄ for some k.

Proposition 11.7 (Error bound when policies converge). Assume the same errors
related to ε and δ. We have:

‖Jµ̄ − J∗‖ ≤
ε+ 2γδ

1− γ
.

Proof. Let J̄ be an approximate policy evaluation of µ̄. Therefore, ‖J̄ − Jµ̄‖ ≤ δ and
by our assumption of convergence, ‖Tµ̄J̄ − T J̄‖ ≤ ε. Then:

‖TJµ̄ − Jµ̄‖ ≤ ‖TJµ̄ − T J̄ + T J̄ − Tµ̄J̄ + Tµ̄J̄ − Jµ̄‖
≤ γ‖Jµ̄ − J̄‖+ ε+ γ‖J̄ − Jµ̄‖
= ε+ 2γδ

The rest follows as we did many times before.

11.2 Convergence of API

Can we give conditions under which API converges? There are many ways to do
evaluation step, but could lead to oscillation. Consider the following special API
algorithm:

• Evaluation: solve WTµJ = J , with fixed point J̃µ. Here we think of W as an
approximation step; e.g., W = Π corresponds to the basis function case we did
previously.

• Improvement: exactly solve Tµ̄J̃µ = T J̃µ

Assumption 11.8. Assume the following:

1. WJ ≤ WJ̄ for J ≤ J̄ (monotonicity)

2. For each µ, there is a unique J̃µ such that

J̃µ = lim
k→∞

(WTµ)kJ.

The first part implies that (WTµ)(J) ≤ (WTµ)(J̄) for each µ and all J ≤ J̄ . The
second is a VI-like property.

Theorem 11.9. This special API converges in finite number of iterations to a policy
µ̄. J̃µ̄, the vector obtained upon termination, is the fixed point of WT .
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Proof. First, note that

(WTµ̄)(J̃µ) = (WT )(J̃µ) ≤ (WTµ)(J̃µ) = J̃µ

by monotonicity. Applying WTµ̄ iteratively,

J̃µ ≥ (WTµ̄)(J̃µ) ≥ (WTµ̄)2J̃µ ≥ · · · ≥ lim
k→∞

(WTµ̄)kJ = J̃µ̄.

This is the policy improvement property. Suppose there is no improvement, i.e.,
J̃µ = J̃µ̄. Then, by the policy improvement step, Tµ̄J̃µ̄ = T J̃µ̄. So WTµ̄J̃µ̄ = WTJ̃µ̄
and we conclude by seeing that WTµ̄J̃µ̄ = J̃µ̄.

11.2.1 Policy Oscillations

Some intuition about policy oscillations. A greedy partition is defined as “all J ’s such
that greedy(J) = µ,” i.e.,

Jµ = {J : TµJ = TJ}
= {J : µ(i) = argminu{g(i, u) + E J(f(i, u, w))}}.

The parameter space <n is partitioned by these greedy sets: <n =
⋃
µ Jµ

Policy iteration:

1. Start with µ0;

2. Evaluate it to get J̃µ0 (unique);

3. Improve by finding µ1 s.t. J̃µ0 ∈ Jµ1 , and so on.

Jµ3 Jµ1

Jµ2

If J̃µk ∈ Jµk , then it keeps generating µk (by definition of Jµk). This is convergence.
What about oscillation? Having a finite number of policies means we have a finite
number of J̃µ’s, so oscillation must look like:
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Jµ3 Jµ1

Jµ2

J̃µ2 J̃µ3

J̃µ1

Why did the previous theorem get rid of the possibility of oscillation? Note that
J̃µ̄ ≤ J̃µ where µ̄ is improvement of µ. So J̃µ1 ≥ J̃µ2 ≥ J̃µ3 = J̃µ3 · · · (because one of
them is the optimal policy). Monotonicity assumption gives better error bound plus
no oscillation.

Example 11.10 (Case of W that satisfies monotonicity condition is aggregation). Let
S be the state space. Let SA be the aggregated space. Define the following probability
distributions.

