
IE 3186: Approximate Dynamic Programming Fall 2018

Lecture 1: Overview of MDP Models
Lecturer: Daniel Jiang Scribes: Jing Yang

References:

D.P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming, Vol. 2, 4th ed, Athena Scientific, Belmont MA, 2012. (§1.1)

W.B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, 2nd ed, Wiley & Sons, 2007. (Chapter 3)

1.1 Finite-horizon MDP Models

The core components of a finite-horizon MDP are:

(1) a discrete-time dynamical system

xk+1 = fk(xk, uk, wk+1), k = 0, 1, . . . , N − 1,

where

− k indexes time up to a finite time horizon N ;

− xk ∈ Xk is a “state”;

− uk ∈ Uk(xk) is a “control,” “action,” or “decision”;

− wk+1 is “noise” or “disturbance” independent from xk, uk and across time.

(2) an additive cost function gk such that the total cost is written as:

gN(xN) +
N−1∑
k=0

gk(xk, uk, wk+1),

where the first part is the cost landing in a state xN in the last period. Our
goal is to optimize:

E

[
gN(xN) +

N−1∑
k=0

gk(xk, uk, wk+1)

]
.

1-1

Lecture 1: Overview of MDP Models 1-2

Remark 1.1. It is also common to specify a system using transition probabilities:
pass′ = P(fk(s, a, w) = s′).

Example 1.2. (Inventory control)

− ordering a quantity of some products to meet demand and minimize cost;

− xk = inventory in stock at time k;

− uk = how much to order at time k;

− wk+1 = demand at time k + 1, satisfied using xk, uk;

− transition: xk+1 = xk + uk − wk+1 (backlog ⇔ xk < 0).

Optimization problem:

min
u0,u1,...,uN−1

R(xN) +
N−1∑
k=0

(cuk + r(xk)),

where

− R(xN): the disposal cost in the last time period;

− cuk: the order cost;

− r(xk): holding cost (xk > 0)/backlog cost (xk < 0).

In general, we have two different ways to minimize the above problem:

(a) open-loop minimization: choose u0, . . . , uN−1 all at time 0.

(b) close-loop minimization: choose uk at time k.

Close-loop minimization is what we focus on, under which our goal becomes minimiz-
ing over policies π.

1.2 Optimal Policies

Mathematically, we are searching for a sequence of functions µ0, µ1, . . . , µN−1 such
that µk(xk) ∈ Uk(xk) (deterministic maps from states to actions).

Definition 1.3. An admissible policy π = (µ0, . . . , µN−1) is a sequence of functions
mapping from states xk to actions in Uk(xk).

Lecture 1: Overview of MDP Models 1-3

Under π, the system evolves like

xk+1 = fk(xk, µk(xk), wk+1).

Definition 1.4. Value function (or “cost to go” function) is:

Jπ(x0) = E

[
gN(xN) +

N−1∑
k=0

gk(xk, µk(xk), wk+1)

]
.

The optimal policy minimizes Jπ(x0), that is

Jπ∗(x0) = min
π∈Π

Jπ(x0) = J∗(x0) ∀x0,

where Π is the set of all possible admissible policies.

Remark 1.5. We’ve implicitly only considered Markov & deterministic policies.
There are also:

(1) history dependent (xk depends on xk−1, xk−2, . . .)

(2) stochastic (returns a distribution over Uk).

By well-known results (Section 4.4, Puterman), we know that there exists an optimal
policy that is Markov & deterministic. The proof ideas are as follows.

(1) For the history dependent case, costs/transitions depend only on xk (Theorem
4.4.2 (a), Puterman).

(2) For the stochastic case, we can shift the distribution toward deterministic policy
without increasing cost (Lemma 4.3.1, Puterman).

Principle of Optimality: let π∗ = {µ∗0, . . . , µ∗N−1} be an optimal policy. Suppose some
state xi at time i is visited by π∗ with probability > 0. Consider

min
policies

E

[
gN(xN) +

N−1∑
k=0

gk(xk, µk(xk), wk+1)

]
, (?)

the tail policy {µ∗i , . . . , µ∗N−1} is optimal for (?).
The intuition behind: if it is not optimal, then π∗ cannot be optimal for the original
problem.

Lecture 1: Overview of MDP Models 1-4

Algorithm 1 Backward Dynamic Programming Algorithm

Let JN(xN) = gN(xN) ∀xN ∈ XN

for k < N do
Jk(xN) = minuk∈Uk(xk) E[gk(xk, uk, wk+1) + Jk+1(fk(xk, uk, wk+1))]

end for

Then J∗0 (x0) = J0(x0) and if u∗k minimizes RHS, then µ∗k(xk) = u∗k is the optimal
policy.

