Main Reference: Tsitsiklis, J.N. and Van Roy, B. Feature-based methods for large scale dynamic programming. Machine Learning, 22(1-3), pp. 59-94, 1996.

Paper Discussion: Amari, S.I.. Natural gradient works efficiently in learning. Neural Computation, 10(2), pp. 251-276, 1998.

Kakade, S.M. A natural policy gradient. Advances in Neural Information Processing Systems, 2002.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., \& Moritz, P. Trust region policy optimization. International Conference on Machine Learning, 2015.

Peters, J., Schaal, S. Natural actor-critic. Neurocomputing, 71(7-9), pp. 1180-1190, 2008.

Previously we learned the following results:

- AVI has an error bound when per-iteration Bellman error controlled in $\|\cdot\|_{\infty}$.
- AVI may diverge.
- Using a special norm $\|\cdot\|_{\xi}$, we can design a projected AVI which converges.
- AVI for control works for the special case of optimal stopping by using $\|\cdot\|_{\xi}$.

10.1 State Aggregation

Let the state space S be partitioned into $\left\{S_{j}\right\}$ for $j=1,2, \cdots, m$. So $\cup_{j} S_{j}=S$ and $S_{k} \cap S_{l}=\emptyset$.

- Assume the partition is given (we are not considering adaptive partitioning).
- Try to learn one value W_{j} per partition S_{j}. The vector $W=\left(W_{1}, \ldots, W_{m}\right)$ becomes the parameter of the value function approximation: $\bar{J}(W)(i)=\sum_{j} W_{j} \mathbb{1}_{\left\{i \in S_{j}\right\}}$.
- With large enough m and well chosen sets, $\bar{J}(W)(i) \approx J^{*}(i)$.

10.1.1 Asynchronous VI algorithm for learning the weights

- Let $\Gamma_{j} \subseteq\{0,1,2, \cdots\}$ be the iterations at which S_{j} 's value is updated. $\left|\Gamma_{j}\right|=\infty$
- Let $p^{j}(\cdot)$ be a distribution over S_{j}

The algorithm is as follows:

1. On iteration $n+1$, sample $X^{n+1}=\left(X_{1}^{n+1}, X_{2}^{n+1}, \cdots, X_{m}^{n+1}\right)$ where $X_{j}^{n+1} \sim p^{j}(\cdot)$.
2. $W_{j}^{n+1}(j)=\left(1-\alpha^{n+1}(j)\right) W^{n}(j)+\alpha^{n+1}(j)\left[T \bar{J}\left(W^{n}\right)\left(X_{j}^{n+1}\right)\right], \quad n+1 \in \Gamma_{j}$,
$W_{j}^{n+1}(j)=W_{j}^{n}(j)$,
$n+1 \notin \Gamma_{j}$.

This is for simplicity of notation; in a practical implementation, sample X_{j}^{n+1} only if j being updated.

Theorem 10.1. Assume standard stepsize assumption conditions hold, then:
(i): $W^{n} \rightarrow W^{*}$ a.s. where W^{*} solves

$$
W^{*}(j)=\sum_{i \in S_{i}} p^{j}(i)\left(T \bar{J}\left(W^{*}\right)\right)(i) .
$$

(ii): For each aggregate status $j=\{1,2, \cdots, m\}$, let $e_{j}=\max _{k, l \in S_{j}}\left|J^{*}(k)-J^{*}(l)\right|$ and $\pi^{W^{*}}$ be the greedy policy w.r.t. $\bar{J}\left(W^{*}\right)$. Then, the value function approximation satisfies

$$
\left\|\bar{J}\left(W^{*}\right)-J^{*}\right\|_{\infty} \leq\|\mathbf{e}\|_{\infty} /(1-\gamma) .
$$

(iii): $\left\|J^{W^{*}}-J^{*}\right\|_{\infty} \leq 2 \gamma\|\mathbf{e}\|_{\infty} /(1-\gamma)^{2}$, where $J^{W^{*}}$ is the performance of policy $\pi^{W^{*}}$.
(iv): There exsits an MDP for which (ii), (iii) are tight.

