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Previously we learned the following results:

• AVI has an error bound when per-iteration Bellman error controlled in ‖ · ‖∞.

• AVI may diverge.

• Using a special norm ‖ · ‖ξ, we can design a projected AVI which converges.

• AVI for control works for the special case of optimal stopping by using ‖ · ‖ξ.

10.1 State Aggregation

Let the state space S be partitioned into {Sj} for j = 1, 2, · · · ,m. So ∪j Sj = S and
Sk ∩ Sl = ∅.

• Assume the partition is given (we are not considering adaptive partitioning).

• Try to learn one value Wj per partition Sj. The vector W = (W1, . . . ,Wm) be-
comes the parameter of the value function approximation: J̄(W )(i) =

∑
jWj1{i∈Sj}.

• With large enough m and well chosen sets, J̄(W )(i) ≈ J∗(i).
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10.1.1 Asynchronous VI algorithm for learning the weights

• Let Γj ⊆ {0, 1, 2, · · · } be the iterations at which Sj’s value is updated. |Γj| =∞

• Let pj(·) be a distribution over Sj

The algorithm is as follows:

1. On iteration n+1, sample Xn+1 = (Xn+1
1 , Xn+1

2 , · · · , Xn+1
m ) where Xn+1

j ∼ pj(·).

2. W n+1
j (j) = (1− αn+1(j))W n(j) + αn+1(j)[T J̄(W n)(Xn+1

j )], n+ 1 ∈ Γj,

W n+1
j (j) = W n

j (j), n+ 1 6∈ Γj.

This is for simplicity of notation; in a practical implementation, sample Xn+1
j only if

j being updated.

Theorem 10.1. Assume standard stepsize assumption conditions hold, then:

(i): W n → W ∗ a.s. where W ∗ solves

W ∗(j) =
∑
i∈Si

pj(i)(T J̄(W ∗))(i).

(ii): For each aggregate status j = {1, 2, · · · ,m}, let ej = maxk, l∈Sj
|J∗(k) − J∗(l)|

and πW
∗

be the greedy policy w.r.t. J̄(W ∗). Then, the value function approxi-
mation satisfies

‖J̄(W ∗)− J∗‖∞ ≤ ‖e‖∞/(1− γ).

(iii): ‖JW ∗ −J∗‖∞ ≤ 2γ‖e‖∞/(1− γ)2, where JW
∗

is the performance of policy πW
∗
.

(iv): There exsits an MDP for which (ii), (iii) are tight.

Main ideas:

Let T ′ : Rm → Rm, (T ′W )(j) = Epj [(T J̄(W ))(Xj)] =
∑

i p
j(i)((T J̄(W )(i)).

T ′ returns the average value of T J̄(W ) over the partition j.

Then W n+1(j) = (1− α)W n(j) + α((T ′W n)(j) + sampling noise).

Thus the original problem is converted to prove the contraction property of T ′.

Define another function that takes full value functions J ∈ Rn to aggregated ones:
(J̄−1(J))(j) =

∑
i∈Sj

pj(i)J(i). The following holds, which is called pseudo inverse
property :

(J̄−1(J̄(W )))(j) =
∑
i∈Sj

pj(i)J̄(W )(i) = W (j).
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Also, note that T ′ = J−1 ◦ T ◦ J̄ .

The following are true:

1. T is a γ- contraction on ‖ · ‖∞.

2. ‖J̄(W )− J̄(W ′)‖∞ ≤ ‖W −W ′‖∞. This is because

‖J̄(W )− J̄(W ′)|∞ = max
i
|(J̄(W )(i)− J̄(W ′)(i)|

= max
j
|W (j)−W ′(j)| = ‖W −W ′‖∞.

3. ‖J̄−1(J)− J̄−1(J ′)‖∞ ≤ ‖J − J ′‖∞

Proof. ‖J̄−1(J)− J̄−1(J ′)‖∞ = max
j∈{1,...,m}

∣∣∣∣∑
i∈Sj

pj(i)(J(i)− J ′(i))
∣∣∣∣

≤ max
j

max
i∈Sj

|J(i)− J ′(i)|

= max
all states i

|J(i)− J ′(i)| ≤ ‖J − J ′‖∞.

4. ‖T ′W − T ′W ′‖∞ ≤ γ‖W −W ′‖∞ can be proved by 1, 2, and 3.