Proof. Let

J∗k (xk) = min
πk

E

[
gN(xN) +

N−1∑
i=k

gi(xi, µi(xi), wi+1)

]
,

where πk = (µk, . . . , µN−1). Our goal is to show that J∗k = Jk, then J∗0 = J∗ = J0.

Base case: k = N , J∗N(xN) := gN(xN). By definition, J∗N = JN .

Induction step: assume for some k, J∗k+1(xk+1) = Jk+1(xk+1) for all xk+1. Note that
πk = (µk, π

k+1), then we have

J∗k (xk) = min
(µk,πk+1)

E

[
gk(xk, µk(xk), wk+1) + gN(xN) +

N−1∑
i=k+1

gi(xi, µi(xi), wi+1)

]

= min
(µk,πk+1)

E

[
gk(. . .) + E[gN(. . .) +

N−1∑
i=k+1

gi(. . .)|xk+1]

]

= min
µk

E

[
gN(. . .) + min

πk+1
E[gN(. . .) +

N−1∑
i=k+1

gi(. . .)|xk+1]

]
= min

µk
E[gk(. . .) + J∗k+1(xk+1)]

= min
uk∈Uk(xk)

E[gk(xk, uk, wk+1) + Jk+1(fk(xk, uk, wk+1))]

= Jk(xk),

where we used the principle of optimality in the third line.

Example 1.6. (Comparison between decision tree) Suppose |Xk| ≤ n, |Uk| ≤ m.
Then, the backward DP needs to compute the expressions like gk(. . .)+Jk+1(. . .) Nmn
times. However, a decision tree approach requires mN computations.

Example 1.7. (Parking Problem) Let 0, 1, . . . , N − 1 denote N parking spaces with
cost ck, and N denote a parking garage with cost C, which is more expensive. Once

Lecture 1: Overview of MDP Models 1-5

you are in front of a spot, it is available with probability p and taken with probability
1− p (i.i.d).

Model:

− State space: {A, T,D}, where state D denotes an artificial state where the de-
cision maker is done.

− Action space: {park, next} at state A, {next} at state T and {stay} at state D.

− Cost function: gk(A, park) = ck, gk(·, next) = 0, gk(·, stay) = 0, gk(·) = C.

− Transitions:

xk+1 = fk(xk, uk, wk+1) =


wk+1 if uk = next,

D if uk = park,

D if uk = stay.

− Disturbance:

wk+1 =

{
A w.p. p,

T w.p. 1− p.

J∗k (D) = 0, ∀k.
J∗k (A) = min{ck + J∗k+1(D), pJ∗k+1(A) + (1− p)J∗k+1(T)}.
J∗k (T) = pJ∗k+1(A) + (1− p)J∗k+1(T).

1.3 Stationary Case

Consider case there costs are identical across time, but discounted:

gk(xk, uk, wk+1) = γkg(xk, uk, wk+1),

gN(xN) = γNg(xN).

Also, uk(x) = u(x) ∀x, fk = f , Xk = X for all k, and wk+1 is i.i.d.

Bellman operator notation: let µ be a stationary policy (µ(x) ∈ U(x)), that is,
π = (µ, µ, . . . , µ). Let J : X → R. Define the map which takes J and returns
another value function (TµJ) as

(TµJ)(x) = E[g(x, µ(x), w) + γJ(f(x, µ(x), w))],

Lecture 1: Overview of MDP Models 1-6

which is the “evaluation Bellman operator for policy µ.” (TµJ) answers the question
“if J is the cost-to-go, what is the expected cost of one step of µ?”. Accordingly, we
can also define the optimizing version of Tµ:

(TJ)(x) = min
µ∈U

E[g(x, µ(x), w) + γJ(f(x, µ(x), w))]

T is called the “Bellman operator,” which answers the question “if J is the cost to
go, what is the best I can achieve?”

Example 1.8 (Backward DP using Shorthand). At the last time period, we have
JN−1(x) = (Tg)(x). Similarly, JN−2(x) = (TJN−1)(x) = (TTg)(x) = (T 2g)(x) =
J∗N−2. Recursively applying these relationships, we can write J0(x) = (TNg)(x) =
J∗0 (x) = J∗(x). We also have that T ∗µkJ

∗
k+1 = TJ∗k+1 for all k.

Example 1.9 (Shorthand for Evaluation). Let π = (µ0, . . . , µN−1). We can write the
value of policy π by iterating the evaluation version of the Bellman operator:

Jπ(x) = (Tµ0 , Tµ1 , . . . , TµN−1
g)(x).

