IE 3186: Approximate Dynamic Programming

Fall 2018

Lecture 1: Overview of MDP Models

Lecturer: Daniel Jiang Scribes: Jing Yang

References:

D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§1.1)

W.B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality, 2nd ed, Wiley & Sons, 2007. (Chapter 3)

1.1 Finite-horizon MDP Models

The core components of a finite-horizon MDP are:

(1) a discrete-time dynamical system

$$x_{k+1} = f_k(x_k, u_k, w_{k+1}), k = 0, 1, \dots, N-1,$$

where

- -k indexes time up to a finite time horizon N;
- $-x_k \in X_k$ is a "state";
- $-u_k \in U_k(x_k)$ is a "control," "action," or "decision";
- w_{k+1} is "noise" or "disturbance" independent from x_k , u_k and across time.
- (2) an additive cost function g_k such that the total cost is written as:

$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_{k+1}),$$

where the first part is the cost landing in a state x_N in the last period. Our goal is to optimize:

$$\mathbf{E}\left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_{k+1})\right].$$

Remark 1.1. It is also common to specify a system using transition probabilities: $p_{ss'}^a = \mathbf{P}(f_k(s, a, w) = s').$

Example 1.2. (Inventory control)

- ordering a quantity of some products to meet demand and minimize cost;
- $-x_k = inventory in stock at time k;$
- $-u_k = how much to order at time k;$
- $-w_{k+1} = demand \ at \ time \ k+1, \ satisfied \ using \ x_k, \ u_k;$
- transition: $x_{k+1} = x_k + u_k w_{k+1}$ (backlog $\Leftrightarrow x_k < 0$).

Optimization problem:

$$\min_{u_0, u_1, \dots, u_{N-1}} R(x_N) + \sum_{k=0}^{N-1} (cu_k + r(x_k)),$$

where

- $R(x_N)$: the disposal cost in the last time period;
- cu_k : the order cost;
- $r(x_k)$: holding cost $(x_k > 0)$ /backlog cost $(x_k < 0)$.

In general, we have two different ways to minimize the above problem:

- (a) open-loop minimization: choose u_0, \ldots, u_{N-1} all at time 0.
- (b) close-loop minimization: choose u_k at time k.

Close-loop minimization is what we focus on, under which our goal becomes minimizing over policies π .

1.2 Optimal Policies

Mathematically, we are searching for a sequence of functions $\mu_0, \mu_1, \dots, \mu_{N-1}$ such that $\mu_k(x_k) \in \mathcal{U}_k(x_k)$ (deterministic maps from states to actions).

Definition 1.3. An admissible policy $\pi = (\mu_0, \dots, \mu_{N-1})$ is a sequence of functions mapping from states x_k to actions in $\mathcal{U}_k(x_k)$.

Under π , the system evolves like

$$x_{k+1} = f_k(x_k, \mu_k(x_k), w_{k+1}).$$

Definition 1.4. Value function (or "cost to go" function) is:

$$J_{\pi}(x_0) = \mathbf{E} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_{k+1}) \right].$$

The optimal policy minimizes $J_{\pi}(x_0)$, that is

$$J_{\pi^*}(x_0) = \min_{\pi \in \Pi} J_{\pi}(x_0) = J^*(x_0) \quad \forall x_0,$$

where Π is the set of all possible admissible policies.

Remark 1.5. We've implicitly only considered Markov & deterministic policies. There are also:

- (1) history dependent $(x_k \text{ depends on } x_{k-1}, x_{k-2}, \ldots)$
- (2) stochastic (returns a distribution over \mathcal{U}_k).

By well-known results (Section 4.4, Puterman), we know that there exists an optimal policy that is Markov & deterministic. The proof ideas are as follows.

- (1) For the history dependent case, costs/transitions depend only on x_k (Theorem 4.4.2 (a), Puterman).
- (2) For the stochastic case, we can shift the distribution toward deterministic policy without increasing cost (Lemma 4.3.1, Puterman).

<u>Principle of Optimality</u>: let $\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$ be an optimal policy. Suppose some state x_i at time i is visited by π^* with probability > 0. Consider

$$\min_{\text{policies}} \mathbf{E} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_{k+1}) \right], \tag{*}$$

the tail policy $\{\mu_i^*, \dots, \mu_{N-1}^*\}$ is optimal for (\star) .

The intuition behind: if it is not optimal, then π^* cannot be optimal for the original problem.

Algorithm 1 Backward Dynamic Programming Algorithm

Let
$$J_N(x_N) = g_N(x_N) \quad \forall x_N \in X_N$$

for $k < N$ do
 $J_k(x_N) = \min_{u_k \in U_k(x_k)} \mathbf{E}[g_k(x_k, u_k, w_{k+1}) + J_{k+1}(f_k(x_k, u_k, w_{k+1}))]$
end for

Then $J_0^*(x_0) = J_0(x_0)$ and if u_k^* minimizes RHS, then $\mu_k^*(x_k) = u_k^*$ is the optimal policy.

Proof. Let

$$J_k^*(x_k) = \min_{\pi^k} \mathbf{E} \left[g_N(x_N) + \sum_{i=k}^{N-1} g_i(x_i, \mu_i(x_i), w_{i+1}) \right],$$

where $\pi^k = (\mu_k, \dots, \mu_{N-1})$. Our goal is to show that $J_k^* = J_k$, then $J_0^* = J^* = J_0$.

Base case: k = N, $J_N^*(x_N) := g_N(x_N)$. By definition, $J_N^* = J_N$.

