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Previously we learned the following results:

e AVI has an error bound when per-iteration Bellman error controlled in || - ||oo-
e AVI may diverge.

e Using a special norm || - ||¢, we can design a projected AVI which converges.

e AVI for control works for the special case of optimal stopping by using || - ||¢.

10.1 State Aggregation

Let the state space S be partitioned into {S;} for j =1,2,--- ,m. So U; S; = S and
Sp NS = 0.

e Assume the partition is given (we are not considering adaptive partitioning).

e Try to learn one value W per partition S;. The vector W = (Wi, ..., W) be-
comes the parameter of the value function approximation: J(W)(i) = >, Wiljes;)-

e With large enough m and well chosen sets, J(W)(i) ~ J*(i).

10-1
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10.1.1 Asynchronous VI algorithm for learning the weights

o LetI'; € {0,1,2,---} be the iterations at which S;’s value is updated. |I';| = co

e Let p/(-) be a distribution over S;

The algorithm is as follows:
1. Oniteration n+1, sample X"+ = (X7*1 X3+ ... X7+ where X[~ pi ().

2. WIH(j) = (1 — "™ (W) + " (ITTWN ()],  n+leTy,
W) = W), nt+lel

J
This is for simplicity of notation; in a practical implementation, sample X;ZH only if
7 being updated.

Theorem 10.1. Assume standard stepsize assumption conditions hold, then:

(i): W™ — W* a.s. where W* solves
W (i) = Y (@) (TT(W))(0).
1€S;

(ii): For each aggregate status j = {1,2,--- ,m}, let e; = maxy jes, |J*(k) — J*(I)]

and ™" be the greedy policy w.r.t. J(W*). Then, the value function approxi-
mation satisfies

[T(W*) = T loe < lelloc/(1 = 7)-
(iii): ||JV" = J*]|oe < 279]l€lleo/ (1 —7)%, where JV is the performance of policy 7.

(iv): There exsits an MDP for which (ii), (iii) are tight.

Main ideas:

Let T R™ — R™, (T'W)(j) = B [(TT(W)(X,)] = X, 97 () (TT(W)(0)).

T’ returns the average value of T'.J(W) over the partition j.

Then W™ (5) = (1 — a)W"™(j) + a((T"W™)(j) + sampling noise).

Thus the original problem is converted to prove the contraction property of 7".

Define another function that takes full value functions J € R™ to aggregated ones:
(J7HI) = 2Xies, P'(i)J(i). The following holds, which is called pseudo inverse
property:

(S TWNG) =D P OTW)(E) = W().

i€S;



Lecture 10: Aggregation, Feature-based VI, Natural PG 10-3

Also, note that 77 = J 1o T o J.

The following are true:

1. T is a - contraction on || - ||s-
2. [|[J(W) = JW")|lso < ||IW — W'|ls. This is because

17(W) = T(W) oo = max |(J(W) (i) — (W) ()|
= max |[W(j) = W'(j)| = [[W = W||ee.

3. 7)) = Tl < 1T = T'lloc

Proof. [|77() = I (J) e = _max
J

< N
_mjaxriré%?\e](z) J'(1)]

= max [J(i) = J'(0)] <[] = Tl

all states ¢
4. |IT'W = T'W'||oo <~||W — W'||o can be proved by 1, 2, and 3.
Proof. We now prove the theorem.

(i) Apply our standard stochastic approximation/SGD results with 7" to show
convergence to a fixed point W*.

(ii) Using a constant to approximate J* in S;, minimum error is ||e||o/2. Therefore,

min [|7(W) = J*[loo = [lefloc/2.

Let W be a vector that achieves the minimum: ||J(W) — J*||e = ||€]los/2 =: €.
First, a preliminary inequality:
IW* =Wl S [IW* = T'W oo + | T'W = Ws
SANW* = Wlloo + [T TIW — T TW ||
< AW = Wlloo + |ITJW — JW||s (non-expansiveness of of J~!)
< AW = W o+ ITTW = e+ e
AW = Wlloo + e + €
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Therefore:
1+

W™ = Wl <

€.
Next, note that by
ITW*) = oo < IT(W*) = J(W) oo + €
W =W + €
1 _
< (ﬂQ_V) )
1l—v 1-—v

_ el
L=

(iii) (Performance) J™" is the performance of the policy greedy w.r.t. JV', Try-
is like T}, with p being this greedy policy.
HJWW* - J*Hoo < ||T7rW*J7TW* - TJ(W*)HOO + ”TJ(W*) - J*Hoo
= | Tew+= ™" = Tone JWH) oo + |TT (W) = TT*||
ANV = T+ T = TW AT (W) = Tl

= (L= NNT™ = Tl < 29[TW* = Tl

* 27[le]o
= |l — T < .
|| o < FE
(iv) The following MDP example shows that (ii), (iii) are tight.

b>0

oR

Let the aggregated states be Sy = {1,2}, Sp = {3,4} and suppose we always
sample {2} for S4 and {4} for Sp.