Main ideas:
Let $T^{\prime}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m},\left(T^{\prime} W\right)(j)=\mathbf{E}_{p^{j}}\left[(T \bar{J}(W))\left(X_{j}\right)\right]=\sum_{i} p^{j}(i)((T \bar{J}(W)(i))$.
T^{\prime} returns the average value of $T \bar{J}(W)$ over the partition j.
Then $W^{n+1}(j)=(1-\alpha) W^{n}(j)+\alpha\left(\left(T^{\prime} W^{n}\right)(j)+\right.$ sampling noise $)$.
Thus the original problem is converted to prove the contraction property of T^{\prime}.
Define another function that takes full value functions $J \in \mathbb{R}^{n}$ to aggregated ones: $\left(\bar{J}^{-1}(J)\right)(j)=\sum_{i \in S_{j}} p^{j}(i) J(i)$. The following holds, which is called pseudo inverse property:

$$
\left(\bar{J}^{-1}(\bar{J}(W))\right)(j)=\sum_{i \in S_{j}} p^{j}(i) \bar{J}(W)(i)=W(j)
$$

Also, note that $T^{\prime}=J^{-1} \circ T \circ \bar{J}$.

The following are true:

1. T is a γ - contraction on $\|\cdot\|_{\infty}$.
2. $\left\|\bar{J}(W)-\bar{J}\left(W^{\prime}\right)\right\|_{\infty} \leq\left\|W-W^{\prime}\right\|_{\infty}$. This is because

$$
\begin{aligned}
\| \bar{J}(W)-\left.\bar{J}\left(W^{\prime}\right)\right|_{\infty} & =\max _{i} \mid\left(\bar{J}(W)(i)-\bar{J}\left(W^{\prime}\right)(i) \mid\right. \\
& =\max _{j}\left|W(j)-W^{\prime}(j)\right|=\left\|W-W^{\prime}\right\|_{\infty} .
\end{aligned}
$$

3. $\left\|\bar{J}^{-1}(J)-\bar{J}^{-1}\left(J^{\prime}\right)\right\|_{\infty} \leq\left\|J-J^{\prime}\right\|_{\infty}$

$$
\text { Proof. } \begin{aligned}
\left\|\bar{J}^{-1}(J)-\bar{J}^{-1}\left(J^{\prime}\right)\right\|_{\infty} & =\max _{j \in\{1, \ldots, m\}}\left|\sum_{i \in S_{j}} p^{j}(i)\left(J(i)-J^{\prime}(i)\right)\right| \\
& \leq \max _{j} \max _{i \in S_{j}}\left|J(i)-J^{\prime}(i)\right| \\
& =\max _{\text {all states } i}\left|J(i)-J^{\prime}(i)\right| \leq\left\|J-J^{\prime}\right\|_{\infty}
\end{aligned}
$$

4. $\left\|T^{\prime} W-T^{\prime} W^{\prime}\right\|_{\infty} \leq \gamma\left\|W-W^{\prime}\right\|_{\infty}$ can be proved by 1,2 , and 3 .

Proof. We now prove the theorem.
(i) Apply our standard stochastic approximation/SGD results with T^{\prime} to show convergence to a fixed point W^{*}.
(ii) Using a constant to approximate J^{*} in S_{j}, minimum error is $\|\mathbf{e}\|_{\infty} / 2$. Therefore,

$$
\min _{W}\left\|\bar{J}(W)-J^{*}\right\|_{\infty}=\|\mathbf{e}\|_{\infty} / 2
$$

Let \hat{W} be a vector that achieves the minimum: $\left\|\bar{J}(\hat{W})-\bar{J}^{*}\right\|_{\infty}=\|\mathbf{e}\|_{\infty} / 2=: \epsilon$. First, a preliminary inequality:

$$
\begin{aligned}
\left\|W^{*}-\hat{W}\right\|_{\infty} & \leq\left\|W^{*}-T^{\prime} \hat{W}\right\|_{\infty}+\left\|T^{\prime} \hat{W}-\hat{W}\right\|_{\infty} \\
& \leq \gamma\left\|W^{*}-\hat{W}\right\|_{\infty}+\left\|\hat{J}^{-1} T \bar{J} \hat{W}-\bar{J}^{-1} \bar{J} \hat{W}\right\|_{\infty} \\
& \leq \gamma\left\|W^{*}-\hat{W}\right\|_{\infty}+\|T \bar{J} \hat{W}-\bar{J} \hat{W}\|_{\infty} \quad\left(\text { non-expansiveness of of } \bar{J}^{-1}\right) \\
& \leq \gamma\left\|W^{*}-\hat{W}\right\|_{\infty}+\left\|T \bar{J} \hat{W}-J^{*}\right\|_{\infty}+\epsilon \\
& \leq \gamma\left\|W^{*}-\hat{W}\right\|_{\infty}+\gamma \epsilon+\epsilon
\end{aligned}
$$

Therefore:

$$
\left\|W^{*}-\hat{W}\right\|_{\infty} \leq \frac{1+\gamma}{1-\gamma} \epsilon
$$

Next, note that by

$$
\begin{aligned}
\left\|\bar{J}\left(W^{*}\right)-J^{*}\right\|_{\infty} & \leq\left\|\bar{J}\left(W^{*}\right)-\bar{J}(\hat{W})\right\|_{\infty}+\epsilon \\
& \leq\left\|W^{*}-\hat{W}\right\|_{\infty}+\epsilon \\
& \leq\left(\frac{1+\gamma}{1-\gamma}+\frac{1-\gamma}{1-\gamma}\right) \epsilon \\
& =\frac{\|\mathbf{e}\|_{\infty}}{1-\gamma} .
\end{aligned}
$$

(iii) (Performance) $J^{\pi W^{*}}$ is the performance of the policy greedy w.r.t. $\bar{J}^{W^{*}}, T_{\pi W^{*}}$ is like T_{μ} with μ being this greedy policy.

$$
\begin{aligned}
&\left\|J^{\pi W^{*}}-J^{*}\right\|_{\infty} \leq\left\|T_{\pi W^{*}} J^{\pi W^{*}}-T \bar{J}\left(W^{*}\right)\right\|_{\infty}+\left\|T \bar{J}\left(W^{*}\right)-J^{*}\right\|_{\infty} \\
&=\left\|T_{\pi W^{*}} J^{\pi W^{*}}-T_{\pi W^{*}} \bar{J}\left(W^{*}\right)\right\|_{\infty}+\left\|T \bar{J}\left(W^{*}\right)-T J^{*}\right\|_{\infty} \\
& \leq \gamma\left\|J^{\pi W^{*}}-J^{*}+J^{*}-\bar{J}\left(W^{*}\right)\right\|+\gamma\left\|\bar{J}\left(W^{*}\right)-J^{*}\right\|_{\infty}, \\
& \Rightarrow(1-\gamma)\left\|J^{\pi W^{*}}-J^{*}\right\|_{\infty} \leq 2 \gamma\left\|\bar{J} W^{*}-J^{*}\right\|_{\infty} \\
& \Rightarrow\left\|J^{\pi W^{*}}-J^{*}\right\|_{\infty} \leq \frac{2 \gamma\|\mathbf{e}\|_{\infty}}{(1-\gamma)^{2}} .
\end{aligned}
$$

(iv) The following MDP example shows that (ii), (iii) are tight.

Let the aggregated states be $S_{A}=\{1,2\}, S_{B}=\{3,4\}$ and suppose we always sample $\{2\}$ for S_{A} and $\{4\}$ for S_{B}.
Therefore, $J^{*}(1)=0, J^{*}(2)=c, J^{*}(3)=0, J^{*}(4)=-c,\|\mathbf{e}\|_{\infty}=c$.
$\operatorname{By}(\mathrm{i}): W^{*}(A)=c+\gamma W^{*}(A)$
$W^{*}(B)=-c+\gamma W^{*}(B)$
$\Rightarrow W^{*}=\left(\frac{c}{1-\gamma}, \frac{-c}{1+\gamma}\right)$.