Proof. We now prove the theorem.

(i) Apply our standard stochastic approximation/SGD results with T ′ to show
convergence to a fixed point W ∗.

(ii) Using a constant to approximate J∗ in Sj, minimum error is ‖e‖∞/2. Therefore,

min
W
‖J̄(W )− J∗‖∞ = ‖e‖∞/2.

Let Ŵ be a vector that achieves the minimum: ‖J̄(Ŵ )− J̄∗‖∞ = ‖e‖∞/2 =: ε.
First, a preliminary inequality:

‖W ∗ − Ŵ‖∞ ≤ ‖W ∗ − T ′Ŵ‖∞ + ‖T ′Ŵ − Ŵ‖∞
≤ γ‖W ∗ − Ŵ‖∞ + ‖Ĵ−1T J̄Ŵ − J̄−1J̄Ŵ‖∞
≤ γ‖W ∗ − Ŵ‖∞ + ‖T J̄Ŵ − J̄Ŵ‖∞ (non-expansiveness of of J̄−1)

≤ γ‖W ∗ − Ŵ‖∞ + ‖T J̄Ŵ − J∗‖∞ + ε

≤ γ‖W ∗ − Ŵ‖∞ + γε+ ε



Lecture 10: Aggregation, Feature-based VI, Natural PG 10-4

Therefore:

‖W ∗ − Ŵ‖∞ ≤
1 + γ

1− γ
ε.

Next, note that by

‖J̄(W ∗)− J∗‖∞ ≤ ‖J̄(W ∗)− J̄(Ŵ )‖∞ + ε

≤ ‖W ∗ − Ŵ‖∞ + ε

≤
(

1 + γ

1− γ
+

1− γ
1− γ

)
ε

=
‖e‖∞
1− γ

.

(iii) (Performance) JπW
∗

is the performance of the policy greedy w.r.t. J̄W
∗
, TπW ∗

is like Tµ with µ being this greedy policy.

‖JπW ∗ − J∗‖∞ ≤ ‖TπW ∗JπW
∗ − T J̄(W ∗)‖∞ + ‖T J̄(W ∗)− J∗‖∞

= ‖TπW ∗JπW
∗ − TπW ∗ J̄(W ∗)‖∞ + ‖T J̄(W ∗)− TJ∗‖∞

≤ γ‖JπW ∗ − J∗ + J∗ − J̄(W ∗)‖+ γ‖J̄(W ∗)− J∗‖∞,

⇒ (1− γ)‖JπW ∗ − J∗‖∞ ≤ 2γ‖J̄W ∗ − J∗‖∞

⇒ ‖JπW ∗ − J∗‖∞ ≤
2γ‖e‖∞
(1− γ)2

.

(iv) The following MDP example shows that (ii), (iii) are tight.

2

1

4

3

0

c

0

b ≥ 0

-c

is an MDP with four states.

Let the aggregated states be SA = {1, 2}, SB = {3, 4} and suppose we always
sample {2} for SA and {4} for SB.

Therefore, J∗(1) = 0, J∗(2) = c, J∗(3) = 0, J∗(4) = −c, ‖e‖∞ = c.

By (i): W ∗(A) = c+ γW ∗(A)

W ∗(B) = −c+ γW ∗(B)

⇒ W ∗ =

(
c

1− γ
,
−c

1 + γ

)
.
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So, the maximum approximation error of J̄W ∗ is
c

1− γ
=
‖e‖∞
1− γ

.

Let b = 2γc
1−γ and consider πW

∗
. At state 3: staying gives a cost of b + γ( −c

1−γ ),

and going to state 1 gives a cost of 0 + γ( c
1−γ ). They are equal.

Suppose the policy chooses to stay, which gives a cost of

b+ γb+ γ2b+ · · · = b

1− γ
=

2γ‖e‖∞
(1− γ)2

.

10.1.2 A Representative State Approach

A more general linear approach: J̄(W )(i) =
∑k

i=1Wkfk(i) = W TF (i) where F (i) =
(f1(i), f2(i) · · · fk(i)).

Main idea: Choose (i1, i2, · · · , ik) representative states to perform V.I.