Therefore, J*(1) =0, J%(2) = ¢, J*(3) =0, J*(4) = —¢, |||l = C.
By (i): W*(A) = c+~yW*(A)
W*(B) = —c+~yW*(B)

C —C
= W* = — .
<1—7 1+7>

is an MDP with four states.
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¢ el
l—y 1—7
Let b = 2%2 and consider 7", At state 3: staying gives a cost of b+ y(:=%),

1 1—v
and going to state 1 gives a cost of 0 + v(-%-). They are equal.

So, the maximum approximation error of JW™ is

1=
Suppose the policy chooses to stay, which gives a cost of

b 2v!|e|so
b+yb+~7b+-- = = (1@7')2.

10.1.2 A Representative State Approach

A more general linear approach: J(W)(i) = Zle Wi fx(i) = WTF(i) where F(i) =
(f1(2), fo(@) -~ fi(4)).

Main idea: Choose (iy,1i9,- - , i) representative states to perform V.I.

Special Assumptions:

1. F(i1), F(i2), ..., F (i) are linearly independent.
2. There exists 7' € [v, 1) such that Vi € S there exists scalars 6, (¢), 62(2), - - - , 05 (%)
with Zle |0k(i)] <1 and F(i) = 77 Zszl 01 (1) F (iy,).
= [ T(W)]|oo < L max; [J(W)(5)).
Note that aggregation is a special case, which has ;(7) = 0 or 1.
Definition 10.2. M € R™"** .
FI(1)
F1(2)
M = . (10.1)
F*(n)

Then J(W) = MW. Assume i; = 1,ip = 2,--- ,ip = k (w.lo.g).
Definition 10.3. L € R¥** to be M restricted to the representative states:
F(1)
FT(2)
L= . (10.2)

F (k)
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Let M~t =[L7% 0l,so MM = L'L=1,T"=MoT oM. Let’s consider the
algorithm Wt = 7"/,

Theorem 10.4. Assume special assumptions hold, then:
(i): W™ — W+,

(ii): T" is a ~'-contraction w.r.t || - ||ar, where ||W|y = |MW||w-

Let € = i{lvf |J* = JW|. We also have:

v+ )
Y1 =9)"

2(y +7) .
(I=y)(1 =)~

fiid): |7 = TW oo <

(i): [T = Tl <

We will most of the proof as it is similar to the aggregation case. However, the
following is to prove the contraction of M~ : ||M~'J — M1 ||y < LT = Tl

Proof. Let D= M(M™*J — M~'J"), 50 |D||oc = |[M™'J = M7'J|| ;s

|D@)| = [[M(M~'J — M=)
= |FE)T(M'T — ML)
— %/ Zek(i)FT(z’k)(MflJ - ML)
< Ll F ) O = M) |30
k=1

,y/
< — D(:
< mI?X] (ix)]
/

= %m]?XU(ik) —J'(i)| (oM=L, 0)

!
< L)T = |-
Y
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10.2 Paper Discussion: Natural Policy Gradient, Actor-Critic

10.2.1 Natural Descent Derivation by KL-divergence

Consider a parameter vector 6 = [91, Oy, ... ,HN] T, Fisher information matrix (FIM):

26),, = | (55 los/0x:0)) (a% g /(X0)) ‘ o]

is positive semidefinite.

Consider a KL-divergence between p(f) and p(6 + Af):

(2|0 + A9)

KL(p(04+A0)||p(0)) = /ln <p D (@l0) ) p(x]|0+A0)dx ~ %Z Z [I(Q)LJ.A@Z-AQJ-,

Construct a Lagrangian function:

L(AG,\) = Z %gje]mi +A (e —~ % Z Z [I(@)LJ.A@A%,)

)

where KL < e. So the matrix form is: Vo E[f|0]A0 + X (e — 2A07[Z(0)] A9).

1
2
Then the optimal solution for the Lagragian function is: —[Z(6)] _1V9E[ £16].
10.2.2 Actor-Critic

Policy gradient can be written as: E[> .2, U, Vylog g (as|s:)], where

e the policy 7y (a|s) is the “actor,”

e and the value function approximation ¥, is the “critic.” Many options to learn,
usually use TD(A).