So, the maximum approximation error of $\bar{J} W^{*}$ is $\frac{c}{1-\gamma}=\frac{\|\mathbf{e}\|_{\infty}}{1-\gamma}$.
Let $b=\frac{2 \gamma c}{1-\gamma}$ and consider $\pi^{W^{*}}$. At state 3: staying gives a cost of $b+\gamma\left(\frac{-c}{1-\gamma}\right)$, and going to state 1 gives a cost of $0+\gamma\left(\frac{c}{1-\gamma}\right)$. They are equal.
Suppose the policy chooses to stay, which gives a cost of

$$
b+\gamma b+\gamma^{2} b+\cdots=\frac{b}{1-\gamma}=\frac{2 \gamma\|\mathbf{e}\|_{\infty}}{(1-\gamma)^{2}}
$$

10.1.2 A Representative State Approach

A more general linear approach: $\bar{J}(W)(i)=\sum_{i=1}^{k} W_{k} f_{k}(i)=W^{T} F(i)$ where $F(i)=$ $\left(f_{1}(i), f_{2}(i) \cdots f_{k}(i)\right)$.
Main idea: Choose $\left(i_{1}, i_{2}, \cdots, i_{k}\right)$ representative states to perform V.I.
Special Assumptions:

1. $F\left(i_{1}\right), F\left(i_{2}\right), \ldots, F\left(i_{k}\right)$ are linearly independent.
2. There exists $\gamma^{\prime} \in[\gamma, 1)$ such that $\forall i \in S$ there exists scalars $\theta_{1}(i), \theta_{2}(i), \cdots, \theta_{k}(i)$ with $\sum_{k=1}^{K}\left|\theta_{k}(i)\right| \leq 1$ and $F(i)=\frac{\gamma^{\prime}}{\gamma} \sum_{k=1}^{K} \theta_{k}(i) F\left(i_{k}\right)$.
$\Rightarrow\|\bar{J}(W)\|_{\infty} \leq \frac{\gamma^{\prime}}{\gamma} \max _{i}|\bar{J}(W)(i)|$.
Note that aggregation is a special case, which has $\theta_{k}(i)=0$ or 1 .
Definition 10.2. $M \in \mathbb{R}^{n \times k}$:

$$
M=\left[\begin{array}{c}
F^{T}(1) \tag{10.1}\\
F^{T}(2) \\
\vdots \\
F^{T}(n)
\end{array}\right]
$$

Then $\bar{J}(W)=M W$. Assume $i_{1}=1, i_{2}=2, \cdots, i_{k}=k$ (w.l.o.g).
Definition 10.3. $L \in \mathbb{R}^{k \times k}$ to be M restricted to the representative states:

$$
L=\left[\begin{array}{c}
F^{T}(1) \tag{10.2}\\
F^{T}(2) \\
\vdots \\
F^{T}(k)
\end{array}\right]
$$

Let $M^{-1}=\left[L^{-1}, 0\right]$, so $M^{-1} M=L^{-1} L=I, T^{\prime}=M^{-1} \circ T \circ M$. Let's consider the algorithm $W^{n+1}=T^{\prime} W^{n}$.

Theorem 10.4. Assume special assumptions hold, then:
(i): $W^{n} \rightarrow W^{*}$,
(ii): T^{\prime} is a γ^{\prime}-contraction w.r.t $\|\cdot\|_{M}$, where $\|W\|_{M}=\|M W\|_{\infty}$.

Let $\epsilon=\inf _{W}\left\|J^{*}-\bar{J} W\right\|$. We also have:
(iii): $\left\|J^{*}-\bar{J} W\right\|_{\infty} \leq \frac{\gamma+\gamma^{\prime}}{\gamma\left(1-\gamma^{\prime}\right)} \epsilon$,
(iv): $\left\|J^{\pi W^{*}}-J^{*}\right\|_{\infty} \leq \frac{2\left(\gamma+\gamma^{\prime}\right)}{(1-\gamma)\left(1-\gamma^{\prime}\right)} \epsilon$.

We will most of the proof as it is similar to the aggregation case. However, the following is to prove the contraction of $M^{-1}:\left\|M^{-1} J-M^{-1} J^{\prime}\right\|_{M} \leq \frac{\gamma^{\prime}}{\gamma}\left\|J-J^{\prime}\right\|_{\infty}$.