Special Assumptions:

1. F (i1), F (i2), . . . , F (ik) are linearly independent.

2. There exists γ′ ∈ [γ, 1) such that ∀ i ∈ S there exists scalars θ1(i), θ2(i), · · · , θk(i)
with

∑K
k=1 |θk(i)| ≤ 1 and F (i) = γ′

γ

∑K
k=1 θk(i)F (ik).

⇒ ‖J̄(W )‖∞ ≤ γ′

γ
maxi |J̄(W )(i)|.

Note that aggregation is a special case, which has θk(i) = 0 or 1.

Definition 10.2. M ∈ Rn×k :

M =


F T (1)
F T (2)

...
F T (n)

 (10.1)

Then J̄(W ) = MW . Assume i1 = 1, i2 = 2, · · · , ik = k (w.l.o.g).

Definition 10.3. L ∈ Rk×k to be M restricted to the representative states:

L =


F T (1)
F T (2)

...
F T (k)

 (10.2)
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Let M−1 = [L−1, 0], so M−1M = L−1L = I, T ′ = M−1 ◦ T ◦M . Let’s consider the
algorithm W n+1 = T ′W n.

Theorem 10.4. Assume special assumptions hold, then:

(i): W n → W ∗,

(ii): T ′ is a γ′-contraction w.r.t ‖ · ‖M , where ‖W‖M = ‖MW‖∞.

Let ε = inf
W
‖J∗ − J̄W‖. We also have:

(iii): ‖J∗ − J̄W‖∞ ≤
γ + γ′

γ(1− γ′)
ε,

(iv): ‖JπW ∗ − J∗‖∞ ≤
2(γ + γ′)

(1− γ)(1− γ′)
ε.

We will most of the proof as it is similar to the aggregation case. However, the
following is to prove the contraction of M−1 : ‖M−1J −M−1J ′‖M ≤ γ′

γ
‖J − J ′‖∞.

Proof. Let D = M(M−1J −M−1J ′), so ‖D‖∞ = ‖M−1J −M−1J ′‖M

|D(i)| = |[M(M−1J −M−1J ′)](i)|
= |F (i)T (M−1J −M−1J ′)|

=
γ′

γ

∣∣∣∣ K∑
k=1

θk(i)F
T (ik)(M

−1J −M−1J ′)

∣∣∣∣
≤ γ′

γ
max
k

∣∣∣∣F T (ik)(M
−1J −M−1J ′)

∣∣∣∣ · ∣∣∣∣ K∑
k=1

θk(i)

∣∣∣∣
≤ γ′

γ
max
k
|D(ik)|

=
γ′

γ
max
k
|J(ik)− J ′(ik)| (∵M−1 = [L−1, 0])

≤ γ′

γ
‖J − J ′‖∞.
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10.2 Paper Discussion: Natural Policy Gradient, Actor-Critic

10.2.1 Natural Descent Derivation by KL-divergence

Consider a parameter vector θ =
[
θ1, θ2, . . . , θN

]T
, Fisher information matrix (FIM):

[
I(θ)

]
i,j

= E

[(
∂

∂θi
log f(X; θ)

)(
∂

∂θj
log f(X; θ)

)∣∣∣∣ θ] ,
is positive semidefinite.

Consider a KL-divergence between p(θ) and p(θ + ∆θ):

KL(p(θ+∆θ)‖p(θ)) =

∫
ln

(
p(x|θ + ∆θ)

p(x|θ)

)
p(x|θ+∆θ)dx ≈ 1

2

∑
i

∑
j

[
I(θ)

]
i,j

∆θi∆θj,

Construct a Lagrangian function:

L(∆θ, λ) =
∑
i

∂E[f |θ]
∂θi

∆θi + λ

(
ε− 1

2

∑
i

∑
j

[
I(θ)

]
i,j

∆θi∆θj,

)

where KL ≤ ε. So the matrix form is: ∇θ
TE[f |θ]∆θ + λ

(
ε− 1

2
∆θT

[
I(θ)

]
∆θ
)
.

Then the optimal solution for the Lagragian function is: −
[
I(θ)

]−1∇θE[f |θ].

10.2.2 Actor-Critic

Policy gradient can be written as: E [
∑∞

t=0 Ψt∇θ log πθ (at|st)], where

• the policy πθ (a|s) is the “actor,”

• and the value function approximation Ψt is the “critic.” Many options to learn,
usually use TD(λ).