• Aggregation: Φjy j ∈ S, y ∈ SA “degree of membership of j in y”

• Disaggregation: dxi i ∈ S, x ∈ SA “degree to which x is represented by i”

Here, r = DTΦr and F = DTΦ is a monotone operator and a contraction (fixed
point exists). Thus, API converges.

11.3 Paper Discussion: Finite-time Bounds for Fitted VI

11.3.1 Problem Setup

• Discounted reward MDP, continuous or very large state-space

• Finite number of actions, infinite horizon

• Planning i.e. simulator of the model is available
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• Value function approximation

• Using a fitted value iteration algorithm (FVI)

• Objective: Finite-time bounds for FVI

– Allow a better understanding of RL algorithms and function approximation
methods.

– Develop a theory explaining when and why sampling-based ADP can be
expected to perform well.

11.3.2 Definitions

• Space of bounded functions: B(X )

• Lp(µ)-norms : µ distribution over X , p ≥ 1 : ‖f‖p,µ :=
(∫
‖f(x)‖pµ(dx)

)1/p

• Space of Lp(µ)-norms bounded functions: Lp(X , µ)

• dp,µ(TV,F) = inf
f∈F
‖f − TV ‖p,µ

• dp,µ(TF ,F) = sup
f∈F

dp,µ(Tf,F)

11.3.3 Fitted Value Iteration

• If the state space is large or continuous then the value iteration iterates cannot
be computed exactly anymore. In this case, we use function approximation.

• Fitted value iteration (Boyan 1995, Gordon 1995, Tsitsiklis & Van Roy 1996)

Vk+1 = argminf∈F‖f − TVk‖

Where F is an appropriate function space and ‖ · ‖ is an appropriate norm.

11.3.4 Sampling Based Fitted Value Iteration

• Input: F -function space, N,M,K integers, µ- distribution over the state space.

• Algorithm (stage k):

1. Sample basis points: X1, . . . , XN ∈ X , Xi ∼ µ
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2. For each action a ∈ A and state Xi, sample next states and rewards:

Y Xi,a
j ∼ P (· |Xi, a), RXi,a

j ∼ S(· |Xi, a), j = 1, . . . ,M

3. Calculate the Monte-Carlo approximation of backed up values:

V̂ (Xi) = max
a∈A

1

M

M∑
j=1

[
RXi,a
j + γVk(Y

Xi,a
j )

]
, i = 1, . . . , N

4. Solve for V ′ = Vk+1 :

Vk+1 = argmin
f∈F

1

N

N∑
i=1

|f(Xi)− V̂ (Xi)|p (11.1)

11.3.5 Finite-Sample Bounds

Assumption 11.11 (MDP Regularity). The MDP (X,A, P, S, γ) satisfies the follow-
ing conditions: X is a bounded, closed subset of some Euclidean space, A is finite and
the discount factor γ satisfies 0 < γ < 1. The reward kernel S is such that the imme-
diate reward function r is a bounded measurable function with bound Rmax. Further,
the support of S(· |x, a) is included in [−R̂max, R̂max] independently of (x, a) ∈ X ×A

Assumption 11.12 (Uniformly stochastic transitions). For all x ∈ X and a ∈
A, assume that P (· |x, a) is absolutely continuous w.r.t. µ and the Radon-Nikodym
derivative of P w.r.t. µ is bounded uniformly with bound Cµ:

Cµ := sup
x∈X ,a∈A

∥∥∥∥dP (.|x, a)

dµ

∥∥∥∥
∞
< +∞

Assumption 11.12 can be written as P (· |x, a) ≤ Cµµ(·). The noisier the dynamics
the smaller the constant Cµ. This assumption certainly excludes deterministic MDPs.

Assumption 11.13 (Discounted-average concentrability of future-state distribu-
tions). Given ρ, µ,m ≥ 1 and an arbitrary sequence of stationary policies {πm}m≥1,
assume that the future-state distribution ρP π1P π2 · · ·P πm is absolutely continuous
w.r.t. µ. Assume that

c(m) := sup
π1,...,πm

∥∥∥∥d(ρP π1P π2 · · ·P πm)

dµ

∥∥∥∥
∞
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satisfies

Cρ,µ := (1− γ)2
∑
m≥1

mγm−1c(m) < +∞

c(m) is them-step concentrability of a future state distribution. Cρ,µ is the discounted-
average concentrability coefficient of the future state distribution. Cρ,µ is a constant
relating how quickly future state distributions can concentrate starting from ρ and
relative to µ.