Proof. Let $D=M\left(M^{-1} J-M^{-1} J^{\prime}\right)$, so $\|D\|_{\infty}=\left\|M^{-1} J-M^{-1} J^{\prime}\right\|_{M}$

$$
\begin{aligned}
|D(i)| & =\left|\left[M\left(M^{-1} J-M^{-1} J^{\prime}\right)\right](i)\right| \\
& =\left|F(i)^{T}\left(M^{-1} J-M^{-1} J^{\prime}\right)\right| \\
& =\frac{\gamma^{\prime}}{\gamma}\left|\sum_{k=1}^{K} \theta_{k}(i) F^{T}\left(i_{k}\right)\left(M^{-1} J-M^{-1} J^{\prime}\right)\right| \\
& \leq \frac{\gamma^{\prime}}{\gamma} \max _{k}\left|F^{T}\left(i_{k}\right)\left(M^{-1} J-M^{-1} J^{\prime}\right)\right| \cdot\left|\sum_{k=1}^{K} \theta_{k}(i)\right| \\
& \leq \frac{\gamma^{\prime}}{\gamma} \max _{k}\left|D\left(i_{k}\right)\right| \\
& =\frac{\gamma^{\prime}}{\gamma} \max _{k}\left|J\left(i_{k}\right)-J^{\prime}\left(i_{k}\right)\right| \quad\left(\because M^{-1}=\left[L^{-1}, 0\right]\right) \\
& \leq \frac{\gamma^{\prime}}{\gamma}\left\|J-J^{\prime}\right\|_{\infty} .
\end{aligned}
$$

10.2 Paper Discussion: Natural Policy Gradient, Actor-Critic

10.2.1 Natural Descent Derivation by KL-divergence

Consider a parameter vector $\theta=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right]^{\mathrm{T}}$, Fisher information matrix (FIM):

$$
[\mathcal{I}(\theta)]_{i, j}=\mathrm{E}\left[\left.\left(\frac{\partial}{\partial \theta_{i}} \log f(X ; \theta)\right)\left(\frac{\partial}{\partial \theta_{j}} \log f(X ; \theta)\right) \right\rvert\, \theta\right]
$$

is positive semidefinite.
Consider a KL-divergence between $p(\theta)$ and $p(\theta+\Delta \theta)$:
$\mathrm{KL}(p(\theta+\Delta \theta) \| p(\theta))=\int \ln \left(\frac{p(x \mid \theta+\Delta \theta)}{p(x \mid \theta)}\right) p(x \mid \theta+\Delta \theta) d x \approx \frac{1}{2} \sum_{i} \sum_{j}[\mathcal{I}(\theta)]_{i, j} \Delta \theta_{i} \Delta \theta_{j}$,

Construct a Lagrangian function:

$$
L(\Delta \theta, \lambda)=\sum_{i} \frac{\partial \mathbb{E}[f \mid \theta]}{\partial \theta_{i}} \Delta \theta_{i}+\lambda\left(\epsilon-\frac{1}{2} \sum_{i} \sum_{j}[\mathcal{I}(\theta)]_{i, j} \Delta \theta_{i} \Delta \theta_{j},\right)
$$

where KL $\leq \epsilon$. So the matrix form is: $\nabla_{\theta}{ }^{T} \mathbb{E}[f \mid \theta] \Delta \theta+\lambda\left(\epsilon-\frac{1}{2} \boldsymbol{\Delta} \theta^{T}[\mathcal{I}(\theta)] \boldsymbol{\Delta} \theta\right)$.
Then the optimal solution for the Lagragian function is: $-[\mathcal{I}(\theta)]^{-1} \nabla_{\theta} \mathbb{E}[f \mid \theta]$.

10.2.2 Actor-Critic

Policy gradient can be written as: $\mathbb{E}\left[\sum_{t=0}^{\infty} \Psi_{t} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\right]$, where

- the policy $\pi_{\theta}(a \mid s)$ is the "actor,"
- and the value function approximation Ψ_{t} is the "critic." Many options to learn, usually use $\operatorname{TD}(\lambda)$.