Induction step: assume for some k, $J_{k+1}^*(x_{k+1}) = J_{k+1}(x_{k+1})$ for all x_{k+1} . Note that $\pi^k = (\mu_k, \pi^{k+1})$, then we have

$$J_{k}^{*}(x_{k}) = \min_{(\mu_{k}, \pi^{k+1})} \mathbf{E} \left[g_{k}(x_{k}, \mu_{k}(x_{k}), w_{k+1}) + g_{N}(x_{N}) + \sum_{i=k+1}^{N-1} g_{i}(x_{i}, \mu_{i}(x_{i}), w_{i+1}) \right]$$

$$= \min_{(\mu_{k}, \pi^{k+1})} \mathbf{E} \left[g_{k}(\ldots) + \mathbf{E}[g_{N}(\ldots) + \sum_{i=k+1}^{N-1} g_{i}(\ldots) | x_{k+1}] \right]$$

$$= \min_{\mu_{k}} \mathbf{E} \left[g_{N}(\ldots) + \min_{\pi^{k+1}} \mathbf{E}[g_{N}(\ldots) + \sum_{i=k+1}^{N-1} g_{i}(\ldots) | x_{k+1}] \right]$$

$$= \min_{\mu_{k}} \mathbf{E}[g_{k}(\ldots) + J_{k+1}^{*}(x_{k+1})]$$

$$= \min_{u_{k} \in U_{k}(x_{k})} \mathbf{E}[g_{k}(x_{k}, u_{k}, w_{k+1}) + J_{k+1}(f_{k}(x_{k}, u_{k}, w_{k+1}))]$$

$$= J_{k}(x_{k}),$$

where we used the principle of optimality in the third line.

Example 1.6. (Comparison between decision tree) Suppose $|X_k| \leq n$, $|\mathcal{U}_k| \leq m$. Then, the backward DP needs to compute the expressions like $g_k(\ldots) + J_{k+1}(\ldots)$ Nmn times. However, a decision tree approach requires m^N computations.

Example 1.7. (Parking Problem) Let 0, 1, ..., N-1 denote N parking spaces with cost c_k , and N denote a parking garage with cost C, which is more expensive. Once

you are in front of a spot, it is available with probability p and taken with probability 1-p (i.i.d).

Model:

- State space: $\{A, T, D\}$, where state D denotes an artificial state where the decision maker is done.
- Action space: {park, next} at state A, {next} at state T and {stay} at state D.
- Cost function: $g_k(A, park) = c_k$, $g_k(\cdot, next) = 0$, $g_k(\cdot, stay) = 0$, $g_k(\cdot) = C$.
- Transitions:

$$x_{k+1} = f_k(x_k, u_k, w_{k+1}) = \begin{cases} w_{k+1} & \text{if } u_k = next, \\ D & \text{if } u_k = park, \\ D & \text{if } u_k = stay. \end{cases}$$

- Disturbance:

$$w_{k+1} = \begin{cases} A & w.p. \ p, \\ T & w.p. \ 1-p. \end{cases}$$

$$J_k^*(D) = 0, \quad \forall k.$$

$$J_k^*(A) = \min\{c_k + J_{k+1}^*(D), pJ_{k+1}^*(A) + (1-p)J_{k+1}^*(T)\}.$$

$$J_k^*(T) = pJ_{k+1}^*(A) + (1-p)J_{k+1}^*(T).$$

1.3 Stationary Case

Consider case there costs are identical across time, but discounted:

$$g_k(x_k, u_k, w_{k+1}) = \gamma^k g(x_k, u_k, w_{k+1}),$$

$$g_N(x_N) = \gamma^N g(x_N).$$

Also, $u_k(x) = u(x)$ $\forall x, f_k = f, X_k = X$ for all k, and w_{k+1} is i.i.d.

Bellman operator notation: let μ be a stationary policy $(\mu(x) \in \mathcal{U}(x))$, that is, $\pi = (\mu, \mu, \dots, \mu)$. Let $J: X \to \mathbb{R}$. Define the map which takes J and returns another value function $(T_{\mu}J)$ as

$$(T_{\mu}J)(x) = \mathbf{E}[g(x,\mu(x),w) + \gamma J(f(x,\mu(x),w))],$$

which is the "evaluation Bellman operator for policy μ ." $(T_{\mu}J)$ answers the question "if J is the cost-to-go, what is the expected cost of one step of μ ?". Accordingly, we can also define the optimizing version of T_{μ} :

$$(TJ)(x) = \min_{\mu \in \mathcal{U}} \mathbf{E}[g(x, \mu(x), w) + \gamma J(f(x, \mu(x), w))]$$

T is called the "Bellman operator," which answers the question "if J is the cost to go, what is the best I can achieve?"

Example 1.8 (Backward DP using Shorthand). At the last time period, we have $J_{N-1}(x) = (Tg)(x)$. Similarly, $J_{N-2}(x) = (TJ_{N-1})(x) = (TTg)(x) = (T^2g)(x) = J_{N-2}^*$. Recursively applying these relationships, we can write $J_0(x) = (T^Ng)(x) = J_0^*(x) = J^*(x)$. We also have that $T_{\mu_k}^* J_{k+1}^* = T J_{k+1}^*$ for all k.

Example 1.9 (Shorthand for Evaluation). Let $\pi = (\mu_0, \dots, \mu_{N-1})$. We can write the value of policy π by iterating the evaluation version of the Bellman operator:

$$J_{\pi}(x) = (T_{\mu_0}, T_{\mu_1}, \dots, T_{\mu_{N-1}}g)(x).$$