Lemma 11.14. Consider an MDP satisfying Assumption 11.11, Let Vmax = Rmax/(1−
γ), fix a real number p ≥ 1, integers N,M ≥ 1, µ ∈M(X ) and F ⊂ B(X ;Vmax). Pick
any V ∈ B(X ;Vmax) and let V ′ = V ′(V,N,M, µ,F) be defined by equation (11.1).
Let N0(N) = N (1

8
( ε

4
)p,F , N, µ). Then for any ε, δ > 0,

‖V ′ − TV ‖p,µ ≤ dp,µ(TV,F) + ε

holds w.p. at least 1− δ provided that

N > 128
(8Vmax

ε

)2p(
log(1/δ) + log(32N0(N))

)
and

M >
8(R̂max + γVmax)

2

ε2
(

log(1/δ) + log(8N |A|)
)

(Lemma 11.14 Proof illustration)
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• Lemma 1 however can’t be readily used to bound the error committed when
approximating TVk starting from Vk based on a new sample.

• This is because Lemma 1 requires that V , the function whose Bellman image is
approximated, is some fixed (non-random) function.

• This problem is easily mitigated in the multi-sample variant of FVI since the
samples are independent between iterations.

• This is not the case in the single-sample variant of FVI. Lemma 11.15 gives
conditions under which Lemma 11.14 continues to hold.

Lemma 11.15. Denote by Ω the sample-space underlying the random variables {Xi},
{Y Xi,a

j }, {RXi,a
j }, i = 1, . . . , N, j = 1, . . . ,M, a ∈ A. Then the result of Lemma 11.14

continues to hold if V is a random function satisfying V (ω) ∈ F , ω ∈ Ω provided that

N = O(V 2
max(1/ε)

2p log(N (cε,FT−, N, µ)/δ))

and
M = O((R̂max + γVmax)

2/ε2 log(N |A|N (c′ε,F ,M, µ)/δ)),

where c, c′ > 0 are constants independent of the parameters of the MDP and the
function space F .

Theorem 11.16. Consider an MDP satisfying Assumption 11.11 and 11.13. Fix p ≥
1, µ ∈M(X ) and let V0 ∈ F ⊂ B(X ;Vmax). Then for any ε, δ > 0, there exist integers
K,M and N such that K is linear in log(1/ε), log Vmax and log(1/(1− γ)), N,M are
polynomial in 1/ε, log(1/δ), log(1/(1− γ)), Vmax, R̂max, log(|A|),
log(N (cε(1 − γ)2/(C

1/p
ρ,µ γ),F , N, µ)) for some constant c > 0, such that if the multi-

sample variant of sampling-based FVI is run with parameters (N,M, µ,F) and πk is
a policy greedy w.r.t. the Kth iterate then w.p. at least 1− δ,

‖V ∗ − V πk‖p,ρ ≤
2γ

(1− γ)2
C1/p
ρ,µ dp,µ(TF ,F) + ε.

If, instead of Assumption 11.13, Assumption 11.12 holds then w.p. at least 1− δ,

‖V ∗ − V πk‖∞ ≤
2γ

(1− γ)2
C1/p
µ dp,µ(TF ,F) + ε.

Further, the results continue to hold for the single-sample variant of sampling-based
FVI with the exception that N depends on log(N (cε,FT−, N, µ)) and M depends on
log(N (c′ε,F ,M, µ)) for appropriate c, c′ > 0.
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11.3.6 Conclusion

• The authors study continuous or very large state space MDP with generative
model of the environment.

• Bounded the error of sample-based FVI with high probability. The bound is
function of the concentration coefficient and approximation power and capacity
of the underlying function space. Main condition was that the future state
distributions do not concentrate fast.

• For a sufficiently rich function space F , FVI will yield a good estimates of V ∗

as the number of samples and iterations go to infinity.


